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Introduction

0.0.1 About this course

These are rudimentary notes for STA437/2005 that contain more
technical part of the lecture that will be presented in class on black-
board. Some multivariate methods will be presented on slides and so
not treated in detail here.

Traditionally multivariate statistics is taught with a lot of focus on
the multivariate normal distribution and the underlying statistical
inference. I will be more brief on this part trying to get some basic
overview of more modern methods for analyzing multivariate data.

My idea for this course is to mix two styles: (i) give a deeper theo-
retical insight into the underlying linear algebra and canonical multi-
variate distributions/models, (ii) give some taste for modern state-of-
the art methods. For this reason, the lecture will be mostly given on
blackboard but occasionally I will present some slides to give a more
high-level overview of more recent material. The tutorials will also
mix theory and practical considerations.

0.0.2 Prerequisites

To understand better what you are expected to know, note that one
of the prerequisites for STA437 is STA302. A prerequisite for STA302

is MAT223 or MAT224 or MAT240. Students should have knowledge
of linear algebra from these courses and its applications to linear
models from STA302.

Multivariate statistics very heavily relies on matrix algebra and,
more generally, on linear algebra. I will try to briefly recall some key
facts when we need them but there will be no time to discuss these
results in detail so they are assumed. Please make sure you have all
the right background. There are no shortcuts here. The more you
understand linear algebra, the more successful you will be in under-
standing this course and many other data analysis methods you will
encounter in the future. The material gathered in Appendix A of 1 1 Kanti V Mardia, John T Kent, and

Charles C Taylor. Multivariate analysis,
volume 88. John Wiley & Sons, 2024

should be more than enough. For deeper understanding check, for
example, Chapter I in 2 or Jason Siefken’s course book for MAT223.

2 Gilbert Strang. Linear Algebra
and Learning from Data. Wellesley-
Cambridge Press, Wellesley, MA, 2019.
ISBN 9780692196380

https://artsci.calendar.utoronto.ca/course/sta302h1
https://artsci.calendar.utoronto.ca/course/mat223h1
https://artsci.calendar.utoronto.ca/course/mat224h1
https://artsci.calendar.utoronto.ca/course/mat240h1
https://github.com/siefkenj/IBLLinearAlgebra/blob/master/README.md
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0.0.3 Complementary courses

There are several courses that are complementary to STA437/STA2005.
For example, it is natural to discuss some classification algorithms in
the context of multivariate statistics. However, this is covered in de-
tail in STA314 so we will mostly omit this here. Some important ex-
amples are k-means, hierarchical clustering, and linear discriminant
analysis3. Another related course, STA414/2104, focuses on unsuper- 3 We will talk about Gaussian mixtures,

which give access to classification
methods that, in a sense, generalize
both k-means and LDA.

vised learning and we recommend students to take this course to get
a full picture where the methods we learn here can be applied.

0.0.4 Computational statistics

Although the lecture focuses on theory and methods, the computa-
tional aspect of this course is critical for building and verifying the
correct intuition. Occasionally, we provide R code for your conve-
nience. If you are not fluent in R , I recommend using AI to generate
complementary code or to translate it into Python or Julia.

To report typos/mistakes, write me: piotr.zwiernik@utoronto.ca

I would like to thank Luis Sierra Muntané for his help with improv-
ing the notes.

Last update: March 26, 2025

piotr.zwiernik@utoronto.ca
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1
Preliminaries

We start by recalling basic notation and facts. This part of the
lecture notes is quite fast-paced because we refresh material that
should be known from earlier courses. Please fill out all the details.

1.1 Basic Linear Algebra

We use standard notations such as Rm to denote the set of all m-
dimensional real vectors x = (x1, . . . , xm) and Rn×m to denote the set
of all n×m real matrices A = (Aij). All vectors in Rm are treated as
column vectors, that is, we take Rm = Rm×1.

Recall that a matrix A ∈ Rn×m represents a linear function from
Rm to Rn. For every x ∈ Rm, the vector Ax lies in Rn. Checking that
the function f (x) = Ax is linear should be straightforward1. 1 Make sure you see why.

1.1.1 Matrix-Vector Multiplication Ax

Let x ∈ Rm be a vector, with x = (x1, . . . , xm), and let A ∈ Rn×m be
a matrix. Recall that the matrix-vector product Ax is defined by the
rule:

(Ax)i =
m

∑
j=1

Aijxj,

which states that the i-th entry of the vector Ax ∈ Rn is the inner
product of the i-th row of A with the vector x.

An important alternative interpretation of Ax is that it is a lin-
ear combination of the columns of A with coefficients given by the
entries of x:

Ax = x1a1 + · · ·+ xmam, (1.1)

where aj ∈ Rm denotes the j-th column of A. ← Exercise 1.4.5

Example 1.1.1. In the least squares problem from linear regression, we have
a data matrix X ∈ Rn×p with rows x1, . . . , xn and a vector of observations
y = (y1, . . . , yn) ∈ Rn. The least squares estimator β̂ ∈ Rp minimizes Recall that ∥x∥ =

√
x⊤x is the Eu-

clidean distance.
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∥y− Xβ∥2 =
n

∑
i=1

(yi − x⊤i β)2,

where Xβ represents the prediction. The interpretation of Xβ as a linear
combination of the columns of X helps us understand that the least squares
problem finds the point in the column space of X that is closest to y.

Example 1.1.2. Let e1, . . . , em ∈ Rm be the canonical unit basis. We have
Aei = ai for i = 1, . . . , m and so A maps the canonical unit basis of Rm

to a1, . . . , am. If m = n and the columns of A are linearly independent, the
vectors a1, . . . , am also form a basis of Rm and so A represents a change of
basis.

1.1.2 Rank-One Matrix xy⊤

A rank-one matrix is formed by the outer product of two vectors.
Specifically, if x ∈ Rn and y ∈ Rm, the outer product xy⊤ ∈ Rn×m is
defined as:

A = xy⊤ with Aij = xiyj for all i = 1, . . . , n, j = 1, . . . , m.

The resulting matrix has rank2 at most one because all rows (or 2 Recall that the rank of A is the number
of linearly independent rows (or equiv.
columns).

columns) of the matrix are scalar multiples of each other.

1.1.3 Matrix Multiplication AB

Matrix multiplication extends the concept of matrix-vector multipli-
cation to two matrices. Let A ∈ Rn×m and B ∈ Rm×p. The product
AB ∈ Rn×p is defined by the rule:

(AB)ik =
m

∑
j=1

AijBjk,

which means that the (i, k)-th entry of AB is the inner product of the
i-th row of A with the k-the column of B.

Alternatively, we can view matrix multiplication as a sum of rank-
one matrices. Let a1, . . . , am be the columns of A and b1, . . . , bm be
the rows of B. Then:

AB =
m

∑
j=1

ajb⊤j , (1.2)

which expresses AB as the sum of rank-one matrices formed from
the columns of A and the rows of B. ← Exercise 1.4.8

Example 1.1.3. Suppose X ∈ Rn×p is a data matrix with rows x1, . . . , xn.
Then the matrix 1

n X⊤X can be written as:

1
n

X⊤X =
1
n

n

∑
i=1

xix⊤i .
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This matrix will play an important role in this course. Note that if the rows
of X are independent and identically distributed (i.i.d.) samples from some
distribution with mean zero and covariance matrix Σ = E[xix⊤i ], then by
the law of large numbers, we have: Here

p−→ denotes convergence in dis-
tribution. You know the definition for
scalar random variables: Xn

p→ X if,
for all ϵ > 0, P(|Xn − X| > ϵ) → 0.

In other words, |Xn − X| p→ 0. Now,
given a sequence of random vectors
(Xn) we say it converges in probability

if ∥Xn − X∥ p→ 0, where ∥ · ∥ is the
Euclidean distance. Similarly, for a
sequence of random matrices (Sn), we

have Sn
p→ S if ∥Sn − S∥F

p→ 0, where
∥ · ∥F is the Frobenius norm.

1
n

X⊤X =
1
n

n

∑
i=1

xix⊤i
p−→ Σ as n→ ∞.

1.1.4 Singular Value Decomposition (SVD)

The singular value decomposition (SVD) is one of the most impor-
tant linear algebra tools in this course. It decomposes any matrix into
a product of three matrices: two orthogonal matrices and a diagonal
matrix.

Denote by O(m) the set of orthogonal m×m matrices: Defining equation UU⊤ = Im implies
that U−1 = U⊤ and so U⊤U = Im too.

O(m) = {U ∈ Rm×m : UU⊤ = Im}.

An orthogonal matrix has the property that its rows (and columns)
form an orthonormal basis for Rm. Note that if U ∈ O(m) then
det(U) = ±1, which follows from multiplicativity of the determinant
and the fact that det(Im) = 1. An orthogonal matrix U is called a
rotation matrix if det(U) = 1 but this terminology is often used for
all orthogonal matrices.

Theorem 1.1.4 (Singular Value Decomposition). Let A ∈ Rn×m with
n ≥ m. 3 Then there exist orthogonal matrices U ∈ O(n) and V ∈ O(m) 3 The case n ≤ m can be treated analo-

gously.such that:
A = UDV⊤,

where D ∈ Rn×m is a “diagonal” matrix with non-negative entries on the
diagonal: 0n ∈ Rn is the zero vector and 1n ∈ Rn

is the vector of ones.

D =


σ1

. . .
σm

0n−m · · · 0n−m

 , σ1 ≥ σ2 ≥ · · · ≥ σm ≥ 0.

The values σ1, . . . , σm are called the singular values of A. The singular
values are always uniquely defined.

Denote the columns of U by u1, . . . , un and the columns of V by
v1, . . . , vm. Note that, by any i = 1, . . . , m,

Avi = UDei = σiUei = σiui

and so each vi is transformed into a scaled version of ui, i = 1, . . . , m.
We refer to vi’s are right singular vectors and to ui’s as the left singu-
lar vectors.
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The singular value decomposition expresses A as a sum of rank-
one matrices: Note that um+1, . . . , un do not feature

here so they are pretty much irrelevant.A = σ1u1v⊤1 + · · ·+ σmumv⊤m .

1.1.5 Spectrum of a symmetric matrix

Let A ∈ Rm×m be a square matrix. A non-zero vector v ∈ Rm is
called an eigenvector of A if there exists a scalar λ ∈ R such that: Think about a geometric meaning of

this equation.

Av = λv. (1.3)

In this case, λ is called an eigenvalue of A corresponding to the
eigenvector v.

The matrix A has at most m eigenvalues (counting multiplicities).
The eigenvalues are the real roots of the characteristic polynomial
det(A− λIm).4 ← Exercise 1.4.7

4 We can extend this definition to com-
plex eigenvalues and eigenvectors. The
fundamental theorem of algebra tells
us that the characteristic polynomial
always has m complex roots (count-
ing with multiplicities). This is not so
important for our course.

Denote by Sm the set of all m×m symmetric matrices.

Sm = {A ∈ Rm×m : A = A⊤}

Lemma 1.1.5. If A ∈ Sm, then all its eigenvalues are always real, and the
eigenvectors corresponding to distinct eigenvalues are orthogonal.

Proof. Since A ∈ Sm, it is symmetric, so A = A⊤. Suppose Av =

λv, where λ = a + ib with a, b ∈ R (i.e., assume for the sake of
contradiction that λ could be complex). Recall that the standard inner
product in Cm is ⟨x, y⟩ = ∑m

i=1 xi ȳi, where ȳ is the complex conjugate
of y (if y = a + bi then ȳ = a− bi). If x, y ∈ Rm then ⟨x, y⟩ = x⊤y and
so

v⊤Av = ⟨v, Av⟩ = ⟨v, λv⟩ = λ∥v∥2.

But, by the symmetry of A,

v⊤Av = (Av)⊤v = ⟨Av, v⟩ = ⟨λv, v⟩ = λ∥v∥2.

This implies
λ∥v∥2 = λ∥v∥2.

Since ∥v∥2 ̸= 0, it follows that λ = λ, which implies that λ ∈ R.
Therefore, all eigenvalues of A are real.

Now, for the orthogonality of eigenvectors corresponding to dis-
tinct eigenvalues, let v1 and v2 be eigenvectors corresponding to
distinct eigenvalues λ1 and λ2 of A. Then

Av1 = λ1v1 and Av2 = λ2v2.

Taking the inner product of the first equation with v2 and the second
with v1, we get

v⊤2 Av1 = λ1v⊤2 v1 and v⊤1 Av2 = λ2v⊤1 v2.
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Since A is symmetric, v⊤2 Av1 = v⊤1 Av2. Therefore,

λ1v⊤2 v1 = λ2v⊤1 v2.

Since λ1 ̸= λ2, it must be that v⊤1 v2 = 0, so v1 and v2 are orthogonal.
This completes the proof.

This directly gives the following fundamental result.

Theorem 1.1.6 (Spectral Theorem for Symmetric Matrices). If A ∈ Sm,
then there exists an orthogonal matrix U ∈ O(m) and a diagonal matrix
Λ ∈ Rm×m such that:

A = UΛU⊤,

where the diagonal entries of Λ, denoted by λ1, . . . , λm, are the eigenvalues
of A. The columns of U, denoted by u1, . . . , um, are the corresponding
eigenvectors of A, i.e.,

Aui = λiui for all i = 1, . . . , m.

The spectral theorem provides a full diagonalization of a symmet-
ric matrix, allowing us to express it as a sum of projections onto its
eigenvectors: Question: In what sense is the matrix

uiu⊤i a projection matrix?

A =
m

∑
i=1

λiuiu⊤i .

Each term in this sum is a rank-one matrix corresponding to an
eigenvalue and its associated eigenvector.

