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Why Principal Component Analysis may not be enough?

PCA struggles with non-linear relationships.

High-dimensional datasets often lie on low-dimensional manifolds.

Linear projections may destroy these geometric information.

We will now discuss four popular non-linear dimensionality reduction techniques:
multi-dimensional scaling, spectral embedding, and UMAP.



Multi-dimensional Scaling (MDS)

◮ In its classical version this is essentially PCA.

◮ MDS allows us to introduce some fundamental concepts.



Problem Setup

Consider n objects and a measure δij ≥ 0 of their dissimilarity (small if similar); δii = 0.

Define ∆ = (δij) ∈ Rn×n: δii = 0 for all i , δij ≥ 0 for all i ∕= j .

In classical MDS: there exist x1, . . . , xn ∈ Rm such that δij = ‖xi − xj‖.

In general, there need not be a Euclidean distance defining this metric.

Multidimensional Scaling

Find a configuration of points y1, . . . , yn in Rd (d << n) such that:

‖yi − yj‖ ≈ δij .

The solution for classical MDS is particularly simple.



Classical MDS: δij = ‖xi − xj‖

If δij = ‖xi − xj‖, we have:

δ2ij = (xi − xj)
⊤(xi − xj) = (XX⊤)i ,i + (XX⊤)j ,j − 2(XX⊤)i ,j .

The Hadamard product ∆⊙∆ = [δ2ij ] can be written as:

∆⊙∆ = diag(XX⊤)11⊤ + 11⊤diag(XX⊤)− 2XX⊤

Reintroducing the centering matrix H = In − 1
n11

⊤, we obtain

B := −1

2
H(∆⊙∆)H = HX(HX)⊤ = X̃X̃⊤.

This matrix contains all inner products x̃⊤i x̃j for 1 ≤ i , j ≤ n.
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Classical MDS (2)

Let Y ∈ Rn×d be the matrix with projected data y1, . . . , yn ∈ Rd .

We want to make sure B = X̃X̃⊤ ≈ YY⊤ =: M

◮ In this way ‖yi − yj‖ ≈ ‖xi − xj‖ as desired.

◮ One way to assure this is to minimize
!

i ,j(x̃
⊤
i x̃j − y⊤i yj)

2 = ‖B −M‖2F .

◮ The Frobenius norm ‖A‖F =
"!

i ,j A
2
ij .

Note that rank(M) ≤ d but otherwise M ∈ Rn×n is arbitrary.

Optimization problem: Minimize ‖B −M‖2F subject to rank(M) ≤ d .
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Classical MDS (3)

Optimization problem: Minimize ‖B −M‖2F subject to rank(M) ≤ d .

Let B = VΛV⊤ be the spectral decomposition with diag(Λ) non-increasing.

Eckart-Young Theorem

The optimal M satisfies #M = VdΛdV
⊤
d , where

◮ Λd = diag(λ1, . . . ,λd) has d largest eigenvalues of B .

◮ Vd ∈ Rn×d contains the first d columns of V .

We then take Y = VdΛ
1/2
d , which gives us our low-dimensional embedding.

We next show that this is the same answer we would get using PCA!
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Duality Between MDS and PCA

Both methods rely on the singular value decomposition (SVD) of X̃ = HX = VDU⊤.

Here is the key insight:

◮ PCA: Finds principal components from the eigenvectors of X̃⊤X̃ = U(D⊤D)U⊤.

◮ MDS: Finds embeddings from the eigenvectors of X̃X̃⊤ = V (DD⊤)V⊤.

The columns of U are the principal directions and the scores y1, . . . , yn are taken as
the first d columns of X̃U = VD.

As a result, y1, . . . , yn are precisely the points obtained by classical MDS.
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Spectral Embedding (aka Laplacian
Eigenmaps)



Main ideas

Data: x1, . . . , xn ∈ Rm. Find low dimensional representation y1, . . . , yn ∈ Rd .

Links to manifold learning

We look for a truly nonlinear method that is able to learn the underlying manifold.

The main idea is to keep track of local geometry:
• The embedding of xi should depend mostly on points close to xi .

How to keep track of the local geometry in the data?

Construct a weighted graph G = (V ,E ,W ):

◮ Vertices V = {1, 2, . . . , n} (data points).

◮ Edges E based on proximity (e.g., k-nearest neighbors or ε-neighborhood).

◮ Weights Wij measure similarity, e.g. Wij = 1 or Wij = exp(−‖xi − xj‖2/2σ2).

If ij /∈ E we always set Wij = 0, also Wii = 0 for all i = 1, . . . , n.



Graph Laplacian

Graph Laplacian is the main object encoding the “geometry of the data”.

The Laplacian matrix L ∈ Sn encodes the structure of the graph:

◮ Degree matrix D (diagonal): Dii =
!

j Wij , i = 1, . . . , n.

◮ Graph Laplacian: L = D −W , where W is the weight matrix W = (Wij).

◮ Normalized Laplacian: Ln = D−1/2LD−1/2.

Important exercise: Show x⊤Lx = 1
2

!
i ,j Wij(xi − xj)

2 for all x ∈ Rn.

Properties of L:

◮ L is positive semi-definite.

