ggplot2 is based on the grammar of graphics, the idea that every plot can be built from key components: a data set, an aesthetics (aes), and a layer.
Data: The dataset to be visualized, typically provided as a data frame.
Aesthetics (aes): Mapping of variables in the data to visual properties such as x and y coordinates, color, size, shape, and more.
Layer: It takes the mapped data and display it as a representation of the data. Every layer consists of three important parts:
install.packages("ggplot2")
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.3.3
mpg includes information about the fuel economy of popular car models in 1999 and 2008, collected by the US Environmental Protection Agency, (http://fueleconomy.gov.)
data(mpg)
mpg
## # A tibble: 234 × 11
## manufacturer model displ year cyl trans drv cty hwy fl class
## <chr> <chr> <dbl> <int> <int> <chr> <chr> <int> <int> <chr> <chr>
## 1 audi a4 1.8 1999 4 auto… f 18 29 p comp…
## 2 audi a4 1.8 1999 4 manu… f 21 29 p comp…
## 3 audi a4 2 2008 4 manu… f 20 31 p comp…
## 4 audi a4 2 2008 4 auto… f 21 30 p comp…
## 5 audi a4 2.8 1999 6 auto… f 16 26 p comp…
## 6 audi a4 2.8 1999 6 manu… f 18 26 p comp…
## 7 audi a4 3.1 2008 6 auto… f 18 27 p comp…
## 8 audi a4 quattro 1.8 1999 4 manu… 4 18 26 p comp…
## 9 audi a4 quattro 1.8 1999 4 auto… 4 16 25 p comp…
## 10 audi a4 quattro 2 2008 4 manu… 4 20 28 p comp…
## # ℹ 224 more rows
The variables are mostly self-explanatory:
cty
and hwy
record miles per gallon
(mpg) for city and highway driving.
displ
is the engine displacement in litres.
drv
is the drivetrain: front wheel (f), rear wheel
(r) or four wheel (4).
class
is a categorical variable describing the
“type” of car: two seater, SUV, compact, etc.
ggplot(mpg, aes(x=cty, y=hwy)) +
# to create a 2D scatterplot
geom_point()
ggplot(mpg, aes(cty, hwy, colour = class)) + ### mapping class to color
geom_point()
ggplot(mpg, aes(cty, hwy,color=class)) +
geom_point() +
facet_grid(year ~ drv) ### using facet to seperate data based on levels of the drv and year
ggplot(mpg, aes(drv, hwy)) + geom_boxplot(width=0.2)
ggplot(mpg, aes(displ)) +
geom_histogram(binwidth = 0.3) +
facet_wrap(~drv, ncol = 3)
ggplot(mpg, aes(cty, hwy)) +geom_density2d()
p=ggplot(mpg, aes(drv, hwy,color=drv)) + geom_boxplot(width=0.2)
p
It is also possible to change manually plot line colors using the functions :
# Use custom color palettes
p+scale_color_manual(values=c("#999999", "#E69F00", "#56B4E9"))
# Use brewer color palettes
p+scale_color_brewer(palette="Dark2")
# Use grey scale
p + scale_color_grey()
h=ggplot(mpg, aes(displ, color = drv)) +
geom_histogram(binwidth = 0.3) +
facet_wrap(~drv, ncol = 3)
h+scale_color_brewer(palette="Set3")
ggplot(mpg, aes(cty, hwy)) +geom_density2d(color='#E69F00')
p=ggplot(mpg, aes(drv, hwy,fill=drv)) + geom_boxplot(width=0.2)
p
It is also possible to change manually plot fill colors using the functions :
# Use custom color palettes
p+scale_fill_manual(values=c("#999999", "#E69F00", "#56B4E9"))
# use brewer color palettes
p+scale_fill_brewer(palette="Dark2")
# Use grey scale
p + scale_fill_grey()
h=ggplot(mpg, aes(displ, fill = drv)) +
geom_histogram(binwidth = 0.3) +
facet_wrap(~drv, ncol = 3)
h+scale_fill_brewer(palette="Set3")
You can find more about custom colors/ color palettes on https://r-graph-gallery.com/ggplot2-color.html.
plotly is a powerful library for creating interactive, web-based visualizations. With Plotly, users can create interactive plots like scatter plots, bar charts, heatmaps, and 3D plots.
install.packages("plotly")
library(plotly)
## Warning: package 'plotly' was built under R version 4.3.3
##
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
##
## last_plot
## The following object is masked from 'package:stats':
##
## filter
## The following object is masked from 'package:graphics':
##
## layout
fig <- plot_ly(mpg, x = ~cty, y = ~ hwy, z = ~displ, type = 'scatter3d',mode='markers',size=0.75, color = ~drv, colors = c("#999999", "#E69F00", "#56B4E9"))
fig
count <- 3000
x <- c()
y <- c()
z <- c()
c <- c()
for (i in 1:count) {
r <- i * (count - i)
x <- c(x, r * cos(i / 30))
y <- c(y, r * sin(i / 30))
z <- c(z, i)
c <- c(c, i)
}
data <- data.frame(x, y, z, c)
fig <- plot_ly(data, x = ~x, y = ~y, z = ~z, type = 'scatter3d', mode = 'lines',
line = list(width = 4, color = ~c, colorscale = list(c(0,'#BA52ED'), c(1,'#FCB040'))))
fig
kd <- with(mpg, MASS::kde2d(cty, hwy, n = 50))
fig <- plot_ly(x = kd$x, y = kd$y, z = kd$z) %>% add_surface()
fig