1.1.6 Positive definite matrices and quadratic forms

Every symmetric matrix A ∈ Sp defines a quadratic form

q(x) = x⊤Ax =
p

∑
i,j=1

Aijxixj.

By definition, A is called positive semi-definite (PSD) if q(x) ≥ 0 for
all x. If the inequality is strict for all non-zero x, then A is positive
definite (PD). The set of PD matrices is denoted by Sm

+ and the set of
PSD matrices is denoted by S

m
+.

Notation S
m
+ suggests that the set of

PSD matrices is the Euclidean closure of
the set of PD matrices, which is indeed
true.
← Exercise 1.4.15

1.2 Random vectors and matrices

This section covers the fundamental concepts of random vectors, ran-
dom matrices, and their associated mean and covariance structures.
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1.2.1 Mean and Covariance

Let X = (X1, . . . , Xm) ∈ Rm be a random vector with a probability
density function f (x). The expectation (or mean) of a scalar-valued For discrete distributions we can take f

to be the probability mass function and
replace integration with summation.

function g(X) is defined as:

E[g(X)] =
∫

Rm
g(x) f (x) dx.

We assume that all necessary integrals converge, ensuring that the
expectation is finite.

Now, consider a random vector X = (X1, . . . , Xm) ∈ Rm or a
random matrix S = (Sij) ∈ Rn×m. When we refer to E[X] or E[S], we
mean that the expectation is applied element-wise:

E[X] = (E[Xi])
m
i=1, E[S] = (E[Sij])i,j.

We denote the mean vector of X ∈ Rm as:

µ = E[X] = (E[X1], . . . , E[Xm]) = (µ1, . . . , µm).

The covariance matrix of X, denoted by Σ, is defined as:

Σ = var(X) = E[(X− µ)(X− µ)⊤].

The diagonal elements of Σ represent the variances of the individ-
ual components of X:

Σjj = E[(Xj − µj)
2] = var(Xj),

while the off-diagonal elements represent the covariances between
the components:

Σjk = E[(Xj − µj)(Xk − µk)] = cov(Xj, Xk).

Recall from Section 1.1.6 the definition of PSD matrices. The co-
variance matrix Σ is always positive semi-definite. Indeed, for any
vector u ∈ Rm, we have:

u⊤ var(X)u = ∑
i,j

uiujE(Xi−µi)(Xj−µj) = E[∑
i

ui(Xi−µi)∑
j

uj(Xj−µj)] = E(u⊤(X−µ))2,

which is always nonnegative. The covariance matrix Σ is positive
definite unless there is a linear combination of the components of X
that is degenerate.

Example 1.2.1. Consider a covariance matrix Σ ∈ Sm. Since covariance
matrices are symmetric and positive semi-definite, they admit a spectral
decomposition:

Σ = UΛU⊤,

where Λ = diag(λ1, . . . , λm) contains the eigenvalues (which are non-
negative). This decomposition is useful in multivariate statistics, for exam-
ple, when performing Principal Component Analysis (PCA).
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More generally, for two random vectors X ∈ Rp and Y ∈ Rq, the
covariance matrix between X and Y is given by:

cov(X, Y) = E[(X−E[X])(Y−E[Y])⊤] ∈ Rp×q.

In particular, the variance of X is just the covariance of X with itself:
var(X) = cov(X, X).

1.2.2 Linearity of Expectation and Bilinearity of Covariance

The following properties of expectation are straightforward but im-
portant. They can be verified by checking each coordinate:

Lemma 1.2.2. Let X ∈ Rm be a random vector, and S ∈ Rp×q be a random
matrix. Let b ∈ Rn be a vector and let A ∈ Rn×p, B ∈ Rq×m be matrices.
Then

E[AX + b] = AE[X] + b.

Moreover,
E[ASB] = AE[S]B.

Proof. For the first equality, we check it on each coordinate. The i-th
entry on the left is

E(
m

∑
j=1

AijXj + bi) =
m

∑
j=1

AijE(Xj) + bi,

which is the same as the i-th entry of AE[X] + b on the right. For the
second equality, we see that the (i, j)-th entry of the matrix on the left
is

E[∑
k,l

AikSk,l Bl,j] = ∑
k,l

AikE[Sk,l ]Bl,j

with the same conclusion as before.

Lemma 1.2.3. Consider random vectors X ∈ Rp, Y ∈ Rq. Then

1. cov(X, Y) = cov(Y, X)⊤ (symmetry).

2. cov(X + X′, Y) = cov(X, Y) + cov(X′, Y) (additivity).

Moreover, for any matrices A ∈ Rn×p, B ∈ Rm×q

cov(AX, BY) = A cov(X, Y)B⊤

and
var(AX) = A var(X)A⊤.

Exercise 1.2.4. Prove this lemma. Hint: Use the definition of the covariance
and Lemma 1.2.2.



16 methods for multivariate data (sta437)

1.3 Sample Quantities

We now turn to the sample analogs of the mean and covariance ma-
trix, which are important when working with observed data. Sup-
pose we observe an i.i.d. sample x1, . . . , xn ∈ Rm. We collect these
observed vectors into a data matrix X ∈ Rn×m, where each row corre-
sponds to one observation.

Two sample statistics are particularly important: the sample mean
and the sample covariance matrix.

1.3.1 Sample Mean

The sample mean vector is defined as:

x̄n =
1
n

n

∑
i=1

xi =
1
n

X⊤1n,

where 1n is the vector of all ones in Rn. This vector summarizes the
central location of the sample.

1.3.2 Sample Covariance Matrix

The sample covariance matrix is an estimator of the population co-
variance matrix. It measures the variability and linear relationships
between the components of the random vector across the sample. It is
defined as:

Sn =
1
n

n

∑
i=1

(xi − x̄n)(xi − x̄n)
⊤. (1.4)

We define the centering matrix as the matrix

H = In −
1
n

1n1⊤n .

The matrix H is symmetric, idempotent (H2 = H), and projects any
vector in Rn onto the space orthogonal to the vector 1n. This matrix ← Exercise 1.4.24

is used to remove the effect of the sample mean from the data and it
gives us a useful alternative formulation of Sn.

Lemma 1.3.1. The sample covariance matrix can be written as:

Sn =
1
n

X⊤HX.

Proof. The rows of the matrix

X− 1nx̄⊤n = X− 1
n 1n1⊤n X = HX

are precisely xi − x̄n. Using Subsection 1.1.3, we see that Sn defined
in (1.4) has a matrix representation 1

n X⊤H⊤HX, which concludes the
proof by the fact that H is symmetric and idempotent.
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Exercise 1.3.2. Show that the kernel of H is the span of 1n. Conclude that
rank(H) = n− 1. Recall that the rank of a matrix is the

maximal number of linearly indepen-
dent row/columns.In statistical software like R, the function scale(X, center =

TRUE, scale = FALSE) can be used to center the data matrix X by
subtracting the column means.

1.3.3 Properties of Sample Statistics

Now, suppose that the sample x1, . . . , xn ∈ Rm comes from a popu-
lation with the same distribution as the random vector X ∈ Rm. As
before, we collect the sample as rows in the data matrix X ∈ Rn×m.
Suppose that E[X] = µ and var(X) = Σ are the population mean and
covariance, respectively.

We now examine some properties of the sample statistics.

Lemma 1.3.3. The sample mean x̄n is an unbiased estimator of the popula-
tion mean:

E[x̄n] = µ.

Proof. By the linearity of expectation:

E[x̄n] = E

[
1
n

n

∑
i=1

xi

]
=

1
n

n

∑
i=1

E[xi] =
1
n

n

∑
i=1

µ = µ.

Next, we compute the variance of the sample mean.

Lemma 1.3.4. The variance of the sample mean is:

var(x̄n) =
1
n

Σ.

Proof. Since the components of the sample are i.i.d., we can apply the
bilinearity of covariance:

Note that cov(xi , xj) = 0 by indepen-
dence.

var

(
1
n

n

∑
i=1

xi

)
= cov

(
1
n

n

∑
i=1

xi,
1
n

n

∑
i=1

xi

)
= 1

n2 ∑
i,j

cov(xi, xj)

= 1
n2

n

∑
i=1

cov(xi, xi) =
1
n2

n

∑
i=1

var(xi) =
1
n2 · nΣ =

1
n

Σ

These two lemmas show that x̄n is a decent estimator of µ and its ← Exercise 1.4.25

distribution quickly concentrates around µ. To show one version of
this concentration phenomenon, recall the most basic probabilistic
inequality.
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Lemma 1.3.5 (Markov inequality). If Z is a non-negative random vari-
able, then

P(Z ≥ t) ≤ EZ
t

.

Proof. We have5 5 We use the fact that E1{X ∈ A} =
P(X ∈ A)

tP(Z ≥ t) = E[t1(Z ≥ t)] ≤ E[Z1(Z ≥ t)] ≤ EZ,

where the last inequality follows because Z ≥ 0.

Proposition 1.3.6. The sample mean satisfies the following concentration
inequality

P(∥xn − µ∥ ≥ t) ≤ tr(Σ)
nt2 .

Proof. Consider Y = ∥xn − µ∥ so that We use the fact that R = R1×1 and so
(xn − µ)⊤(xn − µ) = tr((xn − µ)⊤(xn −
µ)). Moreover tr(AB) = tr(BA)
whenever AB and BA are both well
defined.

Y2 = ∥xn − µ∥2 = (xn − µ)⊤(xn − µ) = tr((xn − µ)(xn − µ)⊤).

We have

EY2 = tr(E((xn − µ)(xn − µ)⊤)) = tr(var(xn)) = 1
n tr(Σ).

Thus, using the Markov inequality, we get

P(∥xn − µ∥ ≥ t) = P(Y2 ≥ t2) ≤ tr(Σ)
nt2 .

This is only a very simple concentration bound which works un-
der minimal assumptions. Much sharper bounds can be found if the
distribution of the sample is more structured.

Finally, we consider the bias of the sample covariance matrix.

Lemma 1.3.7. The sample covariance matrix Sn is a biased estimator of the
population covariance matrix Σ. Its expectation is:

E[Sn] =
n− 1

n
Σ.

Proof. Expanding Sn in terms of xi − µ and x̄n − µ, we get

Sn =
1
n

n

∑
i=1

((xi − µ)− (x̄n − µ)) ((xi − µ)− (x̄n − µ))⊤ .

Expanding this expression, we find:

Sn =
1
n

n

∑
i=1

(xi − µ)(xi − µ)⊤ − (x̄n − µ)(x̄n − µ)⊤.

Taking expectations, we get

E[Sn] =
1
n

n

∑
i=1

E[(xi − µ)(xi − µ)⊤]−E[(x̄n − µ)(x̄n − µ)⊤].
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Since E[(xi − µ)(xi − µ)⊤] = Σ and E[(x̄n − µ)(x̄n − µ)⊤] = Σ
n , we

have
E[Sn] = Σ− 1

n
Σ =

n− 1
n

Σ.

Simplifying, we find

E[Sn] =
n

n− 1
Σ− Σ

n− 1
=

n− 1
n

Σ.

This result shows that Sn is a biased estimator of Σ with E(Sn −
Σ) = − 1

n Σ, which is asymptotically negligible.

1.3.4 Correlation and Sample Correlation

In many cases, it is useful to measure the linear relationship between
the components of a random vector using the correlation rather than
the covariance. The correlation matrix normalizes the covariance
matrix so that all diagonal elements are equal to 1.

If Σ is a covariance matrix, we define the diagonal matrix DΣ =

diag(Σ11, . . . , Σmm). The correlation matrix R is given by:

R = D−1/2
Σ ΣD−1/2

Σ .

The elements of R are:

Rij =

1 if i = j,
Σij√
ΣiiΣjj

if i ̸= j.

The correlation matrix measures the strength of the linear relation-
ship between pairs of variables, with Rij taking values in the range
[−1, 1]. The value Rij = 1 indicates perfect positive correlation, while ← Exercise 1.4.26

Rij = −1 indicates perfect negative correlation.
The sample correlation matrix is defined in the same way as the

population correlation matrix, but using the sample covariance ma-
trix Sn instead of Σ. That is, the sample correlation matrix R̂ is given
by:

R̂ = D−1/2
Sn

SnD−1/2
Sn

,

where DSn is the diagonal matrix of the variances of the components
in the sample.

The correlation matrix is often preferred over the covariance ma-
trix when the variables have different units or scales, as it provides a
dimensionless measure of linear dependence.
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1.4 Exercises

In this section we provide some additional exercises that will help
you to refresh the basic concepts and practice the new ones.

Exercise 1.4.1. Consider a matrix A ∈ R3×3 and a vector x = (1, 2, 3) ∈
R3. Let

A =

1 2 3
0 1 4
5 6 0

 .

Compute Ax using both interpretations of matrix-vector multiplication: (i)
by taking inner products of rows with x , and (ii) as a linear combination of
the columns of A.

Exercise 1.4.2. Let x = (1, 2, 3) ∈ R3 and y = (4, 5, 6) ∈ R3. Compute
the matrix xy⊤. Argue why this matrix has rank one. Compute tr(xy⊤)
and x⊤y. Is it a coincidence that these two numbers are equal?

Exercise 1.4.3. Suppose A = uv⊤ is a rank-one matrix where u ∈ Rn

and v ∈ Rm . Show that for any vector x ∈ Rm , the vector Ax is a scalar
multiple of u. What does this imply about the image of A?

Exercise 1.4.4. Let A ∈ R3×2 be the matrix:

A =

1 2
0 3
4 0

 .

Compute the singular value decomposition (SVD) of A by finding orthog-
onal matrices U and V, and a diagonal matrix D such that A = UDV⊤.
(Also try to do it in R/Python.)