◮ L1 = 0, that is, smallest eigenvalue is zero with eigenvector 1.

◮ If G is connected rank(L) = n − 1.
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The key idea behind spectral embedding

Fix d . The embedding y1, . . . , yn ∈ Rd is obtained by minimizing:

1

2

n$

i=1

n$

j=1

Wij‖yi − yj‖2

Key insight

High Wij enforces small ‖yi − yj‖.

Note: This is still not well defined because y1 = . . . = yn = 0 is a solution so we need
to refine this idea a bit.



Problem reformulation

Let Y ∈ Rn×d be the embedded data matrix. Recall L = D −W and L1 = 0.

Proposition

We have: 1
2

!
i ,j Wij‖yi − yj‖2 = tr(Y⊤LY) = tr(Y⊤DY)− tr(Y⊤WY)

Proof: As for MDS we can show that the matrix E = [‖yi − yj‖2]i ,j takes the form

E = diag(YY⊤)11⊤ + 11⊤diag(YY⊤)− 2YY⊤

and so 1
2

!
i ,j Wij‖yi − yj‖2 = 1

2 trace(WE ).

D is diagonal and E has zeros on the diagonal and so 1
2 trace(WE ) = −1

2 trace(LE ).

Since L1 = 0 we get also that −1
2 trace(LE ) = trace(LYY⊤).

tr WE EWigEij

tr DE DigEij 0



Introducing constraints to the optimization problem

Constraint 1 (Fixing scale)

To avoid trivial solutions it is convenient to assume Y⊤DY = Id .

Defining Ỹ = D1/2Y we get Ỹ⊤Ỹ = Id (orthonormal columns ỹ1, . . . , ỹd).

Now trace(Y⊤LY) = trace(Ỹ⊤LnỸ) =
!d

i=1 ỹ
⊤
i Lnỹi .

From PCA: the optimum given by eigenvectors of Ln for smallest eigenvalues.

Note that LnD
1/21 = D−1/2L1 = 0 so ỹ0 := D1/21 is a zero-eigenvector.

Constraint 2: ỹ0 ⊥ ỹi for i = 1, . . . , n

In addition we assume Ỹ⊤D1/21 = Y⊤D1 = 0.

Spectral embedding: minimize trace(Y⊤LY) subject to Y⊤DY = Id and Y⊤D1 = 0
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Example: Twisted curve

Consider datapoints lying on the twisted curve as on the picture below:
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We now represent these data in 2D comparing PCA and Laplacian Eigenmaps.



◮ PCA: Projects data linearly, collapsing structure.

◮ Laplacian Eigenmaps: Preserves local geometry, unfolding the manifold.
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Note that PCA joins points that are far from each other in the original dataset.



Uniform Manifold Approximation and
Projection (UMAP)

◮ This is a popular, state-of-the-art method.

◮ It relies on various choices that are not fully theoretically justified.

◮ We provide a high level overview.



Introduction to UMAP

UMAP is a nonlinear dimensionality reduction technique that improves on eigenmaps.

Advantages over PCA, MDS, and Eigenmaps:

◮ Has manifold learning abilities.

◮ Balances local and global structure.

◮ Scales efficiently to large datasets.

◮ More robust to parameter choices.

UMAP is a state-of-the-art data visualization and pattern discovery tool.



UMAP Algorithm Overview

The key idea is similar to the spectral embedding.

1. Construct k-Nearest Neighbor (kNN) Graph.

2. Initialize Embedding using Laplacian Eigenmaps.

3. Optimize embedding via stochastic gradient descent (SGD).

UMAP uses a different loss function than Laplacian Eigenmaps, which makes it, in
principle, more robust to parameter choices.



Step 1: Data Graph in the Input Space

Construct k-Nearest Neighbors (kNN) graph; e.g. with k = 15.

Define “probabilities” of i , j being connected based on neighbor distances:

pj |i = exp

%
−
‖xi − xj‖ − ρi

σi

&
,

where ρi = mink ∕=i ‖xi − xk‖ and σi is a scaling factor.

Symmetrize probabilities:
pij = pj |i + pi |j − pj |ipi |j .

Note that the closest neighbor gets always connected with pr. 1.

◮ This about pij as edge weights.

j is closest to i
then Pj i
Pij pig 1 pilj



Step 2 and 3: Data Graph in the Embedding Space and matching

Compute pairwise similarities in low-dimensional space:

qij =
1

1 + a‖yi − yj‖2b
, (1)

where, by default, a ≈ 1.929, b ≈ 0.7915.

The matching between the original and the embedded space is probability-inspired.

Cost Function (Fuzzy Cross-Entropy)

c(y1, . . . , yn) =
$

i ∕=j

%
pij log

pij
qij

+ (1− pij) log
1− pij
1− qij

&
.

Here c depends on y1, . . . , yn through qij ’s defined in (1).

◮ Attractive and repulsive forces to balance local and global structure.
◮ Uses block-coordinate descent to minimize cost.
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Example: Iris Dataset

◮ Comparison of PCA and UMAP on Iris dataset.

◮ PCA struggles to separate classes clearly.

◮ UMAP better preserves local and global structures.
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Note: Given a new data point UMAP has to be recalculated from scratch!


