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Why Principal Component Analysis may not be enough?

PCA struggles with non-linear relationships.

High-dimensional datasets often lie on low-dimensional manifolds.

Linear projections may destroy these geometric information.

We will now discuss four popular non-linear dimensionality reduction techniques:
multi-dimensional scaling, spectral embedding, and UMAP.



Multi-dimensional Scaling (MDS)

◮ In its classical version this is essentially PCA.

◮ MDS allows us to introduce some fundamental concepts.



Problem Setup

Consider n objects and a measure δij ≥ 0 of their dissimilarity (small if similar); δii = 0.

Define ∆ = (δij) ∈ Rn×n: δii = 0 for all i , δij ≥ 0 for all i ∕= j .

In classical MDS: there exist x1, . . . , xn ∈ Rm such that δij = xi − xj.

In general, there need not be a Euclidean distance defining this metric.

Multidimensional Scaling

Find a configuration of points y1, . . . , yn in Rd (d << n) such that:

yi − yj ≈ δij .

The solution for classical MDS is particularly simple.



Classical MDS: δij = xi − xj

If δij = xi − xj, we have:

δ2ij = (xi − xj)
⊤(xi − xj) = (XX⊤)i ,i + (XX⊤)j ,j − 2(XX⊤)i ,j .

The Hadamard product ∆⊙∆ = [δ2ij ] can be written as:

∆⊙∆ = diag(XX⊤)11⊤ + 11⊤diag(XX⊤)− 2XX⊤

Reintroducing the centering matrix H = In − 1
n11

⊤, we obtain

B := −1

2
H(∆⊙∆)H = HX(HX)⊤ = X̃X̃⊤.

This matrix contains all inner products x̃⊤i x̃j for 1 ≤ i , j ≤ n.



Classical MDS (2)

Let Y ∈ Rn×d be the matrix with projected data y1, . . . , yn ∈ Rd .

We want to make sure B = X̃X̃⊤ ≈ YY⊤ =: M

◮ In this way yi − yj ≈ xi − xj as desired.

◮ One way to assure this is to minimize


i ,j(x̃
⊤
i x̃j − y⊤i yj)

2 = B −M2F .

◮ The Frobenius norm AF =


i ,j A
2
ij .

Note that rank(M) ≤ d but otherwise M ∈ Rn×n is arbitrary.

Optimization problem: Minimize B −M2F subject to rank(M) ≤ d .



Classical MDS (3)

Optimization problem: Minimize B −M2F subject to rank(M) ≤ d .

Let B = VΛV⊤ be the spectral decomposition with diag(Λ) non-increasing.

Eckart-Young Theorem

The optimal M satisfies M = VdΛdV
⊤
d , where

◮ Λd = diag(λ1, . . . ,λd) has d largest eigenvalues of B .

◮ Vd ∈ Rn×d contains the first d columns of V .

We then take Y = VdΛ
1/2
d , which gives us our low-dimensional embedding.

We next show that this is the same answer we would get using PCA!



Duality Between MDS and PCA

Both methods rely on the singular value decomposition (SVD) of X̃ = HX = VDU⊤.

Here is the key insight:

◮ PCA: Finds principal components from the eigenvectors of X̃⊤X̃ = U(D⊤D)U⊤.

◮ MDS: Finds embeddings from the eigenvectors of X̃X̃⊤ = V (DD⊤)V⊤.

The columns of U are the principal directions and the scores y1, . . . , yn are taken as
the first d columns of X̃U = VD.

As a result, y1, . . . , yn are precisely the points obtained by classical MDS.



Spectral Embedding (aka Laplacian
Eigenmaps)



Main ideas

Data: x1, . . . , xn ∈ Rm. Find low dimensional representation y1, . . . , yn ∈ Rd .

Links to manifold learning

We look for a truly nonlinear method that is able to learn the underlying manifold.

The main idea is to keep track of local geometry:
• The embedding of xi should depend mostly on points close to xi .

How to keep track of the local geometry in the data?

Construct a weighted graph G = (V ,E ,W ):

◮ Vertices V = {1, 2, . . . , n} (data points).

◮ Edges E based on proximity (e.g., k-nearest neighbors or -neighborhood).

◮ Weights Wij measure similarity, e.g. Wij = 1 or Wij = exp(−xi − xj2/2σ2).

If ij /∈ E we always set Wij = 0, also Wii = 0 for all i = 1, . . . , n.



Graph Laplacian

Graph Laplacian is the main object encoding the “geometry of the data”.

The Laplacian matrix L ∈ Sn encodes the structure of the graph:

◮ Degree matrix D (diagonal): Dii =


j Wij , i = 1, . . . , n.

◮ Graph Laplacian: L = D −W , where W is the weight matrix W = (Wij).

◮ Normalized Laplacian: Ln = D−1/2LD−1/2.

Important exercise: Show x⊤Lx = 1
2


i ,j Wij(xi − xj)

2 for all x ∈ Rn.

Properties of L:

◮ L is positive semi-definite.