Exercise 1.4.5. Prove (1.1) by showing that the i-th entry of both expres-
sions for Ax is the same. Specifically, verify that the equality holds for each
coordinate i = 1, . . . , n.

Exercise 1.4.6. Let A ∈ Rn×m and x ∈ Rm. Suppose A represents a linear
transformation, and x is a unit vector (∥x∥ = 1). Explain the geometric
meaning of the vector Ax.

a) What can you say about Ax if A is orthogonal? (here m = n)

b) What if A is a diagonal matrix with positive entries?

Exercise 1.4.7. Show that eigenvalues defined in (1.3) can be equivalently
characterized as the roots of the characteristic polynomial det(A− λIm).

Exercise 1.4.8. Prove (1.2) by expanding both sides of the equation and
verifying that the (i, k)-th entries match for each i and k.



preliminaries 21

Exercise 1.4.9. Let A ∈ S2 be the matrix

A =

(
3 2
2 6

)
.

Compute the eigenvalues and eigenvectors of A by solving the characteristic
equation and verify the spectral theorem by expressing A as A = UΛU⊤,
where U is an orthogonal matrix of eigenvectors and Λ is the diagonal
matrix of eigenvalues.

Exercise 1.4.10. Let A ∈ Rn×m. Express the singular values of AA⊤ and
A⊤A in terms of the singular values of A.

Exercise 1.4.11. Let A ∈ Sm be a symmetric matrix with eigenvalues
λ1, . . . , λm.

a) Show that the largest eigenvalue of A can be characterized as λmax =

maxx:∥x∥=1 x⊤Ax.

b) Using this, prove that λmax ≥ 1
m tr(A).

Exercise 1.4.12. Prove that the covariance matrix Σ is always positive
semi-definite. Specifically, show that for any non-zero vector u ∈ Rm,
u⊤Σu ≥ 0. Explain why this result implies that all eigenvalues of a covari-
ance matrix are non-negative.

Exercise 1.4.13. Suppose you have the following data points in R2 :
(1, 2), (2, 4), (3, 6). Compute the sample mean vector and the sample co-
variance matrix for this dataset.

Exercise 1.4.14. Consider the matrix

A ∈ R5×5 : A =


1 2 3 4 5
2 3 4 5 6
3 4 5 6 7
4 5 6 7 8
5 6 7 8 9

 .

Use the singular value decomposition (SVD) to find a rank-2 approximation
of A. Express this approximation as a sum of two rank-one matrices.

Exercise 1.4.15. Show that A ∈ Sm is positive definite if and only if all its
eigenvalues are strictly positive. Hint: You can use Theorem 1.1.6.

Exercise 1.4.16. Let A ∈ Sm
+ be a symmetric positive definite matrix with

eigenvalues λ1, . . . , λm.

a) Prove that adding a small perturbation ϵI (where I is the identity matrix
and ϵ > 0 ) to A preserves positive definiteness.

b) How do the eigenvalues of A + ϵI relate to those of A ?
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Exercise 1.4.17. An antisymmetric matrix is a square matrix whose trans-
pose equals its negative (i.e., A⊤ = −A). Let A ∈ Rm×m be an antisym-
metric matrix, show that

• Im − A and Im + A are nonsingular matrices

• (Im − A)−1(Im + A) is an orthogonal matrix.

Exercise 1.4.18. Suppose A, B ∈ Sm
+. Show that (i) A + B ∈ Sm

+, (ii) for
every a, b > 0, B(aA + bB)−1 A ∈ Sm

+.

Exercise 1.4.19. Prove that the eigenvalues of an idempotent matrix are
either 0 or 1 .

Exercise 1.4.20. Show that X ∈ Rn×m is such that X⊤X is invertible, then
the eigenvalues of X(X⊤X)−1X⊤ are either 0 or 1.

Exercise 1.4.21. Consider the power series for the real exponential function,
given by

ex = ∑
k≥0

xk

k!
.

For a symmetric matrix A ∈ Sm, we want to apply the same idea to compute
“eA” as

eA := ∑
k≥0

Ak

k!
= Im + A +

A2

2!
+ · · · .

1. Use the spectral decomposition of A to find a simple expression for Ak in
terms of the spectral decomposition of A.

2. Use the previous point to come up with a simple simple expression for eA

in terms of the spectral decomposition of A.

3. Compute eA for

A =

[
2.2 0.4
0.4 2.8

]
.

Exercise 1.4.22. Show that if the eigenvalues of a symmetric matrix
A ∈ Sm are λ1, . . . , λm, then for any k ∈ N, the eigenvalues of Ak are
λk

1, . . . , λk
m. If A is invertible (i.e., all λi ̸= 0), the same result holds for all

integer powers k ∈ Z.

Exercise 1.4.23. Let X ∈ Rn×m. Show that the matrix X⊤X has rank less
than or equal to n. Conclude that it cannot be PD if n < m.

Exercise 1.4.24. Show that the matrix H = In − 1
n 1n1⊤n is symmet-

ric, idempotent (H2 = H), and projects any vector in Rn onto the space
orthogonal to the vector 1n.

Exercise 1.4.25. The mean squared error (MSE) of the sample mean is
defined as MSE = E∥x̄n − µ∥2. Show that if we allow the underlying
dimension m grow together with n then the MSE may not be negligible.
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Exercise 1.4.26. Prove that the correlation matrix R satisfies Rij ∈ [−1, 1]
for all i, j. Hint: One idea is to use the fact that R is positive semidefinite.

Exercise 1.4.27. Show that if Y = aX + b then corr(X, Y) = ±1.

Exercise 1.4.28. Consider the random vector X = (X1, X2, X3, X4) with
the following covariance matrix

Σ =


3 1 1 1
1 3 1 1
1 1 3 1
1 1 1 3

 .

Let the random vector Y = (Y1, Y2, Y3) be

Y1 = X1 − X2, Y2 = X1 + X2 − 2X3, Y3 = X1 + X2 + X3 − 3X4.

(a) Compute var(Y).

(b) Which components of Y are uncorrelated?

Exercise 1.4.29. Let X ∈ Rm be a random vector with mean vector µ and
covariance matrix Σ, also let A ∈ Rm×m be a fixed matrix. Prove that

E(X⊤AX) = tr(AΣ) + µ⊤Aµ.





2
Multivariate Normal Distribution

Multivariate normal distribution is the most important distribu-
tion in multivariate statistics. Here we give a relatively streamlined
treatment. If you are interested in more details, see Chapter 4 in 1. 1 Kanti V Mardia, John T Kent, and

Charles C Taylor. Multivariate analysis,
volume 88. John Wiley & Sons, 20242.1 Definition and basic properties

The multivariate normal distribution is fundamental in multivariate
statistics due to several key reasons:

1. It is highly tractable: closed under linear transformations, condi-
tioning, and marginalization.

2. It provides a good approximation for sample distributions via the
Central Limit Theorem.

3. It frequently arises naturally in the modelling of physical phe-
nomena. See, for example, the work of Gauß in the context of
measurement errors, the work of Einstein on Brownian motion,
Galton board, and many other examples.

As a result, the multivariate Gaussian distribution appears in many
generative models, such as (Bayesian) linear regression, Gaussian
Mixture Models, Probabilistic Principal Component Analysis (PPCA),
Factor Analysis, Linear Dynamical Systems, Gaussian Processes,
Gaussian Conditional Random Fields, autoencoders, etc.

2.1.1 Recall Univariate Gaussian

Recall that X ∼ N(µ, σ2) has the density

fX(x) =
1√
2πσ

e−
1
2
(x−µ)2

σ2 , x ∈ R.

If X ∼ N(µ, σ2) then EX = µ and var(X) = σ2.
If Xj ∼ N(µj, σ2

j ) for j = 1, . . . , m are independent, then the vector
X = (X1, . . . , Xm) has the density2 for x = (x1, . . . , xm) 2 Recall that if X has independent

entries then its density is the product of
densities of the individual entries.
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fX(x) =
m

∏
j=1

1√
2πσj

e
− 1

2
(xj−µj)

2

σ2
j =

1
(2π)m/2 (det(Σ))−1/2e−

1
2 (x−µ)⊤Σ−1(x−µ), x ∈ Rm,

where Σ = diag(σ2
1 , . . . , σ2

m). Here we used the fact that the deter-
minant of a diagonal matrix is simply the products of its diagonal
entries.

2.1.2 Definition of Multivariate Normal

The vector X = (X1, . . . , Xm) is said to have a multivariate normal
distribution with mean vector µ ∈ Rm and covariance matrix Σ ∈ Sm

+

if it has the density

fX(x) =
1

(2π)m/2 (det(Σ))−1/2e−
1
2 (x−µ)⊤Σ−1(x−µ). (2.1)

We denote this distribution by Nm(µ, Σ). The random vector Z ∼
Nm(0, Im) is called standard normal and its density if

Note that ∥z∥2 = z⊤z.
ϕ(z) =

1
(2π)m/2 e−

1
2 ∥z∥

2
.

It is extremely useful to think about any multivariate normal distri-
bution as an affine transformation of the standard normal distribu-
tion.

Proposition 2.1.1. If Z ∼ Nm(0, Im) then X = µ + Σ1/2Z ∼ Nm(µ, Σ).

Proof. Recall the formula for the change of variables: If Z is a ran-
dom vector with density pz and X = G(Z), with G bijective and
differentiable, then the density of X is

px(x) = pz(G−1(x))|det∇G−1|.

We apply this in our situation, where G(z) = µ + Σ1/2z and
G−1(x) = Σ−1/2(x− µ). In this case ∇G−1 = Σ−1/2 and so

px(x) = ϕ(Σ−1/2(x− µ))(det Σ)−1/2,

which gives exactly the formula in (2.1).
← Exercise 2.7.3

It is easy to check that if X ∼ Nm(µ, Σ) then

EX = µ and var(X) = Σ.

This could be derived by computing the corresponding integrals, e.g.
EX =

∫
Rm x fX(x)dx. However, working with Gaussian distributions

we should get accustomed to more algebraic proofs. For example,
show first that if Z ∼ Nm(0, Im) then EZ = 0 and var(Z) = Im, which
can be directly inferred from the univariate result and by indepen-
dence of the components of Z. To conclude the general result, we can
then use Lemma 1.2.2, Lemma 1.2.3, and Proposition 2.1.1.
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Figure 2.1: Contour plot of the two-
dimensional density of the Gaussian
distribution with mean (0, 0) and
correlation ρ = 0.6.
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2.1.3 Geometric Interpretation

The contours of the density fX in (2.1) are ellipsoids3 (c.f. Figure 2.1.2) 3 Recall that an ellipsoid in Rm is a
quadratic surface which, for fixed
λ1, . . . , λm, c, is defined by the equation

y2
1

λ1
+ · · ·+ y2

m
λm

= c2.

defined by the set of points x such that

(x− µ)⊤Σ−1(x− µ) = c2.

To see this explicitly, consider the spectral decomposition Σ = UΛU⊤

so that Σ−1 = UΛ−1U⊤. Define a new variable y = U⊤(x− µ) (an
affine change of coordinates by translation and rotation), and then:

(x− µ)⊤Σ−1(x− µ) = y⊤Λ−1y =
m

∑
j=1

y2
j

λj
.

Hence, the contours are ellipses aligned with the eigenvectors of Σ,
with axis lengths proportional to the square roots of the eigenvalues
of Σ.

2.1.4 Mahalanobis Distance

Fix a covariance matrix Σ. An important concept in multivariate
normal theory is the Mahalanobis distance If Σ = Im, we recover the Euclidean

distance.

∥x− y∥Σ =
√
(x− y)⊤Σ−1(x− y).

This distance takes into account the covariance structure of the data. Recall that χ2
m has stochastic represen-

tation Z2
1 + . . . + Z2

m, where Zi are i.i.d.
N(0, 1).Proposition 2.1.2. If X ∼ Nm(µ, Σ), then (X− µ)⊤Σ−1(X− µ) ∼ χ2

m.

We leave the proof as an exercise. ← Exercise 2.7.13

2.1.5 Characteristic Function

If X is a random variable then the characteristic function of X is a
function defined by ϕX(s) = EeisX , where i is the imaginary unit
(i2 = −1). For a random vector X = (X1, . . . , Xm) in Rm we define the
characteristic function as

ϕX(t) = Eeit⊤X , where t = (t1, . . . , tm).

One of the important properties of characteristic functions is that
they define the underlying probability distribution uniquely.

Recall that the characteristic function of Z ∼ N(0, 1) is:

ϕZ(s) := E[eisZ] = e−s2/2.

From this, we can derive the characteristic function for X = µ + σZ ∼
N(µ, σ2):

ϕX(s) = E[eisX ] = eisµ−σ2s2/2. (2.2)
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For the multivariate case, let Z = (Z1, . . . , Zm) ∼ Nm(0, Im). Then:

ϕZ(t) = E[eit⊤Z] =
m

∏
j=1

EeitjZj =
m

∏
j=1

e−
1
2 t2

j = e−
1
2 ∥t∥

2
.

Thus, for X = µ + Σ1/2Z, we get:

ϕX(t) = Eeit⊤(µ+Σ1/2Z) = eit⊤µEei(Σ1/2t)⊤Z = eit⊤µϕZ(Σ1/2t) = eit⊤µ− 1
2 t⊤Σt,

(2.3)
which gives the formula for the characteristic function of the multi-
variate normal distribution for general µ and Σ.

2.1.6 Alternative Characterization of the Gaussian distribution

The characteristic function provides an alternative characteriza-
tion of the multivariate normal distribution. Specifically, we say
that X ∼ Nm(µ, Σ) if, for every u ∈ Rm, the linear combination
u⊤X ∼ N(u⊤µ, u⊤Σu).

