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Modelling non-Gaussian distributions

Gaussian distribution has many properties that makes it very appealing.

It does however has some limitations:

◮ Problem with multimodal populations.

◮ Problem with asymetric distributions.

◮ Not suitable for modelling processes with extreme events.

Goal: Retain some of the advantages of the Gaussian removing some of its limitations.

We focus on three approaches:

◮ spherical and elliptical distributions

◮ copula modelling

◮ Gaussian mixtures
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Elliptical distributions



Why Study Elliptical Distributions?

◮ Generalize the multivariate normal distribution.

◮ Model data with heavy tails or outliers.
◮ higher probability of extreme events

◮ Maintain symmetry and linear correlation structures.

◮ Applications in finance, insurance, and environmental studies.



Spherical Distributions

Orthogonal Matrices: O(m) = {U ∈ Rm×m : U⊤U = Im}.

Spherical distribution

A random vector X ∈ Rm has a spherical distribution if for any U ∈ O(m):

X
d
= UX .

Example: X ∼ Nm(0, Im) or more generally X ∼ Nm(0,σ2Im).

Density generator and dependence on the norm

Characteristic function satisfies: ψX (t) = ψUX (t) = ψX (U
⊤t) and so equivalently

ψX (t) depends only on t. The same applies to the density:

fX (x) = h(x) for some h (generator).



Examples of Spherical Distributions

The case X ∼ Nm(0,σ2Im) has a simple generalization.

Spherical scale mixture of normals

If Z ∼ Nm(0, Im) and a random variable τ > 0 is independent of Z , then:

X =
1√
τ
Z

has a spherical distribution.

Indeed: Let U ∈ O(m), then

UX =
1√
τ
UZ

d
=

1√
τ
Z = X .



Moment Structure of Spherical Distributions

Spherical symmetry implies:

• µ = E[X ] = 0,
• Σ = var(X ) = cIm, for some c ≥ 0.

Indeed: Let Σ = UΛU⊤ be the spectral decomposition.

◮ Σ = var(X ) = var(VX ) = V var(X )V⊤ = VUΛU⊤V⊤ for any V ∈ O(m).

◮ take V = U⊤ to show that Σ must be diagonal, Σ = Λ.

◮ take V to be all the permutation matrices to conclude that Λ = cIm.



Independence of X and X
X

Key Property

If X is spherical, the norm X =
√
X⊤X is independent of the direction X

X .

Proof Sketch: Let U ∈ O(m). Then:

X

X
d
=

UX

UX = U
X

X .

The vector X
X is rotationally invariant =⇒ has uniform distribution on the unit sphere

(independent of what X is).

A formal proof uses polar coordinates, see the notes.



Elliptical Distribution E (µ,Σ)

Recall that Z ∼ Nm(0m, Im) then X = µ+ Σ1/2Z ∼ Nm(µ,Σ).

Elliptical distribution

A random vector X ∈ Rm has an elliptical distribution E (µ,Σ) if:

X = µ+ Σ1/2Z ,

where Z is a spherical random vector.

The density of X ∼ E (µ,Σ) is of the form

fX (x) = cm
√
detΣ−1h


(x− µ)⊤Σ−1(x− µ)


.

The generator h controls the shape of the distribution (and its tails in particular).



Covariance and Correlation in Elliptical Distributions

Σ is called the scale matrix. It is generally not equal to the covariance matrix.

Var(X ) = cΣ, c > 0.

Correlation structure is still governed by Σ:

Rij =
cΣij
cΣiicΣjj

=
Σij
ΣiiΣjj

.

Similarly, if X ∼ E (µ,Σ) and X = (XA,XB) then

E(XA|XB = xB) = E(XA)− ΣA,BΣ
−1
B,B(xB − µB)

exactly as in the Gaussian case.



Again: Why Elliptical Distributions?

◮ Generalize the multivariate normal distribution.

◮ Model data with heavy tails or outliers.

◮ Maintain symmetry and linear correlation structures.

◮ Applications in finance, insurance, and environmental studies.



Scale Mixtures of Normals (particularly tractable subclass)

Scale mixture of normals is a special class of elliptical distributions.

Stochastic representation:

X = µ+
1√
τ
Σ1/2Z ,

where Z ∼ Nm(0, Im) and τ > 0 is independent of Z .

Special Cases of Scale Mixture of Normals

◮ τ ≡ 1: Multivariate normal.
◮ τ ∼ 1

kχ
2
k : Multivariate t-distribution with k degrees of freedom.

◮ Smaller k means heavier tails. Gaussian is the limit k → ∞.

