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Introduction to GPs



Marginal distribution of MVN

Y*’(’(\,.--, Xw\)

Consider the following reformulation of the earlier result:

Suppose X ~ Np(p,X). Let T :={1,...,m} and define _ EX»
(

» m: T — R such that m(i) := u;m

» k: T x T — Rsuch that k(i,j) := X (kernel function)

Then for every A= {ty,...,t,} C T, the vector X4 = (X, ..., Xt,) is Gaussian with
» The mean pp whose i-th entry is m(t;).
» The covariance matrix X 44 whose (i, j)-th entry is k(t;, t;).

The set T indexes all random variables in the system.

Forevery A= {t1,...,ta} C T, (Xy,...,Xt,) is Gaussian.



Gaussian Processes - an immediate generalization

A Gaussian Process (GP) is a generalization of the multivariate normal distribution
to a collection of random variables indexed by an arbitrary set T.

Definition
A Gaussian Process is a collection of random variables { X; };c 1 such that for any finite
set of points {t1,...,t,} C T, the corresponding vector (Xi,, ..., X;,) follows a

multivariate normal distribution.

In what follows we assume T C RY with the Euclidean distance metric.

Often, the correlation between two variables X and X; will depend on the distance
It — sl



The mean and the kernel functions

A Gaussian Process is characterized by:
» A mean function m: T — R: m(t) = E[X{]
» A kernel function k: T x T — R: k(t,t") = Cov(X¢, Xpr)
Note that m is pretty much arbitrary (often set to be zero) but k is highly constrained:

Positive semi-definitness:

For any finite set {t1,...,t,} C T, the covariance matrix X with entries ¥; = k(t;, t;)
Is positive semi-definite.

We can use feature maps 1 : R? — RP to define kernels:

k(s, t) = (s) " o(t).

Feature maps define kernels but not all kernels are like that (this can be generalized to
“infinite dimensional” feature maps).



Common Kernels in GPs

» Squared Exponential (RBF) Kernel:
t —t|?
ku(t,t') = 0% exp (— | 572 | ) :

» Controls smoothness of the functions sampled from the GP.
» Length scale /: Correlation distance.
» Signal variance o2: Scale of the output.

» Matérn Kernel:

(e ) =02y (vl 8 ) (vl el

» v: Smoothness parameter.
» More flexible than the RBF kernel for modeling rough functions.



Constructing kernels from kernels

Given valid kernels ki(x,x") and k»(x,x’), the following kernels will also be valid:

where g polynomial with > 0 coefficients.



Modelling with Gaussian processes

Working with Gaussian Processes we fix a kernel function.
Data: Suppose we observed (X,,..., X, ) for some t1,...,tp € T.

If the kernel function comes with some hyperparameters «, we can learn them
maximizing the log-likelihood.

» By definition, (X4, ..., Xt ) is MVN with covariance that depends on «.

» This may be a complicated optimization procedure.

Suppose we want to predict the value of the process at some point t,11

» By definition (Xy, ..., Xt,, Xt,.,) is jointly Gaussian so simply compute the
conditional distribution: Xy, [ Xz, ..., X¢

» This gives both the point prodiction (the conditional mean) and uncertainty
quantification (conditional variance).



GPs for Spatial Data



Example: Modeling Spatial Data with GPs
2
T=02 (]

GPs are widely used in spatial statistics, e.g. temperature across a grid of locations.

X x'eT

1.0

0.8

0.6

| o Fix the exponential kernel exp{—3|x — x|}

Latitude
0.4

e Compute the 100% x 100° covariance matrix

0.2

M o Get 1 sample from the corresponding distr.

0.0

0.0 0.2 0.4 0.6 0.8 1.0

Longitude

Handling a 10000-dimensional Gaussian comes with its own computational challenges.



Spatial GP: Prediction

We explained how to make a prediction for X; . This easily generalizes.
Suppose we observed the mean zero GP over some locations X¢pain-

Our goal is to make predictions over some other points Xiest
1. Combine training and test locations.
2. Compute the covariance matrix using the kernel function.

3. Use Gaussian conditioning formulas:

_ —1
IB:[Xtest ’xtrain] = 2 test,train Ztrain,trainxtrain 3

_ —1
COV(Xtest‘xtrain) = ) test, test — Ztest,trainZtrain'trainZtest,train-



Nonparametric Regression with GPs



Nonparametric Regression

GPs can be used for nonparametric regression:
y,-:f(x,-)—l—a,-, 8,‘NN(0,O’2), I=1,...,n.

Prior over f : RY — R: GP defined by m(x) and k(x, x').
» In this sense GP defines a distribution over (random) functions f : R — R.

We have (f(x1),. .., f(xn)) ~ Na(p, £)
> pi = m(x;)
> ZU = k(x,-,xj)

Say d = 1. Given m(x) and k(x, x"), how would you plot random samples of the
corresponding random functions on R?



Nonparametric Regression

Note that y = (y1,...,¥n) = (f(x1) +€1,...,f(xn) +€n).

Consider the underlying Gaussian Process y(x):
e The mean is m(x).
> Ely(xj)] = E[f(x;) +&i] = m(x;).
e The kernel is k(x,x') + o?1{x = x'}.
> cov[y(xi), y(x;)] = cov(f(x;) +ei, F(x) + &) = k(xi,x;) + 0?1{x; = x;}.

Given data (y1,X1), ..., (Vn,Xn) we can now easily predict y at any other point x.



[llustration

Gaussian Process Regression
1.5

1.0

-1.0

0.0 2.5 5.0 7.5 10.0



» Gaussian Processes are a versatile tool for regression and spatial modeling.

» Key components:

» Mean function.
» Kernel function.

» Takeaway: Conceptually it is not harder than MVNs and the same formulas apply.

» Computational issues can be significant.