To prove that this defines the same distribution, let ϕX(t) denote
the characteristic function of the vector X. Since u⊤X ∼ N(u⊤µ, u⊤Σu),
by (2.2), for any u ∈ Rm, we have:

ϕu⊤X(s) = eis(u⊤µ)− 1
2 (u
⊤Σu)s2

.

On the other hand, This is the crucial observation here.

ϕu⊤X(s) = E[eisu⊤X ] = ϕX(su).

Comparing these two expressions, we conclude that ϕX(t) = eit⊤µ− 1
2 t⊤Σt

as in (2.3), which proves the claim.

2.2 Linear Transformation and Marginal Distribution

By Proposition 2.1.1, if Z ∼ Nm(0, Im) then µ + Σ1/2Z ∼ Nm(µ, Σ). In
this section, we generalize this result. More generally, for any matrix
A ∈ Rp×m and vector b ∈ Rp, if X ∼ Nm(µ, Σ), then the linear
transformation AX + b is distributed as:

AX + b ∼ Np(Aµ + b, AΣA⊤). (2.4)

This again follows easily by using the characteristic function. Let
Y = AX + b then

ϕY(s) = Eeis⊤(AX+b) = eis⊤bϕX(A⊤s) = eis⊤(Aµ+b)− 1
2 s⊤AΣA⊤s,

which is the characteristic function of the Gaussian distribution with
mean Aµ + b and covariance AΣA⊤.
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Consider now a subvector X′ = (X1, . . . , Xp) of the vector X =

(X1, . . . , Xp, . . . , Xm) with p < m. We have X′ = AX where A =

[Ip|0p×(m−p)] ∈ Rp×m, where 0p×(m−p) denotes the matrix of zeros
with p rows and m − p columns. Using (2.4), we get that X′ has
Gaussian distribution with mean µ′ = Aµ and covariance Σ′ =
AΣA⊤. Note that µ′ = (µ1, . . . , µp) and Σ′ is the submatrix of Σ
corresponding to rows/columns in {1, . . . , p}.

More generally, for any subset I ⊆ {1, . . . , p} denote by XI =

(Xi)i∈I the subvector of X with coordinates indexed by I. Similarly,
by ΣI,I denote the submatrix of Σ with rows/columns in I. We get
the following result.

Proposition 2.2.1. Suppose X ∼ Nm(µ, Σ) and let I ⊆ {1, . . . , m}. Then
the distribution of XI is Gaussian with mean µI and covariance ΣI,I .

← Exercise 2.7.14

We now discuss an important result regarding independence. Re-
call that if Xi ⊥⊥Xj then cov(Xi, Xj) = 0. The reverse conclusion is
typically not true but it is true for multivariate Gaussian distribu-
tions. Indeed, suppose X ∼ Nm(µ, Σ) and suppose that Σij = 0 for
some i, j. By Proposition 2.2.1, the marginal distribution of (Xi, Xj) is
Gaussian with mean (µi, µj) and covariance

ΣI,I =

[
Σii 0
0 Σjj

]
.

Since ΣI,I is diagonal, so is its inverse, and so the joint density of
(Xi, Xj) factorizes, showing that Xi ⊥⊥Xj. Indeed, this density is
simply

fij(xi, xj) =
1

2π
√

ΣiiΣjj
e
− 1

2Σii
(xi−µi)

2− 1
2Σjj

(xj−µj)
2

=

(
1√

2πΣii
e
− 1

2Σii
(xi−µi)

2
)(

1√
2πΣjj

e
− 1

2Σjj
(xj−µj)

2
)

.

More generally, we have the following result:

Lemma 2.2.2. Suppose X ∼ Nm(µ, Σ). Then AX⊥⊥ BX if and only if
AΣB⊤ = 0.

The proof is left as an exercise. ← Exercise 2.7.15

2.3 Conditional Distribution and Conditional independence

In the previous section we saw that Gaussian distributions are closed
under taking margins. In this section we show that they are also
closed under conditioning. We then discuss conditional indepen-
dence in Gaussian distributions.
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2.3.1 Conditional distribution

Suppose X ∼ Nm(µ, Σ). Split X = (XA, XB) into a p-dimensional
subvector XA and a (m− p)-dimensional subvector XB. This induces For example, X = (X1, X2, X3, X4), A =

{1, 3}, B = {2, 4} so that XA = (X1, X3)
and XB = (X2, X4).

corresponding splits in the mean vector µ = (µA, µB) and the covari-
ance matrix:

Σ =

[
ΣA,A ΣA,B

ΣB,A ΣB,B

]
.

Theorem 2.3.1. The marginal distribution of XA is Gaussian with mean
µA and covariance ΣA,A. The conditional distribution of XB|XA = xA is
Gaussian with mean:

E(XB | XA = xA) = µB + ΣB,AΣ−1
A,A(xA − µA),

and covariance:

var(XB|XA = xA) = ΣB,B − ΣB,AΣ−1
A,AΣA,B.

Proof. The first part was proved in Proposition 2.2.1. For the second
part, define the new variable XB·A := XB − ΣB,AΣ−1

A,AXA, which is
Gaussian as an affine function of a Gaussian vector. Computing the
expectation and the covariance matrix, it can be shown that

XB·A ∼ Nm−p(µB − ΣB,AΣ−1
A,AµA, ΣB,B − ΣB,AΣ−1

A,AΣA,B).

Note that

cov(XB·A, XA) = cov(XB, XA)− ΣB,AΣ−1
A,AΣA,A = ΣB,A − ΣB,A = 0

and so XB·A⊥⊥XA. Thus, we can decompose XB as a sum of two
independent terms

XB = XB·A + ΣBAΣ−1
AAXA.

In particular, given XA = xA, the conditional distribution of XB is
Gaussian with mean and covariance as stated in the theorem.

2.3.2 Conditional Independence

Let A = {i, j} and consider splitting the vector X into XA and XB,
where B = {1, . . . , m}∖ A. By Theorem 2.3.1, the conditional covari-
ance matrix of XA given XB is:

ΣAA − ΣABΣ−1
BBΣBA ∈ S2

+.

The variables Xi and Xj are conditionally independent given the
variables in XB if and only if the conditional covariance matrix has a
zero off-diagonal entry. Equivalently, we have Σij = ΣiBΣ−1

BBΣBj. This
leads to several useful equivalent conditions:
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Proposition 2.3.2. Suppose X ∼ N(0, Σ). Fix i, j ∈ {1, . . . , m} and let
B = {1, . . . , m}∖ {i, j}. The following conditions are equivalent:

(i) Xi ⊥⊥Xj|XB,

(ii) Σij = ΣiBΣ−1
BBΣBj,

(iii) Kij = 0, where K = Σ−1 is the precision matrix.

(iv) The linear regression coefficient vector βi·B∪{j} = Σi,B∪{j}Σ
−1
B∪{j},B∪{j}

has a zero entry in the j-th index.

We are not going to prove this in class but the proof is relatively
elementary with a bit of annoying bookkeeping. We provide it for
your convenience.

Proof. The equivalence of (i) and (ii) is clear from the discussion
above. For the other implications we rely on standard formulas for
block matrices. To show equivalence with (iii) we use the formula
for the inverse of a block matrix that we develop independently in
Section 2.3.3. From the formula it follows that

KA,A = (ΣA,A − ΣA,BΣ−1
B,BΣB,A)

−1. (2.5)

We have (ii) if and only if ΣA,A − ΣA,BΣ−1
B,BΣB,A is diagonal. By (2.5),

this is equivalent to KA,A being diagonal, which is equivalent to (iii).
For the equivalence between (iii) and (iv) use Proposition 2.3.3 again
to conclude that

Ki,B∪{j} = −KiiΣi,B∪{j}(ΣB∪{j},B∪{j})
−1.

Since Kii > 0, then Kij = 0 if and only if the j-th entry of Σi,B∪{j}Σ
−1
B∪{j},B∪{j}

is zero.

The relationship between conditional independence and zeros in
the precision matrix K is fundamental in Gaussian graphical models,
which we will cover later in this course; see Chapter 8.

2.3.3 Partitioned Inverse*

Let X ∼ N(0, Σ) and consider the partition of X into two subvectors
XA and XB. Set

K = Σ−1 =

[
KA,A KA,B

KB,A KB,B

]
,

where K is the precision matrix.
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Proposition 2.3.3. We have the following formulas for the blocks of the
precision matrix in terms of the blocks of Σ:

KA,A = (ΣA,A − ΣA,BΣ−1
B,BΣB,A)

−1,

KA,B = −KA,AΣA,BΣ−1
B,B,

KB,B = Σ−1
B,B + Σ−1

B,BΣB,AKA,AΣA,BΣ−1
B,B

Proof. We verify that these formulas satisfy ΣK = Im. For instance,
consider multiplying the first block row of Σ by the first block col-
umn of K:

ΣA,AKA,A +ΣA,BKB,A = ΣA,AKA,A−ΣA,BΣ−1
B,BΣB,AKA,A = (ΣA,A−ΣA,BΣ−1

B,BΣB,A)KA,A = I.

Similarly, multiplying the first block row of Σ by the second block
column of K gives:

ΣA,AKA,B + ΣA,BKB,B = −ΣA,AKA,AΣA,BΣ−1
B,B + ΣA,BΣ−1

B,B + ΣA,BΣ−1
B,BΣB,AKA,AΣA,BΣ−1

B,B

= −(ΣA,A − ΣA,BΣ−1
B,BΣB,A)KA,AΣA,BΣ−1

B,B + ΣA,BΣ−1
B,B

= 0.

The remaining cases can be checked similarly.

This partitioned inverse result is useful in various scenarios, such
as Gaussian graphical models and Bayesian networks. We already
saw an application in the previous subsection.

2.4 Estimation of Parameters

Suppose we have data X ∈ Rn×m, where the rows xi ∈ Rm are
i.i.d. samples from Nm(µ, Σ). A natural way to estimate µ and Σ is
through the Maximum Likelihood Estimator (MLE). In this section,
we show that the MLEs µ̂ and Σ̂ satisfy:

µ̂ = x̄n =
1
n

n

∑
i=1

xi,

and

Σ̂ = Sn =
1
n

n

∑
i=1

(xi − x̄n)(xi − x̄n)
⊤.

2.4.1 The Likelihood Function

Let f (x) denote the density of Nm(µ, Σ) as given in (2.1). After taking
logs, we get

log f (x) = −m
2 log(2π) + 1

2 log det(Σ−1)− 1
2 (x− µ)⊤Σ−1(x− µ).

The log-likelihood of the data x1, . . . , xn is:

ℓ(µ, Σ) =
n

∑
i=1

log f (xi) = const+
n
2

log det(Σ−1)− 1
2

n

∑
i=1

(xi−µ)⊤Σ−1(xi−µ).
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2.4.2 Optimize over µ

Using basic calculus, the derivative of the log-likelihood with respect
to µ is:4 4 Verify that ∇y(b⊤y) = b and

∇yy⊤Ky = 2Ky.

← Exercise 2.7.18
∇µℓ(µ, Σ) = Σ−1

(
n

∑
i=1

xi − nµ

)
.

Setting this equal to zero gives the MLE for µ:

µ̂ =
1
n

n

∑
i=1

xi = x̄n.

We get this result irrespective of what Σ is as the only thing we used
is that Σ is invertible5. 5 Recall that ker(A) = {x : Ax = 0} and

A is invertible if and only if ker(A) =
{0}.

2.4.3 Optimize over Σ

Knowing that µ̂ = x̄n, we now optimize ℓ(x̄n, Σ) over Σ. For this,
we first rewrite ℓ(x̄n, Σ) in a suitable form. It is convenient to list the
following useful observation.

Useful observation: We know that the trace satisfies tr(AB) = tr(BA)

whenever both multiplications are well defined. In particular, for any
two x, y ∈ Rm we have This can be checked easily directly as

tr(xy⊤) = ∑i(xy⊤)ii = ∑i xiyi = x⊤y.
x⊤y = tr(x⊤y) = tr(yx⊤),

where yx⊤ ∈ Rm×m. Using this, we get Note that the trace is a linear function:
tr(aA + bB) = a tr(A) + b tr(B).

ℓ(x̄n, Σ) = const + n
2 log det(Σ−1)− 1

2

n

∑
i=1

tr((xi − x̄n)(xi − x̄n)
⊤Σ−1)

= const + n
2 log det(Σ−1)− n

2 tr( 1
n

n

∑
i=1

(xi − x̄n)(xi − x̄n)
⊤Σ−1)

= const + n
2 log det(Σ−1)− n

2 tr(SnΣ−1),

where Sn = 1
n ∑n

i=1(xi − x̄n)(xi − x̄n)⊤ is the sample covariance
matrix.

To optimize ℓ(µ̂, Σ) over Σ, we rewrite the log-likelihood in terms
of K = Σ−1:

ℓ(µ̂, K) = const +
n
2

log det(K)− n
2

tr(SnK). (2.6)

We are not going to show this formally here but this function is a
strictly concave function of K = Σ−1. In particular, every local
maximum is a global maximum and if a global optimum exists, it
is unique.
Useful observation: Another useful observation is that for any two
A, B ∈ Sm

tr(AB) =
m

∑
i,j=1

AijBij.
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In particular, this defines an inner product on Sm, which is called the
trace inner product6. 6 In the literature it is common to de-

note ⟨A, B⟩ := tr(AB). More generally,
if A, B ∈ Rn×m then tr(AB⊤) also
defines an inner product.

Using this, we easily check that ∇K tr(SnK) = Sn. It can be also
shown that ∇K log det(K) = K−1 = Σ; for a formal derivation check
p. 641 here. Thus, taking the derivative of ℓ(x̄n, K) with respect to K
and setting it equal to zero gives the MLE for Σ: Σ̂ = Sn as long as Sn

is positive definite. In the case when n < m, the matrix Sn cannot be
positive definite7 and so the MLE does not exist. 7 Sn = 1

n X⊤HX has rank at most n and
n < m.

