STA 437/2005: Methods for Multivariate Data Week 9: Non-linear Dimension Reduction Techniques

Piotr Zwiernik

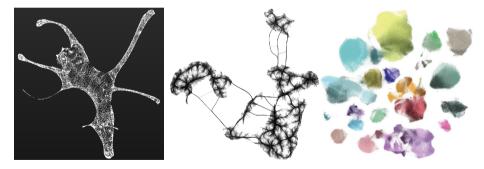
University of Toronto

Why Principal Component Analysis may not be enough?

PCA struggles with non-linear relationships.

High-dimensional datasets often lie on low-dimensional manifolds.

Linear projections may destroy these geometric information.



We will now discuss four popular non-linear dimensionality reduction techniques: multi-dimensional scaling, spectral embedding, and UMAP.

Multi-dimensional Scaling (MDS)

- ► In its classical version this is essentially PCA.
- MDS allows us to introduce some fundamental concepts.

Problem Setup

Consider *n* objects and a measure $\delta_{ij} \ge 0$ of their dissimilarity (small if similar); $\delta_{ii} = 0$. Define $\Delta = (\delta_{ij}) \in \mathbb{R}^{n \times n}$: $\delta_{ii} = 0$ for all $i, \delta_{ij} \ge 0$ for all $i \ne j$.

In classical MDS: there exist $\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathbb{R}^m$ such that $\delta_{ij} = \|\mathbf{x}_i - \mathbf{x}_j\|$.

In general, there need not be a Euclidean distance defining this metric.

Multidimensional Scaling

Find a configuration of points $\mathbf{y}_1, \ldots, \mathbf{y}_n$ in \mathbb{R}^d ($d \ll n$) such that:

 $\|\mathbf{y}_i - \mathbf{y}_j\| \approx \delta_{ij}.$

The solution for classical MDS is particularly simple.

Classical MDS: $\delta_{ij} = \|\mathbf{x}_i - \mathbf{x}_j\|$

If
$$\delta_{ij} = \|\mathbf{x}_i - \mathbf{x}_j\|$$
, we have:

$$\delta_{ij}^2 = (\mathbf{x}_i - \mathbf{x}_j)^\top (\mathbf{x}_i - \mathbf{x}_j) = (\mathbf{X}\mathbf{X}^\top)_{i,i} + (\mathbf{X}\mathbf{X}^\top)_{j,j} - 2(\mathbf{X}\mathbf{X}^\top)_{i,j}$$

The Hadamard product $\Delta \odot \Delta = [\delta_{ij}^2]$ can be written as:

$$\Delta \odot \Delta = \operatorname{diag}(\boldsymbol{X}\boldsymbol{X}^{\top})\boldsymbol{1}\boldsymbol{1}^{\top} + \boldsymbol{1}\boldsymbol{1}^{\top}\operatorname{diag}(\boldsymbol{X}\boldsymbol{X}^{\top}) - 2\boldsymbol{X}\boldsymbol{X}^{\top}$$

Reintroducing the centering matrix $H = I_n - \frac{1}{n} \mathbf{1} \mathbf{1}^{\top}$, we obtain

$$B := -\frac{1}{2}H(\Delta \odot \Delta)H = H\mathbf{X}(H\mathbf{X})^{\top} = \tilde{\mathbf{X}}\tilde{\mathbf{X}}^{\top}.$$

This matrix contains all inner products $\tilde{\mathbf{x}}_i^{\top} \tilde{\mathbf{x}}_j$ for $1 \leq i, j \leq n$.

Let $\mathbf{Y} \in \mathbb{R}^{n imes d}$ be the matrix with projected data $\mathbf{y}_1, \dots, \mathbf{y}_n \in \mathbb{R}^d$.

We want to make sure $B = \tilde{\mathbf{X}} \tilde{\mathbf{X}}^\top \approx \mathbf{Y} \mathbf{Y}^\top =: \mathbf{M}$

- ▶ In this way $\|\mathbf{y}_i \mathbf{y}_j\| \approx \|\mathbf{x}_i \mathbf{x}_j\|$ as desired.
- One way to assure this is to minimize $\sum_{i,j} (\tilde{\mathbf{x}}_i^\top \tilde{\mathbf{x}}_j \mathbf{y}_i^\top \mathbf{y}_j)^2 = \|B M\|_F^2$.