◮ τ ∼ Exp(1): Multivariate Laplace.



Its about the tails (say m = 10)

For scale mixture of normals:

Y := X − µ2Σ = (X − µ)⊤Σ−1(X − µ) = 1
τ Z

2 d
= 1

τ χ
2
m.
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Some tails are much heavier than Gaussian.

In the plot above we study Y = X − µ2Σ for X : normal, multivariate t, Laplace.

Case P(Y > 75) P(Y > 500) P(Y > 1000) P(Y > 10000)

Gaussian 0.000 0.000 0.000 0.000
t100 0.000 0.000 0.000 0.000
t20 0.000 0.000 0.000 0.000
t5 0.019 0.000 0.000 0.000
Laplace 0.124 0.020 0.010 0.001
t1 0.277 0.109 0.077 0.024

Table: Proportion of Samples Exceeding Thresholds



Simple illustration

In the notes we provide an example of four stocks: Apple, Microsoft, Google, Amazon.

Compare the empirical distribution of the Mahalanobis distance with χ2
4 (Gaussian).

Empirical Density

Chi−squared Density
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Empirical density seems to be more concentrated
around zero.

But it has much heavier tails.

◮ P(χ2
4 > 20) ≈ 0.

◮ P(Y > 20) ≈ 0.03

This may be much more dramatic for smaller companies.



Copula models



Cumulative Distribution Function (CDF)

Let X = (X1, . . . ,Xm) be a random vector. Its CDF is:

F (x1, . . . , xm) = P(X1 ≤ x1,X2 ≤ x2, . . . ,Xm ≤ xm).

Marginal CDF: F1(x1) = P(X1 ≤ x1) = limx2→∞ · · · limxm→∞ F (x1, x2, . . . , xm).
(similar for any other margin)

If f is the corresponding density of X , then:

f (x1, . . . , xm) =
∂m

∂x1 · · · ∂xm
F (x1, . . . , xm)

F (x1, . . . , xm) =

 x1

−∞
· · ·

 xm

−∞
f (y1, . . . , ym)dy1 · · · dym.

If U ∼ U[0, 1] then F (u) = u for all u ∈ [0, 1].



What is a Copula?

◮ A copula is a function that captures the dependence structure between random
variables, separate from their marginal distributions.

Definition

A function C : [0, 1]m → [0, 1] is a copula if it is a CDF with uniform marginals, that
is, C1(u1) = u1, . . . , Cm(um) = um, where Ci are the marginal CDF’s.

For example, the copula C (u) = u1 · · · um corresponds to a m independent U[0, 1].

Why use copulas?

◮ To model non-Gaussian dependencies.

◮ To analyze dependence independently of marginal behaviors.



Sklar’s Theorem

Theorem (Sklar, 1959)

Let X = (X1, . . . ,Xm) be a continuous random vector with joint CDF F and
marginals F1, . . . ,Fm. There exists a unique copula C such that:

F (x1, . . . , xm) = C (F1(x1), . . . ,Fm(xm)). (1)

Conversely, given marginals F1, . . . ,Fm and a copula C , F in (1) is a CDF of a
multivariate distribution with given margins.

◮ C captures dependence structure.

◮ F1, . . . ,Fm capture marginal behaviors.



Understanding Sklar’s Theorem

If X is continuous with CDF F , then F (X ) ∼ U(0, 1).

Proof: If X is continuous, F is strictly increasing on the support. Hence

P(F (X ) ≤ u) = P(X ≤ F−1(u)) = F (F−1(u)) = u.

Let X = (X1, . . . ,Xm) with CDF F and margins Fi . Define Ui := Fi (Xi ).

◮ The transformed variables U = (U1, . . . ,Um) have uniform marginals.

P(U1 ≤ u1, . . . ,Um ≤ um) =: C (u1, . . . , um).

◮ Also C (u) is given explicitly in terms of F and Fi ’s:

C (u) = P(F1(X1) ≤ u1, . . . ,Fm(Xm) ≤ um) = F (F−1
1 (u1), . . . ,F

−1
m (um)) (2)



Simple Example of a Copula

◮ Joint CDF:

FX ,Y (x , y) =






0 x < 0 or y < 0,

x2y2 0 ≤ x , y ≤ 1,

1 x > 1 and y > 1,

min(x2, y2) otherwise.

◮ Marginal CDFs:

FX (x) = x2, FY (y) = y2 for 0 ≤ x , y ≤ 1.

◮ Copula:
C (u, v) = uv if u, v ≤ 1.



Sampling

Fix a copula C (u) and suppose we can sample from it.

