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Covariance matrix estimation

We started our discussion of PCA on the population level.

> maximizing u' Yu gives a direction of the highest variance of X € R™.
In practice we have no access to ¥ € ST
The main approach is to estimate ¥ using the sample covariance matrix S,.
Recall that S, is almost unbiased.
It can be shown that it is a consistent estimator of ¥.

In other words, if nis “very large”, S, should be a good estimator of ¥.



High-dimensional problems

How large n has to be generally depends on m.

This is intuitively clear because ¥ has ('g) = % parameters to estimate.
Classical asymptotics lets n — oo keeping m fixed.

» Applicable if n is way larger than m.

High-dimensional asymptotics studies estimation when both m, n — oc.
» We assume m/n — v € [0,1).

> May be appplicable in much general contexts.



Why does it matter?

Suppose that ¥ = [,. If S, is close to ¥ all its eigenvalues should be close to 1.

Consider a simple example: m =3, n = 1000. Sample S, several times and look at the
histogram of eigenvalues.
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Indeed! A sharp concentration around 1.
Arguably, this is a very extreme situation.

In typical applications the ration n/m is
much smaller.



Consider now the eigenvalue distribution in the same setting but with much higher m.

Take n = 1000, m = 200 and m = 500.
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The eigenvalues deviate from 1, following the Marchenko-Pastur law.



Marchenko-Pastur Law

Marchenko-Pastur Law gives the limiting distribution of the eigenvalues of S, (X = /)
in the limiting case when m/n — ~.

Marchenko-Pastur Law
Let Amin == (1 — ﬁ)z Amax = (1 + \/'7)2 Then MP Law has density

fMP \/(Amax - )\ - )\min) for A € [)\mim Amax]-



Alternative Estimators

This example shows that S, is not a good estimator of ¥ when m/n is too large.

General approach: if there is some additional structure in X, exploit it.

» This stabilizes the estimators.
This approach may be problematic if you exploited structure that is not there.

We now review some common approaches that work well in a wide-range of scenarios.



Alternative Estimators Overview

Linear Shrinkage: %5 = (1 — \)S, + Al for some A € (0,1).

» Reduces variance by shrinking towards /,,.
Graphical Lasso: We consider penalized Gaussian log-likelihood. Define

K = arg Knéisnm{tr(snK) — logdet(K) + A||K||1},
+

where [|K|l1 = >, ; [Kjj| (¢1-penalty). Finally, Egjasso = K1
» Promotes sparsity in the precision matrix.



Alternative Estimators Continued

Factor Models: Suppose ¥ has the form ¥ = WW T + W where W € R™*" for
r < m and V is diagonal.

» We will show how to exploit this in estimation.

» Probabilistic PCA gives one example with ¥ = ¢2/,,,.

Thresholding-Based Methods: If ¥ has zeros, it is natural to estimate

ithresh - {(SH)U ’ H(’(SN)IJ’ > T)}iJ'

Sets small covariance entries to zero.



Tyler's Scatter Estimator

This is a popular estimator in robust statistics.
If X ~ E(0,X) then Z = ¥~1/2X is spherical; Z/||Z|| is uniform on the unit sphere.

Then L/, = var(Z/|Z||) = B(;2,227) =

T y-12xxTy— 1/2)
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Equivalently E(y+=—1% XXT) = %Z. Consider a sample version of this equation:
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Under mild conditions, there is a unique solution; computed using fixed-point
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Estimating the covariance matrix in modern applications raises many challenges.
If X satisfies some structure, we could exploit it to stabilize estimation.

We study some structures that can appear in practice.
» Diagonal plus low rank.

> ¥ or X! sparse.

This is an active are of research. Links to random matrix theory.