• The Frobenius norm
$$||A||_F = \sqrt{\sum_{i,j} A_{ij}^2}$$
.

Note that $rank(M) \leq d$ but otherwise $M \in \mathbb{R}^{n \times n}$ is arbitrary.

Optimization problem: Minimize $||B - M||_F^2$ subject to rank $(M) \le d$.

Optimization problem: Minimize $||B - M||_F^2$ subject to rank $(M) \le d$.

Let $B = V \Lambda V^{\top}$ be the spectral decomposition with $\operatorname{diag}(\Lambda)$ non-increasing.

Eckart-Young Theorem

The optimal M satisfies $\widehat{M} = V_d \Lambda_d V_d^{\top}$, where

▶
$$\Lambda_d = \operatorname{diag}(\lambda_1, \ldots, \lambda_d)$$
 has *d* largest eigenvalues of *B*.

• $V_d \in \mathbb{R}^{n \times d}$ contains the first *d* columns of *V*.

We then take $\mathbf{Y} = V_d \Lambda_d^{1/2}$, which gives us our low-dimensional embedding.

We next show that this is the same answer we would get using PCA!

Both methods rely on the singular value decomposition (SVD) of $\tilde{\mathbf{X}} = H\mathbf{X} = VDU^{\top}$.

Here is the key insight:

▶ PCA: Finds principal components from the eigenvectors of X̃^TX = U(D^TD)U^T.
 ▶ MDS: Finds embeddings from the eigenvectors of X̃X^T = V(DD^T)V^T.

The columns of U are the principal directions and the scores $\mathbf{y}_1, \ldots, \mathbf{y}_n$ are taken as the first d columns of $\tilde{\mathbf{X}} U = VD$.

As a result, $\mathbf{y}_1, \ldots, \mathbf{y}_n$ are precisely the points obtained by classical MDS.

Spectral Embedding (aka Laplacian Eigenmaps)

Main ideas

Data: $\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathbb{R}^m$. Find low dimensional representation $\mathbf{y}_1, \ldots, \mathbf{y}_n \in \mathbb{R}^d$.

Links to manifold learning

We look for a truly nonlinear method that is able to learn the underlying manifold.

The main idea is to keep track of local geometry:

• The embedding of \mathbf{x}_i should depend mostly on points close to \mathbf{x}_i .

How to keep track of the local geometry in the data?

Construct a weighted graph G = (V, E, W):

- Vertices $V = \{1, 2, ..., n\}$ (data points).
- Edges *E* based on proximity (e.g., *k*-nearest neighbors or ϵ -neighborhood).
- Weights W_{ij} measure similarity, e.g. $W_{ij} = 1$ or $W_{ij} = \exp(-\|\mathbf{x}_i \mathbf{x}_j\|^2/2\sigma^2)$.

If $ij \notin E$ we always set $W_{ij} = 0$, also $W_{ii} = 0$ for all i = 1, ..., n.

Graph Laplacian

Graph Laplacian is the main object encoding the "geometry of the data".

The Laplacian matrix $L \in \mathbb{S}^n$ encodes the structure of the graph:

• Degree matrix D (diagonal):
$$D_{ii} = \sum_{j} W_{ij}$$
, $i = 1, ..., n$.

- ▶ Graph Laplacian: L = D W, where W is the weight matrix $W = (W_{ij})$.
- Normalized Laplacian: $L_{\rm N} = D^{-1/2}LD^{-1/2}$.

Important exercise: Show $\mathbf{x}^{\top} L \mathbf{x} = \frac{1}{2} \sum_{i,j} W_{ij} (x_i - x_j)^2$ for all $\mathbf{x} \in \mathbb{R}^n$.

Properties of *L*:

- ► *L* is positive semi-definite.
- \blacktriangleright L1 = 0, that is, smallest eigenvalue is zero with eigenvector 1.
- If G is connected $\operatorname{rank}(L) = n 1$.