Transform the copula sample

Consider a sample u(1), . . . , u(n) from the copula.

Transform the data to have the right marginals F1, . . . ,Fm:

x
(t)
i := F−1

i (u(t)
i ) for all i = 1, . . . ,m, t = 1, . . . , n.

The sample x(1), . . . , x(n) has the right marginals and the right dependence structure.

P(x(t)i ≤ si ) = P(F−1
i (u(t)

i ) ≤ si ) = P(u(t)
i ≤ Fi (si )) = Fi (si ).

We will later show how to sample from some popular copula models.



Invariance under Monotone Transformations

Copulas are invariant under monotone transformations.

Consider Yi := fi (Xi ), where fi are strictly increasing transformations. Then the copula
of X is the same as the copula of Y .

Proof: Let G be the CDF of Y and Gi the marginal CDF of Yi

◮ By (2), equiv. show F (F−1
1 (u1), . . . ,F

−1
m (um)) = G (G−1

1 (u1), . . . ,G
−1
m (um))

◮ Gi (yi ) = P(Yi ≤ yi ) = P(fi (Xi ) ≤ yi ) = P(Xi ≤ f −1
i (yi )) = Fi (f

−1
i (yi )).

◮ Thus, {Yi ≤ G−1
i (ui )} = {Fi (f −1

i (Yi )) ≤ ui} = {Fi (Xi ) ≤ ui} = {Xi ≤ F−1
i (ui )}

and so

G (G−1
1 (u1), . . . ,G

−1
m (um)) = P


m

i=1

{Yi ≤ G−1
i (ui )}



= P


m

i=1

{Xi ≤ F−1
i (ui )}


= F (F−1

1 (u1), . . . ,F
−1
m (um)).



Density of a Copula

The PDF of a copula C is obtained by differentiating its CDF:

c(u) =
∂mC (u)

∂u1 · · · ∂um
.

Recall C (u) = F (F−1
1 (u1), . . . ,F

−1
m (um)). By chain rule and inverse function theorem:

c(u) =
f (x)m

i=1 fi (xi )
, where xi = F−1

i (ui ) for all i

where f is the joint density and fi are marginal densities.

e.g. C (u) = u1 · · · um is the CDF of independent Ui ∼ U(0, 1). The density is uniform
on [0, 1]m. Given margins fi , we get f (x) =


i fi (xi ).



Gaussian Copula

Gaussian copula is derived from the multivariate normal distribution X ∼ Nm(µ,Σ).

By monotone invariance, we can assume EXi = 0, var(Xi ) = 1

◮ µ = 0, Σ is a correlation matrix,

◮ each Xi ∼ N(0, 1).

Let Φ be the CDF of N(0, 1) with PDF φ. Let f (x;Σ) be the PDF of Nm(0,Σ).

The density of the Gaussian copula C (u;Σ)

Using the general formula, we get:

c(u;Σ) =
f (x;Σ)m
i=1 φ(xi )

= det(Σ)−1/2 exp


−1

2
x⊤(Σ−1 − Im)x


,

where x = (Φ−1(u1), . . . ,Φ
−1(um)).



Sampling from the Gaussian copula C (u;Σ)

Let Σ be a correlation matrix.

◮ Sample z(1), . . . , z(n) ∼ Nm(0,Σ).

◮ Transform u(t)
i = Φ(z

(t)
i ) for all i = 1, . . . ,m and t = 1, . . . , n.

◮ The sample u(1), . . . ,u(n) comes from the Gaussian copula.

As described earlier, we can now transform this sample to get arbitrary margins.

The Gaussian copula model can still handle quite general distributions. Yet, it retains
some of the computational advantages of the Gaussian distribution.



Steps to Estimate a Copula: normalize data

Given data x(1), . . . , x(n), start by fixing a copula model (e.g. Gaussian).

We assume the CDF F of the data satisfies F (x) = C (F1(x1), . . . ,Fm(xm)).

However, the margins Fi are not known!

Given a sample x
(1)
i , . . . , x

(n)
i of Xi we compute the empirical CDF (proxy for Fi )

Fi (xi ) :=
1

n

n

t=1

1{x(t)i ≤ xi} ≈ P(Xi ≤ xi ) = Fi (xi ).

Transform, each row in the data matrix X using the empirical CDFs

u(t)
i = Fi (x(t)i ) for i = 1, . . . ,m.

The transformed data matrix U contains samples coming from U(0, 1).



Steps to Estimate a Copula: Fit the copula family

Previous slide: x(t) → u(t) using the empirical CDFs.

In the next step, we fit the data to the given copula family.

