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Covariance matrix estimation

We started our discussion of PCA on the population level.

◮ maximizing u⊤Σu gives a direction of the highest variance of X ∈ Rm.

In practice we have no access to Σ ∈ Sm+.

The main approach is to estimate Σ using the sample covariance matrix Sn.

Recall that Sn is almost unbiased.

It can be shown that it is a consistent estimator of Σ.

In other words, if n is “very large”, Sn should be a good estimator of Σ.



High-dimensional problems

How large n has to be generally depends on m.

This is intuitively clear because Σ has
m
2


= m(m+1)

2 parameters to estimate.

Classical asymptotics lets n → ∞ keeping m fixed.

◮ Applicable if n is way larger than m.

High-dimensional asymptotics studies estimation when both m, n → ∞.

◮ We assume m/n → γ ∈ [0, 1).

◮ May be appplicable in much general contexts.



Why does it matter?

Suppose that Σ = Im. If Sn is close to Σ all its eigenvalues should be close to 1.

Consider a simple example: m = 3, n = 1000. Sample Sn several times and look at the
histogram of eigenvalues.
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Indeed! A sharp concentration around 1.

Arguably, this is a very extreme situation.

In typical applications the ration n/m is
much smaller.



Consider now the eigenvalue distribution in the same setting but with much higher m.

Take n = 1000, m = 200 and m = 500.

0.00

0.25

0.50

0.75

0.5 1.0 1.5 2.0
Eigenvalue

D
en

si
ty

Comparison of Eigenvalue Histogram and Marchenko−Pastur
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The eigenvalues deviate from 1, following the Marchenko-Pastur law.



Marchenko-Pastur Law

Marchenko-Pastur Law gives the limiting distribution of the eigenvalues of Sn (Σ = Im)
in the limiting case when m/n → γ.

Marchenko-Pastur Law

Let λmin := (1−√
γ)2, λmax := (1 +

√
γ)2. Then MP Law has density

fMP(λ) =
1

2πγλ


(λmax − λ)(λ− λmin) for λ ∈ [λmin,λmax].



Alternative Estimators

This example shows that Sn is not a good estimator of Σ when m/n is too large.

General approach: if there is some additional structure in Σ, exploit it.

◮ This stabilizes the estimators.

This approach may be problematic if you exploited structure that is not there.

We now review some common approaches that work well in a wide-range of scenarios.



Alternative Estimators Overview

Linear Shrinkage: Σls = (1− λ)Sn + λIm for some λ ∈ (0, 1).

◮ Reduces variance by shrinking towards Im.

Graphical Lasso: We consider penalized Gaussian log-likelihood. Define

K := arg min
K∈Sm+

{tr(SnK )− log det(K ) + λK1},

where K1 =


i ∕=j |Kij | (ℓ1-penalty). Finally, Σglasso = K−1.

◮ Promotes sparsity in the precision matrix.



Alternative Estimators Continued

Factor Models: Suppose Σ has the form Σ = WW⊤ +Ψ where W ∈ Rm×r for
r < m and Ψ is diagonal.

◮ We will show how to exploit this in estimation.

◮ Probabilistic PCA gives one example with Ψ = σ2Im.

Thresholding-Based Methods: If Σ has zeros, it is natural to estimate

Σthresh = {(Sn)ij · I(|(Sn)ij | > τ)}i ,j .

Sets small covariance entries to zero.



Tyler’s Scatter Estimator

This is a popular estimator in robust statistics.

If X ∼ E (0,Σ) then Z = Σ−1/2X is spherical; Z/Z is uniform on the unit sphere.

Then 1
m Im = var(Z/Z) = E( 1

Z2ZZ
⊤) = E( 1

X⊤Σ−1X
Σ−1/2XX⊤Σ−1/2).

Equivalently E( 1
X⊤Σ−1X

XX⊤) = 1
mΣ. Consider a sample version of this equation:

n

i=1

1

x (i)⊤Σ−1x (i)
x (i)x (i)⊤ =

n

m
Σ.

Under mild conditions, there is a unique solution; computed using fixed-point
iterations:

Σ̂(k+1) =
m

n



i

x (i)x (i)⊤

x (i)⊤(Σ̂(k))−1x (i)
.



Summary

Estimating the covariance matrix in modern applications raises many challenges.

If Σ satisfies some structure, we could exploit it to stabilize estimation.

We study some structures that can appear in practice.

◮ Diagonal plus low rank.

◮ Σ or Σ−1 sparse.

This is an active are of research. Links to random matrix theory.