Fix *d*. The embedding $\mathbf{y}_1, \ldots, \mathbf{y}_n \in \mathbb{R}^d$ is obtained by minimizing:

$$rac{1}{2}\sum_{i=1}^n\sum_{j=1}^n W_{ij}\|\mathbf{y}_i-\mathbf{y}_j\|^2$$

Key insight

High W_{ij} enforces small $\|\mathbf{y}_i - \mathbf{y}_j\|$.

Note: This is still not well defined because $\mathbf{y}_1 = \ldots = \mathbf{y}_n = \mathbf{0}$ is a solution so we need to refine this idea a bit.

Let $\mathbf{Y} \in \mathbb{R}^{n \times d}$ be the embedded data matrix. Recall L = D - W and $L\mathbf{1} = \mathbf{0}$. Proposition We have: $\frac{1}{2} \sum_{i,j} W_{ij} \|\mathbf{y}_i - \mathbf{y}_j\|^2 = \operatorname{tr}(\mathbf{Y}^\top L \mathbf{Y}) = \operatorname{tr}(\mathbf{Y}^\top D \mathbf{Y}) - \operatorname{tr}(\mathbf{Y}^\top W \mathbf{Y})$ Proof: As for MDS we can show that the matrix $E = [\|\mathbf{y}_i\|_{1 \to 1}^2 + \operatorname{tr}(\mathbf{y}^\top W \mathbf{Y})$

Proof: As for MDS we can show that the matrix $E = [||\mathbf{y}_i - \mathbf{y}_j||^2]_{i,j}$ takes the form

$$E = \operatorname{diag}(\mathbf{Y}\mathbf{Y}^{\top})\mathbf{1}\mathbf{1}^{\top} + \mathbf{1}\mathbf{1}^{\top}\operatorname{diag}(\mathbf{Y}\mathbf{Y}^{\top}) - 2\mathbf{Y}\mathbf{Y}^{\top}$$

and so $\frac{1}{2} \sum_{i,j} W_{ij} \|\mathbf{y}_i - \mathbf{y}_j\|^2 = \frac{1}{2} \operatorname{trace}(WE)$.

D is diagonal and *E* has zeros on the diagonal and so $\frac{1}{2}$ trace(*WE*) = $-\frac{1}{2}$ trace(*LE*). Since $L\mathbf{1} = \mathbf{0}$ we get also that $-\frac{1}{2}$ trace(*LE*) = trace(*L***YY**^{\top}).

Introducing constraints to the optimization problem

Constraint 1 (Fixing scale)

To avoid trivial solutions it is convenient to assume $\mathbf{Y}^{\top} D \mathbf{Y} = I_d$.

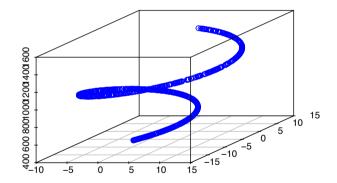
Defining
$$\tilde{\mathbf{Y}} = D^{1/2}\mathbf{Y}$$
 we get $\tilde{\mathbf{Y}}^{\top}\tilde{\mathbf{Y}} = I_d$ (orthonormal columns $\tilde{\mathbf{y}}_1, \dots, \tilde{\mathbf{y}}_d$).
Now trace $(\mathbf{Y}^{\top}L\mathbf{Y}) = \text{trace}(\tilde{\mathbf{Y}}^{\top}L_N\tilde{\mathbf{Y}}) = \sum_{i=1}^d \tilde{\mathbf{y}}_i^{\top}L_N\tilde{\mathbf{y}}_i$.

From PCA: the optimum given by eigenvectors of L_N for smallest eigenvalues. Note that $L_N D^{1/2} \mathbf{1} = D^{-1/2} L \mathbf{1} = \mathbf{0}$ so $\tilde{\mathbf{y}}_0 := D^{1/2} \mathbf{1}$ is a zero-eigenvector.