Often this is done by maximizing the log-likelihood
n

t=1 log c(u
(t)).

The Gaussian copula case C (u;Σ)

The goal is to estimate Σ based on the likelihood.

◮ Transform the data to standard Gaussian margins: y
(t)
i = Φ−1(u(t)

i ).

◮ Fit the Gaussian likelihood for Nm(0,Σ) with the sample covariance Sn = 1
nY

⊤Y.



Steps to Estimate a Copula: Evaluate the fit

As the last step, compare the fitted copula model with the observed data. Check
whether the copula captures the dependence structure accurately.

We can generate samples from the fitted Gaussian copula.



Simulating Realistic Financial Portfolios with Gaussian Copulas

Goal: Use Gaussian copulas to model and generate synthetic financial returns that
preserve real-world dependencies but remain flexible in capturing tail dependencies.
This method is widely used in risk management, portfolio optimization, and even in
synthetic data generation for AI models in finance.

◮ After fitting a copula model simulate synthetic data from it.

◮ Apply the inverse transformations to get to the original scale: X new
i = F−1

i (Usim
i )

This creates synthetic but realistic asset returns that match observed dependencies!

Applications:

◮ Stress Testing & Risk Management

◮ Portfolio Optimization

◮ Synthetic Data for AI Models



Gaussian mixtures



Mixture of Gaussians

We combine simple models into a complex model by taking a mixture of K
multivariate Gaussian densities of the form:

p(x) =
K

k=1

πkNm(x |µk ,Σk) for x ∈ Rm,

where πk ≥ 0,
K

k=1 πk = 1, and Nm(x |µk ,Σk) is the m-dim Gaussian density.

◮ Each Gaussian component has its own mean vector µk and covariance matrix Σk .

◮ The parameters πk are called the mixing coefficients.

Example:

◮ K = 3 (three Gaussian components)

◮ m = 1 (univariate Gaussians)



The crabs from Naples bay

In 1892, scientists collected data on populations of the
crab and observed that the ratio of forehead width to the
body length actually showed a highly skewed distribution.

Source: On Certain Correlated Variations in Carcinus maenas

(1893) W. F. Weldon.

They wondered whether this distribution could be the result of the population being a
mix of two different normal distributions (two sub-species).

In 1894, Karl Pearson proposed a method to fit this model (read here), whose modern
version is the “method of moments”. The method involved solving a higher order
polynomial.

https://archive.org/details/philtrans02543681


Mixture of Gaussians: 2D example

Illustration of a mixture of three Gaussians in 2D.

(a) Contours of constant density of each of the mixture components, along with the
mixing coefficients.

(b) Contours of marginal density p(x) =
K

k=1 πkNm(x|µk ,Σk).

(c) A surface plot of the distribution p(x).



Why Use Gaussian Mixtures?

Gaussian Mixture Models (GMMs) are widely used because of their:

◮ Flexibility: Ability to model complex data distributions.

◮ Multimodality: Handles datasets with multiple clusters or modes.

◮ Interpretability: Each Gaussian component represents a sub-population with
interpretable parameters.

◮ Clustering Applications: GMMs are a natural probabilistic method for clustering.

Special Case: For simplicity, in clustering, we often assume Σk = Σ for all k .



Mixture of Gaussians as a latent variable model

Recall: p(x) =
K

k=1 πkNm(x |µk ,Σk).

◮ Consider a latent variable z with K states z ∈ {1, . . . ,K}.
◮ The distribution of z given by the mixing coefficients:

p(z = k) = πk .

◮ Specify the conditional as p(x |z = k) = Nm(x |µk ,Σk) with joint:

p(x , z = k) = p(z = k)p(x |z = k) = πkNm(x |µk ,Σk).

◮ Then the marginal p(x) satisfies

p(x) =
K

k=1

p(x , z = k) =
K

k=1

πkNm(x |µk ,Σk).



Yet another illustration

The conditional probabilities p(z |x) are called responsibilities.

Consider 500 points drawn from a mixture of three Gaussians.

Samples from the joint 
distribution p(x,z).

Samples from the marginal 
distribution p(x).

Same samples where colors 
represent the value of 
responsibilities.  



The Likelihood function

Parameters: π = (π1, . . . ,πK ), µ = (µ1, . . . , µK ), Σ = (Σ1, . . . ,ΣK ).
Recall: p(x |π,µ,Σ) =

K
k=1 πkNm(x |µk ,Σk)

◮ Represent the dataset {x (1), . . . , x (n)} as X ∈ Rn×m.

◮ The latent variable is represented by a vector z ∈ Rn.