2.4.4 Independence of x̄n and Sn

If x1, . . . , xn is a sample from N(µ, Σ) then x̄n ∼ N(µ, 1
n Σ) and the

sample covariance matrix Sn is another random quantity of interest.

Proposition 2.4.1. In the Gaussian sample, the sample mean x̄n = 1
n X⊤1n

and the sample covariance Sn = 1
n X⊤HX are independent.

Proof. Since Sn = 1
n X⊤HX = 1

n (HX)⊤(HX), it is enough to show that Recall H = In − 1
n 1n1⊤n ∈ S

m
+ and

H2 = Hx̄n is independent of HX. Since both x̄n and HX have Gaussian distri-
butions, independence can be checked by computing the covariance.
Since the k-th row of HX is xk − x̄n we check

cov(x̄n, xk − x̄n) = cov(x̄n, xk)− var(x̄n) = 1
n var(xk)− 1

n Σ = 0.

2.5 Hotelling’s T2 Distribution*

Hotelling’s T2 distribution is a multivariate extension of the univari-
ate Student’s t-distribution. It is particularly useful in testing hy-
potheses about the mean in a single population or equality of means
in two multivariate populations.

2.5.1 Testing equality of means in two univariate populations

Recall that if you have a pair of samples xi, i = 1, . . . , n from N(µx, σ2)

and yi, i = 1, . . . , m from N(µy, σ2) then we can test H0 : µx = µy us- Note that we assume that the variance
in both distributions is the same.ing the two-sample t-test. To see this, define

S =
1

n + m− 2
[

n

∑
i=1

(xi− x̄)2 +
m

∑
j=1

(yj− ȳ)2] =
n− 1

n + m− 2
S1 +

m− 1
n + m− 2

S2

to be the pooled sample variance estimator of σ2. Define the test
statistic

t =
x̄− ȳ√

S( 1
n + 1

m )
. (2.7)

To analyze its distribution, we first formulate the following lemma.

https://stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
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Lemma 2.5.1. If x1, . . . , xn is a random sample from N(µ, σ2) then
1

σ2 ∑n
i=1(xi − x̄)2 ∼ χ2

n−1.

Proof. Recall that H = In − 1
n 1n1n is a symmetric PSD matrix satis-

fying H2 = H. Let x = (x1, . . . , xn) and recall that Hx has entries As many proofs in multivariate statis-
tics, this one combines some basic
results in linear algebra with properties
of the Gaussian distribution.

xi − x̄. It follows that ∑n
i=1(xi − x̄)2 = x⊤Hx. Let H = UΛU⊤. Since

H is a projection matrix, Λ = Λ2 and so the diagonal entries of Λ
are either 0 or 1. Since rank(H) = n− 1 it follows that Λ11 = 0 and
Λii = 1 for i = 2, . . . , n− 1. Define z = U⊤x. Since x ∼ Nn(µ1, σ2 In),
it follows that z ∼ Nn(µU⊤1, σ2 In). Moreover, U⊤1 =

√
ne1, where

e1 = (1, 0, . . . , 0). Denote zn−1 = (z2, . . . , zn) obtained from z by
dropping the first coordinate. Then, in particular,

1
σ

zn−1 ∼ Nn−1(0, In−1).

We have
1
σ2 x⊤Hx =

1
σ2 z⊤Λz =

1
σ2 z⊤n−1zn−1

and we already noted that z⊤n−1zn−1 ∼ χ2
n−1.

Proposition 2.5.2. Under H0, the statistic t, defined in (2.7), has t-Student
distribution with n + m− 2 degrees of freedom.

Proof. Recall that t-student distribution with r degrees of freedom
has stochastic representation

U⊥⊥V denotes independence of U, Vtr =
U√
V/r

with U ∼ N(0, 1), V ∼ χ2
r , U⊥⊥V.

Recall that x̄ ∼ N(µx, σ2/n), ȳ ∼ N(µy, σ2/m) and so, by indepen-
dence, under H0

x̄− ȳ ∼ N(0, σ2( 1
n + 1

m )) and so U :=
x̄− ȳ

σ
√

1
n + 1

m

∼ N(0, 1).

Define V = n+m−2
σ2 S and note that

t =

x̄−ȳ

σ

√
1
m+ 1

n√
1

σ2 S
=

U√
V

m+n−2

.

We have

V =
n + m− 2

σ2 S =
n− 1

σ2 S1 +
m− 1

σ2 S2.

By Lemma 2.5.1, n−1
σ2 S1 ∼ χ2

n−1 and m−1
σ2 S2 ∼ χ2

m−1. Moreover, both
these random variables are independent. It follows that V ∼ χ2

m+n−2,
which concludes the proof.
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2.5.2 Hotelling distribution

The Hotelling distribution describes the behavior of Hotelling’s T2

-statistic, a key tool in multivariate hypothesis testing. It generalizes
the Student’s t-distribution to the multivariate case and is commonly
used to test hypotheses about the mean vector of a multivariate nor-
mal population.

Although we do not derive the Hotelling’s distributions from
the first principles here, we link it to another standard distribution
called the F-distribution. Recall that if X1 ∼ χ2

d1
and X2 ∼ χ2

d2
are

two independent chi-squared random variables, then the random
variable: Fd1,d2 = (X1/d1)

(X2/d2)
follows an F -distribution with d1 and d2

degrees of freedom.

Figure 2.2: The density of Fd1 ,d2 for
different combinations of d1, d2.

The Hotelling’s T2(d1, d2) is a simple rescaling of the F-distribution.

Definition 2.5.3. The Hotelling’s distribution T2(d1, d2) satisfies

T2(d1, d2) =
d1d2

d2 − d1 + 1
Fd1,d2−d1+1.

Given a sample x1, . . . , xn from Nm(µ, Σ) with n ≥ m (so that Sn is
invertible) define the following statistics:8 8 Recall that (x̄n − µ)⊥⊥ Sn.

D2 = (n− 1)(x̄n − µ)⊤S−1
n (x̄n − µ),

Remark 2.5.4. Note that D2 is invariant under nonsingular linear trans-
formations x 7→ Ax + b.

Theorem 2.5.5. We have D2 ∼ T2(p, n− 1).

We omit the proof. If you are interested in details, check Corol-
lary 4.5.6 in 9. 9 Kanti V Mardia, John T Kent, and

Charles C Taylor. Multivariate analysis,
volume 88. John Wiley & Sons, 2024

2.5.3 Multivariate Test for Equality of Means

Consider now a sample x1, . . . , xn from Np(µx, Σ) and a sample
y1, . . . , ym from Np(µy, Σ). We can extend the ideas from the uni-
variate case to define a multivariate test. Let

S =
1

n + m− 2
[
nSx + mSy

]
,

where Sx and Sy are the sample covariance matrices for the two sam-
ples10. Define the test statistic: 10 Note that S is an unbiased estimate of

Σ.

D2 = (x̄n − ȳm)
⊤S−1(x̄n − ȳm).

Theorem 2.5.6. Under H0 : µx = µy, we have

nm
n+m D2 ∼ T2(p, n + m− 2).
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For details, if you are interested, see Theorem 4.6.1 in 11. 11 Kanti V Mardia, John T Kent, and
Charles C Taylor. Multivariate analysis,
volume 88. John Wiley & Sons, 2024

In practice, we can implement this test in R using the function
HotellingsT2(X, Y) in the package ICSNP. Note that the assumption
of equal covariance matrices for the two populations can sometimes
be problematic, but when the assumption approximately holds, this
multivariate test is often more powerful than performing a series of
univariate tests.

2.6 Gaussian Processes in Multivariate Statistics

Gaussian Processes (GPs) are a powerful tool in statistics and ma-
chine learning for modeling continuous, multivariate data. A Gaus-
sian Process is a generalization of the Gaussian distribution over a
finite set of points to a distribution over functions. In this section we
give only basic definitions and some practical examples. We omit
many important computational aspects. Our goal is simply to illus-
trate that very basic results on the multivariate normal distribution,
lead to powerful techniques.

2.6.1 Definition of a Gaussian Process

A Gaussian Process on the set T can be defined as follows:

Definition 2.6.1. A Gaussian Process on a set T is a collection of random
variables XT := (Xt)t∈T such that for any n ∈ N and any collection of
points t1, . . . , tn in T, the vector (Xt1 , . . . , Xtn) has a multivariate normal
distribution.

Effectively a Gaussian process XT is defined by specifying the
mean function m : T → R such that m(t) = EXt and the kernel
function k : T × T → R such that k(t, t′) = cov(Xt, Xt′).

Although T can be pretty much arbitrary, we will assume that it is
a metric space; often T = Rm.

The kernel function must be symmetric (k(t, t′) = k(t′, t)) and it
satisfies that for all n ∈ N and all t1, . . . , tn ∈ T the matrix Σ ∈ Sn

defined by Σij = k(ti, tj) is positive definite. Such functions are very
well studied in mathematics and their theory is very rich.

The choice of the kernel function k(t, t′) plays a crucial role in de-
termining the properties of functions sampled from the GP, such as
smoothness and periodicity. Typically the kernel functions k(x, x′)
considered are decreasing functions of the distance ∥x− x′} between
x and x′. Roughly speaking, if the kernel function is such that the
correlations between points drops slowly with the distance, the re-
alizations of the corresponding Gaussian process will be relatively
smooth.
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Popular choices include the squared exponential kernel and the
Matérn kernel. If T ⊆ Rm then the exponential kernel is defined as

Figure 2.3: The exponential kernel as a
function of r = ∥x− x′∥ for different
values of ℓ and σ = 1.

ke(x, x′) = σ2 exp
(
− 1

ℓ ∥x− x′∥
)

,

The exponential kernel generates functions that are not differentiable.
This makes it suitable for modeling rough or jagged processes.

Matérn kernel is defined as

Figure 2.4: The Matérn kernel as a
function of r = ∥x− x′∥ for different
choices of the hyperparameters.

km(x, x′) = σ2 21−ν

Γ(ν)

(√
2ν
∥x− x′∥

ℓ

)ν

Kν

(√
2ν
∥x− x′∥

ℓ

)
,

where ν > 0 controls the smoothness of the kernel, ℓ > 0 is the length
scale, controlling the distance over which points are correlated, σ2 >

0 is the signal variance, Kν is the modified Bessel function of the
second kind of order ν, and Γ(·) is the gamma function.

2.6.2 Example: Gaussian Processes for Spatial Data in R

Gaussian Processes are commonly applied in spatial statistics to
model observations that are correlated across geographic locations. In
this example, we use Gaussian Processes to model temperature data
observed at various locations, capturing spatial dependencies across
the region.

Suppose we observe temperatures across a grid of spatial loca-
tions. We can model the temperature at any given location as a sam-
ple from a Gaussian Process with a spatial covariance structure, such
as the exponential or Matérn kernel, which are popular choices for
spatial modeling.

# Load required packages

library(geoR) # For spatial data simulation

library(fields) # For spatial GP modeling and visualization

# Set up a grid of locations

set.seed(42)

n <- 100

locs <- expand.grid(x = seq(0, 1, length.out = n), y = seq(0, 1,

length.out = n))↪→

# Generate spatially correlated temperature data

true_cov <- exp(-rdist(locs) / 2) # Exponential covariance function

temp <- t(chol(true_cov)) %*% rnorm(n * n)

# Plot the spatial data

image(matrix(temp, n, n), main = "Simulated Temperature Data",

xlab = "Longitude", ylab = "Latitude")
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Figure 2.5: Simulated Gaussian Process
on a 2D grid with the exponential
kernel.

In this code:

• We set up a grid of 1002 = 10,000 locations over [0, 1]2.
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• We generate spatially correlated temperature data with an expo-
nential covariance function.

In simpler terms, the grid defined points xij ∈ [0, 1]2 for i, j =

1, . . . , 100. Now a big covariance matrix can be constructed whose en-
tries correspond to the covariance between the sites xij and xkl . Now
we generate a single distribution from this big 10000-dimensional
Gaussian distribution. The resulting simulated temperature distribu-
tion is given in Figure 2.5.

Remark 2.6.2. Handling a large Gaussian distribution as described above
can be computationally costly, so in practice, the sample is generated entry
by entry by leveraging the properties of Gaussian distributions in a smart
way.

Next, we use Gaussian Processes to make predictions about the
temperature at unobserved locations by fitting a GP model to our
simulated data.

On a high level this is quite straightforward.

1. Add to the earlier grid any additional points you would like to
include in the predictions.

2. Using the kernel function, compute the joint distribution of the
training and test data.

3. Then, using the standard formulas, compute the conditional dis-
tribution of the test data given the training data (this is all Gaus-
sian!).

The conditional mean gives you predictions and conditional covari-
ance helps you quantify uncertainty.

In practice, you would also like to learn hyperparameters of the
kernel function. This could be done using the maximum likelihood
approach. For computational reasons often working with Gaussian
Processes, we rely on Bayesian statistics. There are some standard
packages to make this more convenient. Consider for example the
following code.

library(spBayes)

# Fit a Gaussian Process model with the correct covariance model

fit <- spLM(temp ~ 1,

coords = as.matrix(locs),

starting = list("phi" = 1, "sigma.sq" = 1, "tau.sq" = 0.1),

tuning = list("phi" = 0.1, "sigma.sq" = 0.1, "tau.sq" = 0.1),

priors = list("phi.Unif" = c(0.01, 1),

"sigma.sq.IG" = c(2, 1),

"tau.sq.IG" = c(2, 1)),

cov.model = "exponential", # Specify the covariance model

n.samples = 1000)
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# Predict at new locations

new_locs <- expand.grid(x = seq(0, 1, length.out = 50), y = seq(0, 1,

length.out = 50))↪→

pred <- spPredict(fit, pred.coords = as.matrix(new_locs))

# Visualize the predictions

image(matrix(pred$p.y.predictive, 50, 50),

main = "Predicted Temperature Data",

xlab = "Longitude",

In this step:

• We fit a Gaussian Process model to the spatial temperature data
using the spLM function from the spBayes package.