Constraint 2: $\tilde{\mathbf{y}}_0 \perp \tilde{\mathbf{y}}_i$ for $i = 1, \dots, n$ In addition we assume $\tilde{\mathbf{Y}}^\top D^{1/2} \mathbf{1} = \mathbf{Y}^\top D \mathbf{1} = \mathbf{0}$

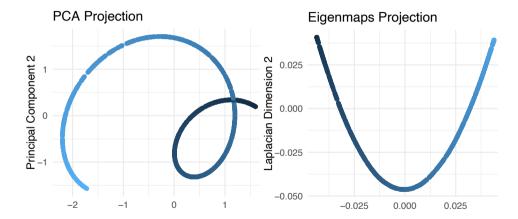
Spectral embedding: minimize trace($\mathbf{Y}^{\top} L \mathbf{Y}$) subject to $\mathbf{Y}^{\top} D \mathbf{Y} = I_d$ and $\mathbf{Y}^{\top} D \mathbf{1} = \mathbf{0}$

Consider datapoints lying on the twisted curve as on the picture below:



We now represent these data in 2D comparing PCA and Laplacian Eigenmaps.

- **PCA**: Projects data linearly, collapsing structure.
- ► Laplacian Eigenmaps: Preserves local geometry, unfolding the manifold.



Note that PCA joins points that are far from each other in the original dataset.

Uniform Manifold Approximation and Projection (UMAP)

- ► This is a popular, state-of-the-art method.
- ▶ It relies on various choices that are not fully theoretically justified.
- ► We provide a high level overview.

UMAP is a nonlinear dimensionality reduction technique that improves on eigenmaps.

Advantages over PCA, MDS, and Eigenmaps:

- Has manifold learning abilities.
- Balances local and global structure.
- Scales efficiently to large datasets.
- More robust to parameter choices.

UMAP is a state-of-the-art data visualization and pattern discovery tool.

The key idea is similar to the spectral embedding.

- 1. Construct k-Nearest Neighbor (kNN) Graph.
- 2. Initialize Embedding using Laplacian Eigenmaps.
- 3. **Optimize** embedding via stochastic gradient descent (SGD).

UMAP uses a different loss function than Laplacian Eigenmaps, which makes it, in principle, more robust to parameter choices.

Construct k-Nearest Neighbors (kNN) graph; e.g. with k = 15.

Define "probabilities" of i, j being connected based on neighbor distances:

$$p_{j|i} = \exp\left(-\frac{\|\mathbf{x}_i - \mathbf{x}_j\| - \rho_i}{\sigma_i}
ight),$$

where $\rho_i = \min_{k \neq i} \|\mathbf{x}_i - \mathbf{x}_k\|$ and σ_i is a scaling factor.

Symmetrize probabilities:

$$p_{ij} = p_{j|i} + p_{i|j} - p_{j|i}p_{i|j}.$$

Note that the closest neighbor gets always connected with pr. 1.

▶ This about p_{ii} as edge weights.

Step 2 and 3: Data Graph in the Embedding Space and matching

Compute pairwise similarities in low-dimensional space:

$$q_{ij} = \frac{1}{1 + a \|\mathbf{y}_i - \mathbf{y}_j\|^{2b}},\tag{1}$$

where, by default, $a \approx 1.929$, $b \approx 0.7915$.

The matching between the original and the embedded space is probability-inspired.

Cost Function (Fuzzy Cross-Entropy)

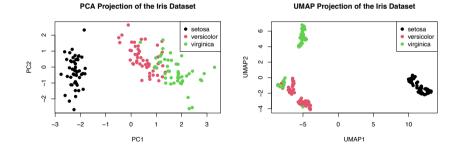
$$c(\mathbf{y}_1,\ldots,\mathbf{y}_n) = \sum_{i
eq j} \left(p_{ij}\lograc{p_{ij}}{q_{ij}} + (1-p_{ij})\lograc{1-p_{ij}}{1-q_{ij}}
ight).$$

Here c depends on $\mathbf{y}_1, \ldots, \mathbf{y}_n$ through q_{ij} 's defined in (1).

- Attractive and repulsive forces to balance local and global structure.
- Uses block-coordinate descent to minimize cost.

Example: Iris Dataset

- Comparison of PCA and UMAP on Iris dataset.
- PCA struggles to separate classes clearly.
- ▶ UMAP better preserves local and global structures.



Note: Given a new data point UMAP has to be recalculated from scratch!