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In this document we present basic computations for the paper “Maximum likelihood estimation for linear
Gaussian covariance models”.

Code for Figure 1

We first want to compare P(Wn−1 > n/2) with its approximation given by the Tracy-Widom approximation.
We are going to use R package RMTstat. We present computations for dimension p = 3. In this case the
sample n will vary between 3 and 60. The following code produces theoretical probabilities of P(Wn−1 > n/2)
coming from the Tracy-Widom approximation. The code will work for any other given value of p.

library(RMTstat)
p <- 3
matpwt <- rep(0,20)
nn <- p*(1:20)
for (n in nn) {

# corrected Mu's approach
mu <- (sqrt(n-3/2)-sqrt(p-1/2))^2
sig <- (sqrt(n-3/2)-sqrt(p-1/2))*(1/sqrt(p-1/2)-1/sqrt(n-3/2))^(1/3)
tau <- sig/mu
nu <- log(mu)+tau^2/8
x <- (log(n/2)-nu)/tau
matpwt[which(nn==n)] <- ptw(-x)

}

Now we explicitly estimate these probabilities using a simple Monte Carlo approach with 1000 iterations.
This is less than used to produce Figure 1 in the paper so the plot may be less smooth. To reproduce the
same result set N<-10000. There was no need to fix a random seed because the variance of the estimators is
very small.

library(MASS)
library(matrixcalc)
N <- 1000 # number of iterations in our simulation
samples <- p*(1:20) # sample size
# set the true covariance matrix C to be the identity matrix (white Wishart)
C <- diag(p)
# check how often 2S-I>0 (or equivalently lambda_min(W)>n/2)
in.region <- rep(0,length(samples))
for (n in samples){

yess <- 0
for (i in 1:N){

dat <- mvrnorm(n, rep(0,p), C)
S <- (n-1)*cov(dat)/n
yess <- yess +1*(is.positive.definite(2*S-C))

}
# we get a simple Monte-Carlo estimate
in.region[which(samples==n)] <- yess/N

}
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Now we plot both together adding the 0.95 line:
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Code for Figure 2

In the table in Figure 2 we check the minimal sample size that guarantees that P(Wn−1 > n/2) > 0.95. For
large p, this minimal n will lie somewhere between 11 · p and 12 · p. This can be checked for any fixed p using
the following code.

p<-1000
# restrict to sample sizes in the interesting interval (for small p may not be enough)
nn <- seq(11*p,12*p,1)
resl <- rep(0,length(nn))
for (n in nn) {

# corrected Mu's approach
mu <- (sqrt(n-3/2)-sqrt(p-1/2))^2
sig <- (sqrt(n-3/2)-sqrt(p-1/2))*(1/sqrt(p-1/2)-1/sqrt(n-3/2))^(1/3)
tau <- sig/mu
nu <- log(mu)+tau^2/8
x <- (log(n/2)-nu)/tau
resl[which(nn==n)] <- ptw(-x)

}
# and this is our minimal n
(11*p+min(which(resl>0.95)))

## [1] 11759
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Proof of Proposition 3.5

The proof of Proposition 3.5 depends on simple computations in Mathematica. We provide the code:

mu:=(Sqrt[g*p-3/2]-Sqrt[p-1/2])^2
sig:=(Sqrt[g*p-3/2]-Sqrt[p-1/2])*((1/Sqrt[p-1/2])-(1/Sqrt[g*p-3/2]))^(1/3)
tau:=sig/mu
nu:=Log[mu]+(tau^2)/8
foo:=(nu-Log[g*p/2])/tau
Assuming[g>1,Limit[foo,p->Infinity]]
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