◮ The log-likelihood takes the form

log p(X |π,µ,Σ) =
n

i=1

log


K

k=1

πkNm(x
(n)|µk ,Σk)





Maximum Likelihood (µ)

Recall: log p(X |π,µ,Σ) =
n

i=1 log
K

k=1 πkNm(x
(i)|µk ,Σk)


.

◮ Differentiating wrt µk and setting to zero gives:

0 =
n

i=1

πkN(x (i)|µk ,Σk)
j πjN(x (i)|µj ,Σj)

Σ−1
k (x (i) − µk) =

n

i=1

p(z(i) = k |x (i))Σ−1
k (x (i) − µk)

= Σ−1
k


n

i=1

p(z(i) = k |x (i))x (i) − µk

n

i=1

p(z(i) = k |x (i))

.

◮ Equivalently (as Σk is positive definite)

µk =
n

i=1

p(z = k |x (i))
Nk

x (i), Nk =


i

p(z = k |x (i)).

◮ Simple interpretation: the MLE given by the weighted mean of the data weighted
by the posterior p(z = k |x (i)).



Maximum Likelihood (Σ,π)

Recall: log p(X |π,µ,Σ) =
n

i=1 log
K

k=1 πkNm(x
(i)|µk ,Σk)


.

◮ Differentiating wrt Σk and setting to zero gives:

Σk =
n

i=1

p(z = k |x (i))
Nk

(x (i) − µk)(x
(i) − µk)

⊤.

◮ Again data points weighted by posterior probabilities.

◮ Finally, for the weights πk the MLE is

πk =
NkK
j=1 Nj

=
Nk

N
, Nk =

n

i=1

p(z = k |x (i)).



Motivating the EM algorithm

◮ The MLE does not have a closed form solution.

◮ The estimates depend on the posterior probabilities p(z = k |x (i)), which
themselves depend on those parameters.

◮ Indeed, recall that

p(z = k |x (i)) =
πkNm(x

(i)|µk ,Σk)K
j=1 πjNm(x (i)|µj ,Σj)

.

◮ Iterative solution (EM algorithm):
◮ Initialize the parameters to some values.

E-step Update the posteriors p(z = k |x (i)).
M-step Update model parameters π,µ,Σ.

◮ Repeat.



EM algorithm for Gaussian mixtures

◮ Initialize π,µ,Σ.
◮ E-step: for each k = 1, . . . ,K and i = 1, . . . , n compute the posterior probabilities

p(z = k |x (i)) =
πkNm(x

(i)|µk ,Σk)K
j=1 πjNm(x (i)|µj ,Σj)

.

◮ M-step: Re-estimate model parameters

µnew
k =

n

i=1

p(z = k |x (i))
Nk

x (i), Nk =
n

i=1

p(z = k |x (i)),

Σnew
k =

n

i=1

p(z = k |x (i))
Nk

(x (i) − µnew
k )(x (i) − µnew

k )⊤,

πnew
k =

Nk

N
.

◮ Evaluate the log-likelihood and check for convergence.



Visualization of EM Algorithm



The General EM algorithm

Consider a general setting with latent variables.

◮ Observed dataset X ∈ Rn×m, latent variables Z ∈ Rn×p.

Maximize the log-likelihood log p(X |θ) = log (


Z p(X ,Z |θ)).
◮ Initialize parameters θold.

◮ E-step: use θold to compute the posterior p(Z |X , θold).

◮ M-step: θnew = argmaxθ Q(θ, θold), where

Q(θ, θold) =


Z

p(Z |X , θold) log p(X ,Z |θ) = E

log p(X ,Z |θ)

X , θold


which is tractable in many applications.

◮ Replace θold ← θnew. Repeat until convergence.



Example: Gaussian mixture

◮ If z was observed, the MLE would be trivial

log p(X ,Z |θ) =
n

i=1

log p(x (i), z (i)|θ) =
n

i=1

K

k=1

11(z (i)=k) log

πkN(x (i)|µk ,Σk)


.

For the E-step: p(Z |X , θ) =
n

i=1 p(z
(i)|X , θ) we have

p(z(i) = k |X , θ) = p(z(i) = k |x (i), θ) = πkNm(x
(i)|µk ,Σk)K

j=1 πjNm(x (i)|µj ,Σj)
.

For the M-step: E(11(z (i) = k)|X , θold) = p(z (i) = k |X , θold) and so

E

log p(X ,Z |θ)

X , θold


=
n

i=1

K

k=1

p(z (i) = k |X , θold) log

πkN(x (i)|µk ,Σk)


.

Maximizing gives the formulas on Slide 43.