◮ L1 = 0, that is, smallest eigenvalue is zero with eigenvector 1.

◮ If G is connected rank(L) = n − 1.



The key idea behind spectral embedding

Fix d . The embedding y1, . . . , yn ∈ Rd is obtained by minimizing:

1

2

n

i=1

n

j=1

Wijyi − yj2

Key insight

High Wij enforces small yi − yj.

Note: This is still not well defined because y1 = . . . = yn = 0 is a solution so we need
to refine this idea a bit.



Problem reformulation

Let Y ∈ Rn×d be the embedded data matrix. Recall L = D −W and L1 = 0.

Proposition

We have: 1
2


i ,j Wijyi − yj2 = tr(Y⊤LY) = tr(Y⊤DY)− tr(Y⊤WY)

Proof: As for MDS we can show that the matrix E = [yi − yj2]i ,j takes the form

E = diag(YY⊤)11⊤ + 11⊤diag(YY⊤)− 2YY⊤

and so 1
2


i ,j Wijyi − yj2 = 1

2 trace(WE ).

D is diagonal and E has zeros on the diagonal and so 1
2 trace(WE ) = −1

2 trace(LE ).

Since L1 = 0 we get also that −1
2 trace(LE ) = trace(LYY⊤).



Introducing constraints to the optimization problem

Constraint 1 (Fixing scale)

To avoid trivial solutions it is convenient to assume Y⊤DY = Id .

Defining Ỹ = D1/2Y we get Ỹ⊤Ỹ = Id (orthonormal columns ỹ1, . . . , ỹd).

Now trace(Y⊤LY) = trace(Ỹ⊤LnỸ) =
d

i=1 ỹ
⊤
i Lnỹi .

From PCA: the optimum given by eigenvectors of Ln for smallest eigenvalues.

Note that LnD
1/21 = D−1/2L1 = 0 so ỹ0 := D1/21 is a zero-eigenvector.

Constraint 2: ỹ0 ⊥ ỹi for i = 1, . . . , n

In addition we assume Ỹ⊤D1/21 = Y⊤D1 = 0.

Spectral embedding: minimize trace(Y⊤LY) subject to Y⊤DY = Id and Y⊤D1 = 0



Example: Twisted curve

Consider datapoints lying on the twisted curve as on the picture below:
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We now represent these data in 2D comparing PCA and Laplacian Eigenmaps.



◮ PCA: Projects data linearly, collapsing structure.

◮ Laplacian Eigenmaps: Preserves local geometry, unfolding the manifold.
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Note that PCA joins points that are far from each other in the original dataset.



Uniform Manifold Approximation and
Projection (UMAP)

◮ This is a popular, state-of-the-art method.

◮ It relies on various choices that are not fully theoretically justified.

◮ We provide a high level overview.



Introduction to UMAP

UMAP is a nonlinear dimensionality reduction technique that improves on eigenmaps.

Advantages over PCA, MDS, and Eigenmaps:

◮ Has manifold learning abilities.

◮ Balances local and global structure.

◮ Scales efficiently to large datasets.

◮ More robust to parameter choices.

UMAP is a state-of-the-art data visualization and pattern discovery tool.



UMAP Algorithm Overview

The key idea is similar to the spectral embedding.

1. Construct k-Nearest Neighbor (kNN) Graph.

2. Initialize Embedding using Laplacian Eigenmaps.

3. Optimize embedding via stochastic gradient descent (SGD).

UMAP uses a different loss function than Laplacian Eigenmaps, which makes it, in
principle, more robust to parameter choices.



Step 1: Data Graph in the Input Space

Construct k-Nearest Neighbors (kNN) graph; e.g. with k = 15.

Define “probabilities” of i , j being connected based on neighbor distances:

pj |i = exp


−xi − xj − ρi

σi


,

where ρi = mink ∕=i xi − xk and σi is a scaling factor.

Symmetrize probabilities:
pij = pj |i + pi |j − pj |ipi |j .

Note that the closest neighbor gets always connected with pr. 1.

◮ This about pij as edge weights.



Step 2 and 3: Data Graph in the Embedding Space and matching

Compute pairwise similarities in low-dimensional space:

qij =
1

1 + ayi − yj2b
, (1)

where, by default, a ≈ 1.929, b ≈ 0.7915.

The matching between the original and the embedded space is probability-inspired.

Cost Function (Fuzzy Cross-Entropy)

c(y1, . . . , yn) =


i ∕=j


pij log

pij
qij

+ (1− pij) log
1− pij
1− qij


.

Here c depends on y1, . . . , yn through qij ’s defined in (1).

◮ Attractive and repulsive forces to balance local and global structure.
◮ Uses block-coordinate descent to minimize cost.



Example: Iris Dataset

◮ Comparison of PCA and UMAP on Iris dataset.

◮ PCA struggles to separate classes clearly.

◮ UMAP better preserves local and global structures.
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Note: Given a new data point UMAP has to be recalculated from scratch!