• We make predictions at a set of new locations and visualize the
GP-based temperature predictions.

2.6.3 Example: Nonparametric regression using GPs*

In machine learning, Gaussian Processes are often used for non-
parametric regression. This is outside of scope of this class so we
provide this example only to complete the picture but it can be safely
omitted.

Consider the following code. Here, unlike in the previous exam-
ple, we code all relevant formulas from scratch.

# Load required libraries

library(MASS) # For multivariate normal sampling

library(ggplot2) # For fancy plotting

# Define a squared exponential (RBF) kernel

rbf_kernel <- function(x, y, length_scale = 1, sigma_f = 1) {

sigma_f^2 * exp(-0.5 * (outer(x, y, "-")^2) / length_scale^2)}

# Generate training data from noisy sine function

set.seed(42)

n_train <- 10

x_train <- seq(0, 10, length.out = n_train)

y_train <- sin(x_train) + rnorm(n_train, sd = sqrt(0.1))

# Define test points where predictions are needed

x_test <- seq(0, 10, length.out = 100)

# Compute covariance matrices

length_scale <- 1 # Length scale of the RBF kernel

sigma_f <- 1 # Signal variance

sigma_n <- sqrt(0.1) # Noise variance

K <- rbf_kernel(x_train, x_train, length_scale, sigma_f) + diag(sigma_n^2,

n_train)↪→

K_s <- rbf_kernel(x_train, x_test, length_scale, sigma_f)

K_ss <- rbf_kernel(x_test, x_test, length_scale, sigma_f)

# Predictive mean and covariance
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K_inv <- solve(K)

mu_s <- t(K_s) %*% K_inv %*% y_train # Transpose K_s for predictive mean

cov_s <- K_ss - t(K_s) %*% K_inv %*% K_s # Correct covariance calculation

# Sample from the posterior predictive distribution

n_samples <- 5

y_samples <- mvrnorm(n_samples, mu_s, cov_s)

# Create a data frame for the test points and GP predictions

gp_data <- data.frame(x = x_test,GP_Mean = as.vector(mu_s),True_Function =

sin(x_test))↪→

# Add the GP samples to the data frame

gp_samples_df <- data.frame(x = rep(x_test, times = n_samples), Sample =

factor(rep(1:n_samples, each = length(x_test))),Value =

as.vector(t(y_samples)))

↪→

↪→

# Create a data frame for the training points

train_data <- data.frame(x = x_train, y = y_train)

# Plot using ggplot2

ggplot() +

# True function

geom_line(data = gp_data, aes(x = x, y = True_Function),

color = "black", linetype = "dashed", size = 1, alpha = 0.7) +

# GP mean

geom_line(data = gp_data, aes(x = x, y = GP_Mean),

color = "lightpink2", size = 1.2) +

# GP samples

geom_line(data = gp_samples_df, aes(x = x, y = Value, group = Sample),

color = "springgreen3", alpha = 0.5) +

# Training points

geom_point(data = train_data, aes(x = x, y = y),

color = "blue", size = 2) +

# Labels and theme

labs(title = "Gaussian Process Regression",

x = "x", y = "f(x)") +

theme_minimal(base_size = 14) +

theme(legend.position = "none")

This code first defines a grid of n = 10 equally spaced points
x1, . . . , xn in the interval [0, 10]. For each of these points, we generate
an observation yi ∼ N( f (xi), σ2) with σ2 = 0.1. These are the blue
dots in Figure 2.6. These are our noisy observations from the function
f (x) = sin(x) (the dashed line).

Having the training data, the test data and a fixed kernel function
(here the Gaussian kernel) we can compute the covariance matrix in
the underlying Gaussian process (over all the point). Then we can
sample from the conditional distribution12 of the test data given the 12 All the relevant formulas already

appeared earlier!training data. Doing it multiple times gives us the greenish curves in
Figure 2.6. We can also compute the conditional mean and also plot
it. This is the pink curve.
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Gaussian Process Regression
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Figure 2.6: Illustration for GPs applied
for non-parametric regression.
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2.7 Exercises

Exercise 2.7.1. Two random vectors X ∈ Rp and Y ∈ Rq are independent
if P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B) for all (measurable) sets
A ⊆ Rp, B ⊆ Rq. Let f : Rp → R and g : Rq → R be two functions.
Show that if X⊥⊥Y then f (X)⊥⊥ g(Y).

Exercise 2.7.2. Given X ∼ Nm(µ, Σ), show that X − µ has the same
distribution as Σ1/2Z, where Z ∼ Nm(0, Im).

Exercise 2.7.3. Suppose we want to generate a sample of n observations
from Nm(0, Σ). Using R or Python, write a code that does it by sampling
independently a bunch of univariate N(0, 1) variables and transforming
them approprietly.

Exercise 2.7.4. Consider two random vectors X ∼ Nm(µX , ΣX) and Y ∼
Nq(µY, ΣY). Show that if X and Y are independent, the joint distribution
of (X, Y) is multivariate normal with mean (µX , µY) and block diagonal
covariance matrix.

Exercise 2.7.5. Let X1, X2 ∼ Nm(µ, Σ) with X1⊥⊥X2, and define Y =

X1 + X2. Find the distribution of Y.

Exercise 2.7.6. Let Y be an n × p matrix of observed responses, where
each row yi is a p-dimensional random vector from a multivariate normal
distribution: yi ∼ Np(µ, Σ), and the rows are independent. Assume that we
model the mean of Y as a linear function of a set of m predictors given in the
n×m design matrix X, i.e.,

E[Y] = XB,

where B is a m × p matrix of regression coefficients. The residuals are
defined as:

E = Y− XB̂,

where B̂ = (X⊤X)−1X⊤Y is the ordinary least squares estimator of B. The
i-th row of E is denoted as Ei, which represents the residual vector for the i-
th observation. Derive the covariance structure of the residuals by explicitly
computing:

cov(Ei, Ej),

for all i, j ∈ {1, . . . , n}. Express your result in terms of Σ, X, and the
projection matrix P = X(X⊤X)−1X⊤.

Exercise 2.7.7. Let X ∼ Nm(µ, Σ). Use the spectral decomposition of Σ to
transform X into independent standard normal variables.

Exercise 2.7.8. Let X ∼ Nm(0, Σ) and suppose that Σ is singular (i.e.,
Σ is not invertible). Prove that in this case, there exists alinear subspace
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L ⊆ Rm such that P(X ∈ L) = 1. If L is the minimal linear subspace
with this property then what is its dimension? Hint: var(u⊤X) = 0 if and
only of P(u⊤X = 0) = 1, and algebraically, u is an eigenvector of Σ with
eigenvalue 0.

Exercise 2.7.9. Let X ∼ Nm(0, σ2 Im) and let U be any orthogonal matrix.
Show that the distribution X is the same as the distribution of UX. Would
the answer be the same if the mean of X was not zero?

Exercise 2.7.10. Let X1, X2 ∼ Nm(µ, Σ) be independent. Consider the
random vector Z = X1 + X2. Prove that the covariance matrix of Z is 2Σ.

Exercise 2.7.11. Suppose X ∼ Nm(µ, Σ). Let X∖1 denote X with the
first entry removed. Consider the linear regression of X1 on the remaining
variables

X1 = α + w⊤X∖1 + ε with ε⊥⊥X∖i.

Show that the linear regression coefficients w can be expressed in terms
of the blocks of the covariance matrix Σ. Hint: What is the relationship
between these coefficients and conditional variances?

Exercise 2.7.12. Suppose X ∼ Nm(µ, Σ). Show that the correlation matrix
R = D−1/2ΣD−1/2, where D is the diagonal matrix of variances, is also
positive semidefinite. Show that the space of correlation matrices is a convex
set.

Exercise 2.7.13. Prove Proposition 2.1.2. Hint: Let Z = Σ−1/2(X − µ).
Show that Z ∼ Nm(0, Im) and use the fact that the sum of the squares of
independent standard normal variables has a chi-squared distribution.

Exercise 2.7.14. Complete all the details of the proof of Proposition 2.2.1.

Exercise 2.7.15. Prove Lemma 2.2.2.

Exercise 2.7.16. Suppose X1, X2 ∼ Nm(0, Σ) are independent and Y =

X1 − X2. Derive the distribution of Y. How does the covariance structure of
Y compare to that of X1 and X2 individually?

Exercise 2.7.17. Let X ∼ Nm(µ, Σ). Show that for any a ∈ Rm, the
probability P(a⊤X > c) depends on both a⊤µ and a⊤Σa. Derive a formula
for this probability in terms of the c.d.f. of the standard normal distribution.

Exercise 2.7.18. Consider the functions f , g : Rn → R given by f (x) =

a⊤x and g(x) = x⊤Ax for a ∈ Rn and A ∈ Sn. Show that ∇ f (x) = a
and ∇g(x) = 2Ax.

Exercise 2.7.19. Let X1, X2 ∼ Nm(0, Σ) be independent. Consider the

random vector Z =

(
X1 + X2

X1 − X2

)
, answer the following questions:

• Find the distribution of Z;
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• Argue whether X1 + X2 is independent of X1 − X2?

Exercise 2.7.20. Consider the following three-dimensional multivariate
Gaussian

X ∼ N3(µ, Σ), where µ =

4
0
3

 , Σ =

3/2 1/2 1
1/2 3/2 1

1 1 2

 .

(i) Find the conditional distribution of the subvector (X1, X2) |X3.

(ii) Without calculating the inverse of the covariance Σ−1 explicitly, argue
what will be the value of the (1, 2) entries of Σ−1.

(iii) Define Y1 = X1 + X2, Y2 = X2 + X3 and Y3 = X3 + X1. Derive the
distribution of (Y1, Y2).



3
Non-normal distributions

Multivariate Gaussian is obviously not the only distribution
widely considered to model multivariate continuous data. In this
chapter, we provide a very brief treatment of some of the key ideas
involving distributions beyond the multivariate normal.

3.1 Elliptical distributions

3.1.1 Spherical distributions

Recall that O(m) denotes the group1,2 of m×m orthogonal matrices, 1 The set O(m) is a group because
U, V ∈ O(m) then UV−1 ∈ O(m).
Check it!
2 Note that if U ∈ O(m) then
|det(U)| = 1.

that is, U ∈ Rm×m such that U⊤U = Im. A random vector X ∈ Rm is
said to have a spherical distribution if for any U ∈ O(m), the random
vector X is equal in distribution to UX, i.e.,

X d
= UX ∀U ∈ O(m).

One example of a spherical distribution is the standard normal
distribution Z ∼ Nm(0, Im). More generally, if Z ∼ Nm(0, Im) and
τ > 0 is a positive random variable independent of Z, then3 3 This is sometimes called the common

variance model. Note that the entries
of Z are independent. Although the en-
tries of X will be uncorrelated (can you
show it?), they will not be independent.

X =
1√
τ

Z

has a spherical distribution. To see this, let U ∈ O(m). Then

UX =
1√
τ

UZ d
=

1√
τ

Z = X,

since UZ d
= Z and UZ⊥⊥ τ. Therefore, X has the same distribution as

UX, satisfying the definition of spherical symmetry.
Moment structure: The spherical symmetry implies that the mean

of X must be zero and the covariance matrix must be proportional to
the identity matrix, i.e., ← Exercise 3.5.2

E(X) = 0, var(X) = cIm

for some constant c ≥ 0. In the case of X = 1√
τ

Z with Z ∼ N(0, Im),

we have var(X) = E[τ−1]Im. ← Exercise 3.5.4
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3.1.2 Independence of ∥X∥ and X/∥X∥

An important property of spherical distributions is the independence
of the norm of X, denoted ∥X∥ :=

√
X⊤X, and the direction of X,

represented by the unit vector X/∥X∥. To see this, note that for any
U ∈ O(m),

X
∥X∥

d
=

UX
∥UX∥ =

UX
∥X∥ = U

X
∥X∥ .

Thus, X
∥X∥ is invariant under orthogonal transformations, meaning

it must have a rotationally symmetric distribution. The only rota-
tionally symmetric distribution on the unit sphere is the uniform
distribution. Therefore, X

∥X∥ has a uniform distribution on the unit
sphere in Rm, independent of the length ∥X∥.

3.1.3 Formal argument using polar coordinates*

To formally show that ∥X∥ and X/∥X∥ are independent, we use a
change of coordinates to polar coordinates.
Polar coordinates: In R2, polar coordinates are given by:

x1 = r cos(θ), x2 = r sin(θ), r > 0, 0 ≤ θ < 2π.

This generalizes to Rm with the transformation:

x = ru(θ),

where θ = (θ1, . . . , θm−1) are the angular coordinates, and r = ∥x∥ is
the radial coordinate. Specifically, for i = 1, . . . , m we have4: 4 Check that ∥x∥ = r.

ui(θ) = cos(θi)
i−1

∏
j=0

sin(θj), sin(θ0) = 1, cos(θm) = 1.

The angles θj are constrained by:

0 ≤ θj ≤ π, j = 1, . . . , m− 2, 0 ≤ θm−1 < 2π.

Recall that for a function f : Rn → Rm, its Jacobian at x ∈ Rn, if
exists, is the matrix J f (x) of the partial derivatives J f (x) = [ ∂ fi

∂xj
] ∈

Rm×n. The determinant of the Jacobian matrix of the polar coordi-
nates transformation x = ru(θ) is

J(r, θ) = rm−1
m−1

∏
i=2

sinm−i(θi−1).

