5
Some Other Dimension Reduction Methods

Dimensionality reduction techniques beyond PCA are often nec-
essary when the underlying data structure is nonlinear or when
variance-based methods like PCA do not capture enough of the es-
sential relationships in the data. The goal of this chapter is to show
what are the possible ways to handle non-linearity with preserving
some of the computational advantages of linear methods. We do it
by introducing two state-of-the-art techniques: Uniform Manifold
Approximation and Projection (UMAP). This part of the lecture will
be presented on slides and will be relatively high-level.

Exercise 5.5.5. Let p,q be two probability distributions over some space
X. Define the Kullback-Leibler divergence KL(p,q) = E,log % Show
that KL(p,q) > 0 and it is equal to zero if and only if p, q define the same
distribution. Hint: Use the Jensen’s inequality and the fact that —log is a
strictly convex function.

Exercise 5.5.6. Suppose X; ~ Bern(p;) and Y; ~ Bern(q;) are all inde-
pendent. Show that the Kullback-Leibler divergence between the distribution
pof X = (Xy,..., Xu) and the distribution q of Y = (Y1,...,Yw) is given
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Exercise 7.7.4\(Identifiapility in FA). Show that if (W,¥) sutisﬁﬂ/ the FA
model, then for a ogonal matrix U € O(r), the pair (WU, 'Y) defines
the same observed distribution for X. What does this imply for parameter

estimation?
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Package

We need the “sm” package for accessing the dataset and the “energy” package for
calculating distance correlation, which is a measure of dependence that captures non-linear
relationships

install.packaged("sm"

## Installing pa into '/usr/local/lib/R/site-1library’
## (as 'lib' is unspecified)

"energy")

## Installing pack??"f;fo "/usr/local/lib/R/site-1library"’

## (as 'lib' is unspecified)

install.packageq

library(sm)
## Package 'sm', version 2.2-6.0: type help(sm) for summary information

library(energy)

# Load the aircraft dataset
data(aircraft)

&_’—_/—:

# Extract the relevant variables
X <- aircraft$Span # Wing span
Y <- aircraft$Speed # Speed

# Compute the Pgarson correlation
correlation <-[cor(X,
correlation

## [1] -90.01042982

Correlation

The correlationis very clse to zero ( ydicating no significant linear relationship
between a.



Test for Independence Using Correlation-Based Tests

Perform a hypothesis test for the correlation to confirm wheth served correlation
is statistically different from zero. The p-value is approximately 0.78, which is much greater
than the typical significance level (e.g“ This suggests thatweAail to reject the null
hypothesis of zero correlation. In other-words, there is no evidence of a linear relationship
between Span and Speed.

# Perform a correlation test
cor_test result <- cor.test(X, Y)
cor_test result$p.value

## [1] ©.7816014

CompWe Correlation

—
Distance correlation is a measure of dependence that captures both linear and non-linear
relationships. It ranges from 0 (no dependence) to 1 (perfect dependence). Use the
dcor.test function from the energy package e the distance correlation and test for
dependence. The p-value is approximately [0.00099, which is much smaller than the typical
significance level (e.g., 0.05). This indicates evidence against the null hypothesis of
independence. In other words, Span and Speed are hmssemeven though their

correlation is close to zero.

# Perform a distance correlation test
distance_correlation_test <- dcor.test(X, Y, R = 1000)
distance_correlation_test$p.value — —

Visualize the Data

Plot the data to visualize the relationship between Span and Speed. This will help us
understand why the correlation is close to zero but the variables are still dependent. The
scatter plot may show a pattern that is not linear. For example, there could be a quadratic
or other non-linear relationship. Even though the points do not form a straight line, they
may still exhibit a clear structure, indicating dependence.

# Plot the data
plot(X, Y, xlab = "Wing Span", ylab = "Speed", main = "Aircraft Wing Span vs.
Speed")



Aircraft Wing Span vs. Speed
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Summary

Correlation: The Pearson correlation is close to zero (-0.01), indicating no significant
linear relationship. Distance Correlation: The distance correlation test has a very small p-
value (0.00099), indicating strong evidence of dependence. Visual Inspection: The scatter
plot may reveal a non-linear pattern, confirming that the variables are dependent in a non-
linear way

Conclusion

This example demonstrates that variables can be highly dependent despite having zero
correlation. The key takeaway is:

Zero correlation does not imply independence 1
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