The reason why we care about this determinant is that it appears in
the change of variables formula.
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Independence of radial and angular components: Suppose X has a
density f (x) that only depends on ∥x∥, i.e., f (x) = g(∥x∥2) for some
function g. When changing variables to polar coordinates, we find:

f (x)dx = g(r2)rm−1dr
m−1

∏
i=2

sinm−i(θi−1)dθ.

Thus, we see that the density separates into a product of a radial
component g(r2)rm−1dr and an angular component, showing that ∥x∥
and x/∥x∥ are independent.

3.1.4 Elliptical distributions as affine transformations of spherical dis-
tributions

An elliptical distribution is a generalization of the multivariate normal
distribution. A random vector X ∈ Rm is said to have an elliptical
distribution, denoted X ∼ E(µ, Σ), if X can be written as:

X = µ + Σ1/2Z,

where Z is a spherical random vector (e.g., standard normal) and
Σ1/2 is the square root of a positive semi-definite matrix Σ. This form
includes the multivariate normal as a special case; recall Proposi-
tion 2.1.1.

Why do we care? The main reason is that elliptical distributions al-
low us to model distributions that look similar to multivariate normal
but have much heavier tails. This makes it suitable to model extreme
events or data with outliers, which are common in many real-world
applications such as finance, insurance, and environmental studies.
For example, in finance, the heavy tails of elliptical distributions can
capture the higher likelihood of extreme losses or gains compared
to the Gaussian model. By maintaining properties like symmetry
and linear correlation structures, elliptical distributions strike a bal-
ance between flexibility and mathematical tractability, making them a
valuable tool for robust modelling in high-dimensional settings.

3.1.5 Covariance and correlation matrix

Note that in elliptical distributions, Σ is called the scale matrix and
does not directly represent the covariance of X. However, it holds
that:

Var(X) = cΣ

for some constant c > 0. Therefore, the correlation structure of X is
governed by Σ, even though the exact covariance requires calculating
c.
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3.1.6 Scale mixture of normals

A key example of elliptical distributions is the scale mixture of nor-
mals, which admits the stochastic representation:

X = µ +
1√
τ

Σ1/2Z, (3.1)

where Z ∼ Nm(0, Im) and τ > 0 is a random variable independent of
Z. This framework captures several important distributions:

• If τ ≡ 1, we recover the multivariate normal distribution.

• If τ ∼ 1
k χ2

k , then X follows a multivariate t-distribution with k
degrees of freedom.

• If k = 1, we obtain the multivariate Cauchy distribution.

• If τ ∼ Exp(1), we get the multivariate Laplace distribution.

Note that X may be a complicated distribution but conditionally
on τ, X is simply Gaussian. Thus, many efficient approaches to work-
ing with scale mixture of normals, use this structure.

Figure 3.1: Examples of 1-d densities
that are generalized by the scale mix-
ture of normals. Note that the tails are
generally heavier than for the Gaussian
distribution.

Note that, if X satisfies (3.1), the Mahalanobis distance satisfies

Y = ∥X− µ∥Σ = 1
τ ∥Z∥

2 d
= 1

τ χ2
m

with τ⊥⊥ χ2
m. This generalizes Proposition 2.1.2. We can plot the

distribution of Y = ∥X − µ∥2
Σ for different choices of τ and m =

10; see Figure 3.2. Note that this picture does entirely show how
dramatically different is the tail behavior of all the density plots. The
x-axis finishes at 75 and the mass of the χ2

10 density (corresponding
to the Gaussian case) is negligible. This is not however true for some
of the other densities. For the multivariate Laplace distribution this
probability is 0.124, which is definitely not negligible. As Table 3.1
show, much more extreme events can happen with non-negligible
probability.

Case P(Y > 75) P(Y > 500) P(Y > 1000) P(Y > 10000)
Gaussian 0.000 0.000 0.000 0.000

t100 0.000 0.000 0.000 0.000

t20 0.000 0.000 0.000 0.000

t5 0.019 0.000 0.000 0.000

Laplace 0.124 0.020 0.010 0.001

t1 0.277 0.109 0.077 0.024

Table 3.1: Proportion of Samples Ex-
ceeding Thresholds

To see why this may be relevant in practice, consider a simple
example of returns for four stocks. We can compute the sample ver-
sion of the Mahalonobis distance and compare its distribution to
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Figure 3.2: The distribution of ∥X− µ∥2
Σ

for some choices of τ and with m = 10.

χ2
4, which corresponds to the Gaussian case. Consider the following

code.

# Load necessary libraries

library(quantmod) # Fetch stock data

library(MASS) # Mahalanobis distance

library(ggplot2) # Plotting

library(latex2exp) # LaTeX labels

library(dplyr) # Data manipulation

# Define stock tickers and date range

tickers <- c("AAPL", "MSFT", "GOOG", "AMZN") # Add more stocks if needed

start_date <- as.Date("2020-01-01")

end_date <- as.Date("2024-01-01")

# Download stock prices

getSymbols(tickers, src = "yahoo", from = start_date, to = end_date,

auto.assign = TRUE)↪→

# Convert to adjusted closing prices

prices <- do.call(merge, lapply(tickers, function(ticker)

Cl(get(ticker))))↪→

colnames(prices) <- tickers

# Compute daily log-returns

returns <- na.omit(diff(log(prices)))

# Compute Mahalanobis distances

mu <- colMeans(returns) # Mean vector

sigma <- cov(returns) # Covariance matrix

mahalanobis_distances <- mahalanobis(returns, mu, sigma)

# Degrees of freedom (equal to number of assets)

df <- ncol(returns)

# Generate theoretical chi-squared density

x_seq <- seq(0, max(mahalanobis_distances), length.out = 500)

chi2_density <- dchisq(x_seq, df = df)
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# Compute kernel density estimation (KDE) for Mahalanobis distances

density_mahalanobis <- density(mahalanobis_distances)

# Define tail thresholds

thresholds <- c(10,20, 50, 75)

# Compute tail probabilities

tail_probs <- data.frame(

Threshold = thresholds,

Empirical_Prob = sapply(thresholds, function(t)

mean(mahalanobis_distances > t)),↪→

ChiSq_Prob = sapply(thresholds, function(t) 1 - pchisq(t, df = df))

)

# Print the table

print(round(tail_probs,3))

# Plot: Density of Mahalanobis Distance vs. Chi-squared Distribution

ggplot() +

geom_line(aes(x = density_mahalanobis$x, y = density_mahalanobis$y),

color = "blue", linewidth = 1.2, label = "Empirical Density") +↪→

geom_line(aes(x = x_seq, y = chi2_density), color = "red", linetype =

"dashed", linewidth = 1, label = "Chi-squared Density") +↪→

labs(

title =

TeX("Density of Mahalanobis Distance vs. $\\chi^2_d$ Density"),↪→

x = TeX("Mahalanobis Distance"),

y = "Density"

) +

theme_minimal() +

annotate("text", x = max(density_mahalanobis$x) * 0.6, y =

max(density_mahalanobis$y) * 0.9,↪→

label = "Empirical Density", color = "blue", size = 5) +

annotate("text", x = max(density_mahalanobis$x) * 0.6, y =

max(chi2_density) * 0.9,↪→

label = "Chi-squared Density", color = "red", size = 5)

Empirical Density

Chi−squared Density
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Mahalanobis Distance

D
en

si
ty

Density of Mahalanobis Distance vs. χd
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Figure 3.3: Comparison of the sam-
ple distribution of the Mahalanobis
distance and the density of χ2

4.

In Figure 3.3 we compare the sample density of the Mahalanobis
distance with the density of χ2

4, which corresponds to the Gaussian
case. From the picture it looks that the sample density is much more
concentrated around zero. However, we can easily confirm that this
distribution has much heavier tails. For example, the mass of the χ2

m
over the interval (25, ∞) is totally negligible. On the other hand the
empirical distribution has there mass 0.022.

3.2 Copula models

A copula is a statistical tool that allows us to model the dependence
structure between random variables separately from their marginal
distributions. This is especially useful when modeling multivariate
data where the marginal distributions are not Gaussian.5 5 Recall that the CDF of the uniform

U(0, 1) distribution is F(u) = u and
so C : [0, 1]m → [0, 1] must satisfy
C(u1, 1, . . . , 1) = u1.

Definition 3.2.1. A copula function (or simply a copula) is a multivariate
distribution function with uniform marginals. A copula function in m
dimensions is typically written C(u), u = (u1, . . . , um).
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3.2.1 Sklar’s theorem

The foundation of copula theory is Sklar’s Theorem.

Theorem 3.2.2 (Sklar, 1959). Given a continuous random vector X =

(X1, . . . , Xm) with joint c.d.f. F and marginal c.d.f.s F1, . . . , Fm, there exists
a unique copula C such that for all x = (x1, . . . , xm)

F(x1, . . . , xm) = C(F1(x1), . . . , Fm(xm)). (3.2)

Conversly, for any given one-dimensional c.d.f.s F1, . . . , Fm and a copula C,
(3.2) defines an m-variate c.d.f. F with marginal c.d.f.s F1, . . . , Fm.

The copula C : [0, 1]m → [0, 1] captures the dependence between
the components of X, while the marginal distributions F1, . . . , Fm

describe the behavior of each component independently.
To understand Sklar’s theorem, consider the case when m = 1.

Here C(u) = u for u ∈ [0, 1] and the CDF of X is indeed C(F(x)) =

F(x). Note also that, if X is a univariate continuous random variable
with c.d.f. F6 then F(X) ∼ U(0, 1). Indeed, 6 If X is continuous then F is strictly

increasing almost surely.
P(F(X) ≤ u) = P(X ≤ F−1(u)) = F(F−1(u)) = u.

Let now X = (X1, . . . , Xm) be a random vector with c.d.f.

F(x1, . . . , xm) = P(X1 ≤ x1, . . . , Xm ≤ xm).

Set Ui = Fi(Xi). Then U = (U1, . . . , Um) has marginal uniform
distributions with c.d.f.

P(U1 ≤ u1, . . . , Um ≤ um) = P(X1 ≤ F−1
1 (u1), . . . , Xm ≤ F−1

m (um))

= F(F−1
1 (u1), . . . , F−1

m (um))

=: C(u).
(3.3)

Note that C defined here is the same as C in (3.2) and Sklar’s theo-
rem states that such C is defined uniquely.

3.2.2 Simple example

Consider the following joint cumulative distribution function (CDF):

FX,Y(x, y) =


0 if x < 0 or y < 0,

x2y2 if 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1,

1 if x > 1 and y > 1,

min(x2, y2) otherwise.

The marginal CDFs are:

FX(x) =


0 if x < 0,

x2 if 0 ≤ x ≤ 1,

1 if x > 1,
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and

FY(y) =


0 if y < 0,

y2 if 0 ≤ y ≤ 1,

1 if y > 1.

The inverse CDFs are for u, v ∈ (0, 1):

F−1
X (u) =

√
u, F−1

Y (v) =
√

v.

Thus the copula is given by:

C(u, v) = FX,Y(F−1
X (u), F−1

Y (v)).

Substituting F−1
X (u) =

√
u and F−1

Y (v) =
√

v, we get:

C(u, v) =


uv if u ≤ 1, v ≤ 1,

u if u ≤ 1, v ≥ 1,

v if u ≥ 1, v ≤ 1,

1 if u ≥ 1, v ≥ 1,

3.2.3 Invariance under monotone transformations

Suppose that Yi = fi(Xi), where each fi is a strictly increasing (and
so invertible) transformation. It is important to note that X and Y
define the same copula. Indeed, let F, G be the CDFs of X and Y
respectively with individual CDFs denotes as Fi, Gi. In the light of
(3.3), it is enough to show that

F(F−1
1 (u1), . . . , F−1

m (um)) = G(G−1
1 (u1), . . . , G−1

m (um))

Now note that

Gi(yi) = P(Yi ≤ yi) = P(Xi ≤ f−1
i (yi)) = Fi( f−1

i (yi)),

which shows that Gi = Fi ◦ f−1
i , or equivalently, G−1

i = fi ◦ F−1
i .

Similarly,
G(y1, . . . , ym) = F( f−1

1 (y1), . . . , f−1
m (ym))

Using these two equations we get that

G(G−1
1 (u1), . . . , G−1

m (um)) = F( f−1
1 (G−1

1 (u1)), . . . , f−1
m (G−1

m (um))) = F(F−1
1 (u1), . . . , F−1

m (um))

as claimed.

3.2.4 Density of a copula

The p.d.f. c(u) of a copula C(u) is obtained by differentiation. We Recall that for a continuous distribution
with CDF F(x1, . . . , xm), its density
f (x1, . . . , xm) is given by

f (x1, . . . , xm) =
∂m

∂x1 · · · ∂xm
F(x1, . . . , xm).

have

c(u) =
∂mC(u)

∂u1 · · · ∂um
.
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Using the fact that C(u) = F(F−1
1 (u1), . . . , F−1

m (um)) and the chain
rule, we have

c(u) =
f (x)

∏m
i=1 fi(xi)

. (3.4)

3.2.5 Gaussian copula

The Gaussian copula is derived from the multivariate normal distri-
bution. Suppose X ∼ Nm(µ, Σ) is a normal random vector. Since a
copula is unchanged if components undergo a monotone transforma-
tion, w.l.o.g. we may assume µi = 0 and Σii = 1 for all i so that the
marginal distributions are standard normal. The CDF of N(0, 1) is
denoted by Φ(x).

Using formula in (3.4) the corresponding density is ← Exercise 3.5.21

c(u; Σ) = det(Σ)−1/2 exp{− 1
2 x⊤(Σ−1− Im)x}, where xi = Φ−1(ui).

(3.5)
The most popular choice for Σ is the equicorrelation matrix Σ =

(1− ρ)Im + ρ11⊤, where − 1
m−1 ≤ ρ ≤ 1. For this choice det(Σ) = (1−

ρ)m−1(1+(m− 1)ρ). So for example the density of a two-dimensional
Gaussian copula is

c(u; ρ) =
1√

1− ρ2
exp

{
−

ρ2(x2
1 + x2

2)− 2ρx1x2

2(1− ρ2)

}
. (3.6)

Example 3.2.3. We can use Gaussian copula to model the joint distri-
bution of X1 ∼ Exp(1) and X2 ∼ Exp(1). The c.d.f. of Exp(1) is
F(x) = 1 − e−x. The Gaussian copula is defined as: Cρ(u1, u2) =

Φ2
(
Φ−1(u1), Φ−1(u2); ρ

)
, where Φ2 is the c.d.f. of the bivariate normal

distribution with variances 1 and correlation ρ. By Sklar’s theorem, the joint
c.d.f. of X1 and X2 is then:

FX1,X2(x1, x2) = Cρ

(
FX1(x1), FX2(x2)

)
.

To simulate data from this model:

1. Generate a sample from a 2D normal distribution with correlation ρ:

(Z1, Z2) ∼ N2

(
0,

[
1 ρ

ρ 1

])
.

2. Transform the marginals to the uniform distribution via the standard
normal c.d.f:

U1 = Φ(Z1), U2 = Φ(Z2).

3. Transform the uniform marginals to the exponential distribution:

X1 = − ln(1−U1), X2 = − ln(1−U2).
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3.2.6 Archimedean copula*

In addition to Gaussian copulas, there are other families of copulas,
such as Archimedean copulas, which are popular in applications due
to their simplicity. An Archimedean copula is defined using a gen-
erator function ϕ : (0, 1) → [0, ∞) that is strictly decreasing and
convex with limx→0+ ϕ(x) = ∞ and limx→1− ϕ(x) = 0. Set ψ = ϕ−1,
which is monotone decreasing on (0, ∞) with limx→0+ ψ(x) = 1 and
limx→∞ ϕ(x) = 0. Assume that ψ is completely monotone function,
that is, suppose that ψ is infinitely differentiable, and that the deriva-
tives alternate in sign: (−1)kψ(k)(x) > 0 for all x ∈ (0, ∞), k ≥ 1.

The m-variate Archimedean copula generated by ϕ is given by:

C(u1, . . . , um) = ψ (ϕ(u1) + · · ·+ ϕ(um)) .

It can be shown that C defines a valid c.d.f. with density

c(u) = ψ(m)(v)
m

∏
i=1

ϕ′(ui), where vi = ϕ(ui), v = v1 + . . . + vm.

Some well-known Archimedean copulas include:

• Clayton copula: ϕ(t) = 1
θ (t
−θ − 1) for θ > 0.

• Gumbel copula: φ(t) = (− log t)θ for θ ≥ 1.

• Frank copula: φ(t) = − log
(

e−θt−1
e−θ−1

)
for θ ̸= 0.

3.2.7 Example

Suppose that we observe some data x(1), . . . , x(n) from F, which we
model with a copula. Just to illustrate how this can be used in real
examples, we use copulas to model the dependence structure of
returns of five random stocks. First plot their correlation structure.
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library(quantmod)

library(copula)

library(PerformanceAnalytics)

# Define stock tickers and date range

tickers <- c("AAPL", "MSFT", "AMZN", "GOOG", "TSLA")

start_date <- "2020-01-01"

end_date <- "2023-01-01"

# Download adjusted closing prices

getSymbols(tickers, from = start_date, to = end_date, src = "yahoo")

prices <- do.call(merge, lapply(tickers, function(x) Ad(get(x))))

# Calculate daily log returns

returns <- na.omit(ROC(prices, type = "continuous"))

colnames(returns) <- tickers

# Plot the returns

chart.Correlation(returns, histogram = TRUE, pch = 19)
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We fit a Gaussian copula to the multivariate log returns. We start
by fixing a copula model – in this case Gaussian. By (3.2) we can ex-
press the CDF F of the data in terms of the copula and the marginal
CDFs Fi. However, the marginal CDFs of the data are not known.
Given the sample, it is natural to consider the empirical CDF

F̂i(xi) :=
1
n

n

∑
t=1

1{x(t)i ≤ xi}.

In particular,

F̂i(x
(t)
i ) :=

rank of x(t)i in the j-th column of X
n

.

Thus, we first convert returns to pseudo-observations by mapping
through F̂i’s, u(t)

i := F̂i(x
(t)
i ). This results in a new transformed data

matrix U. Consider the following code.

# Convert to pseudo-observations

u <- pobs(as.matrix(returns))

# Fit a Gaussian copula

cop_model <- normalCopula(dim = ncol(returns)) # Gaussian copula

fit <- fitCopula(cop_model, u, method = "ml") # Maximum likelihood

# Extract fitted parameters (correlation matrix)

rho_matrix <- getSigma(fit@copula)

print("Fitted correlation matrix:")

print(rho_matrix)

> print(rho_matrix)

[, 1] [, 2] [, 3] [, 4] [, 5]
[1, ] 1.000 0.655 0.655 0.655 0.655

[2, ] 0.655 1.000 0.655 0.655 0.655

[3, ] 0.655 0.655 1.000 0.655 0.655

[4, ] 0.655 0.655 0.655 1.000 0.655

[5, ] 0.655 0.655 0.655 0.655 1.000

The correlation matrix looks very simple but remember that we still
have the marginal distributions, which adds additional flexibility. We
can now simulate new returns based on the fitted copula model and
the original marginal distributions.

# Simulate from the fitted Gaussian copula

simulated_copula <- rCopula(nrow(returns), fit@copula)

# Transform copula samples to the original marginals

simulated_returns <- data.frame(

AAPL = qnorm(simulated_copula[,1], mean = mean(returns$AAPL), sd =

sd(returns$AAPL)),↪→

MSFT = qnorm(simulated_copula[,2], mean = mean(returns$MSFT), sd =

sd(returns$MSFT)),↪→

AMZN = qnorm(simulated_copula[,3], mean = mean(returns$AMZN), sd =

sd(returns$AMZN)),↪→

GOOG = qnorm(simulated_copula[,4], mean = mean(returns$GOOG), sd =

sd(returns$GOOG)),↪→

TSLA = qnorm(simulated_copula[,5], mean = mean(returns$TSLA), sd =

sd(returns$TSLA)))↪→

# Compare empirical and simulated correlations

empirical_corr <- cor(returns)

simulated_corr <- cor(simulated_returns)
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cat("Empirical Correlation Matrix:\n")

print(empirical_corr)

cat("\nSimulated Correlation Matrix:\n")

print(simulated_corr)

# Scatterplot matrix of simulated returns

pairs(simulated_returns, main = "Simulated Returns (Gaussian Copula)", pch

= 19, col = rgb(0, 0, 1, 0.5))↪→

# Overlaid density plots for one stock (e.g., AAPL)

plot(density(returns$AAPL), col = "blue", main =

"Density of AAPL Returns: Empirical vs Simulated", lwd = 2)↪→

lines(density(simulated_returns$AAPL), col = "red", lwd = 2)

legend("topright", legend = c("Empirical", "Simulated"), col = c("blue",

"red"), lwd = 2)↪→
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3.2.8 Applications of copula models

Copulas have a wide range of applications, especially in fields where
understanding the dependence between random variables is crucial.
Some important applications include:

• Finance and risk management: In finance, copulas are used to
model the joint behavior of asset returns or risk factors. They are
particularly useful for modeling tail dependencies, which refer
to the joint likelihood of extreme losses or gains. The Gaussian
copula, for instance, was famously used in pricing collateralized
debt obligations (CDOs), although the limitations of copulas in
capturing extreme co-movements were highlighted during the
financial crisis of 2007-2008.

• Insurance and actuarial science: In insurance, copulas allow ac-
tuaries to model dependencies between different types of claims,
such as health claims and life insurance claims. By understanding
the joint risk, insurers can set more appropriate premiums and
reserves for correlated risks.

• Environmental sciences: Copulas are used to model the depen-
dence structure between extreme environmental events, such as
floods or droughts. This is important for designing infrastructure
that can withstand correlated extreme events. For instance, the
joint probability of high rainfall and river overflow can be better
understood with copulas, leading to more informed decisions in
flood risk management.

• Multivariate survival analysis: In medical statistics and survival
analysis, copulas are used to model the time until the occurrence
of multiple types of events (such as death, disease relapse, or re-
covery) that may be dependent on each other. Archimedean copu-
las are particularly popular in this context due to their tractability.
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3.3 Gaussian mixture models

A Gaussian Mixture Model (GMM) is a probabilistic model that
assumes the data is generated from a mixture of several Gaussian
distributions, each with its own parameters. Formally, a random
vector X ∈ Rm is said to follow a GMM if its density function is a
weighted sum of multivariate Gaussian densities: ← Exercise 3.5.25

f (x) =
K

∑
k=1

πk Nm(x; µk, Σk), (3.7)

where πk ≥ 0 are the mixture weights such that ∑K
k=1 πk = 1, and

Nm(x; µk, Σk) denotes the multivariate normal density with mean
µk ∈ Rm and covariance matrix Σk ∈ Sm

+.
Figure 3.3 provides two simple examples of 2D and 3D datasets

that are generated from mixtures of two Gaussian components.

Remark 3.3.1. At this point it is not clear how to handle such a compli-
cated distribution efficiently. For example, given fixed parameters values,
how can we generate samples? We will see in Section 3.3.2 that this model ← Exercise 3.5.26

admits a simple latent variable representation, which can be exploited in
various ways.

3.3.1 Why use Gaussian mixtures?

Gaussian mixtures offer several advantages:

• Flexibility: They can model complex distributions by combining
simple Gaussian components. A GMM can approximate almost
any continuous probability distribution by increasing the number
of components K.

• Multimodality: GMMs are particularly useful for modeling data
with multiple modes (clusters), where each Gaussian component
models one mode.
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• Easily interpretable: Each Gaussian component has an intuitive
interpretation (mean, covariance, weight). It is a natural model if
the population comes from different sub-populations.

Gaussian mixtures form a popular model based clustering method.
In this context, for simplicity, we often assume Σk = Σ for k =

1, . . . , K.

3.3.2 Gaussian Mixture as a latent variable model

Let Z ∈ {1, . . . , K} be a discrete random variable such that P(Z =

k) = πk for k = 1, . . . , K. Moreover, suppose that the conditional
distribution of X given Z = k is Nm(µk, Σk). Then the marginal
distribution of X is the same as given in (3.7) (check!)

Remark 3.3.2. Many popular probabilistic machine learning methods model
data distribution p(x) from a joint p(x, z), which is specified by setting the
marginal distribution p(z) of a latent variable and the conditional p(x|z).
Models of that form lead to many highly tractable exact and approximate
estimation procedures.

3.3.3 Likelihood inference for GMMs

Suppose we have data x1, . . . , xn ∈ Rm from the Gaussian mixture
model with a known number of K components. Fitting a GMM to a
dataset involves estimating the parameters θ = {πk, µk, Σk}K

k=1, which
by default is done by maximizing the log-likelihood function

ℓ(θ) =
n

∑
i=1

log f (xi) =
n

∑
i=1

log(
K

∑
k=1

πk Nm(xi; µk, Σk)).

The likelihood function for GMMs is a complicated multimodal func-
tion of the parameters θ and maximizing it directly may be hard. In
fact it is not even bounded! However, we can use the latent represen- ← Exercise 3.5.31

tation of the GMM to perform the Expectation-Maximization (EM)
algorithm.

Remark 3.3.3. Note that we assume that K is fixed throughout the whole
analysis. In practice, K is not always known. In this case, learning K is a
separate task, which we do not discuss here in detail.

3.3.4 Appendix: Expectation-Maximization (EM) Algorithm

Suppose we have data x1, . . . , xn with distribution fX(x; θ). The goal
is to estimate the parameter θ that maximizes the likelihood. In this
section we deal with the situation when the model for X is specified
as the margin of a larger model incorporating a latent vector Z. Many
models in statistics and machine learning are of this form.
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The EM algorithm is particularly useful when the marginal like-
lihood of X is difficult to compute, but the complete data likelihood
(i.e., the joint likelihood of X and Z) is easier to work with.

Consider the complete data (x1, z1), . . . , (xn, zn), where we ob-
serve only x1, . . . , xn as before. Assume that the joint model depends
on the parameter vector θ.

The algorithm iteratively estimates θ by alternating between two
steps:

(0) Initialize θ0, a reasonable initial guess for the parameter.

(E-step) Compute the expected value of the complete data log-
likelihood ℓF

ℓF(θ) =
n

∑
i=1

log f (xi, zi; θ)

with respect to the conditional distribution of the latent variables
Z, given the observed data X and the current parameter estimate
θ0. This gives the function:

Q(θ; θ0) = EZ|X,θ0 [ℓF(θ)|X, θ0] =
n

∑
i=1

EZ|X,θ0 [log f (xi, Z; θ)|X = xi, θ0].

(M-step) Maximize the expected complete log-likelihood with re-
spect to θ:

θ1 = arg max
θ

Q(θ; θ0).

Update θ0 ← θ1 and repeat until convergence.

Under mild conditions, it can be shown that each iteration of the
EM algorithm increases the observed data log-likelihood. Specifically,
after each E-step and M-step, the likelihood satisfies the inequality:

ℓ(θt+1) ≥ ℓ(θt).

This property ensures that the algorithm makes progress toward
maximizing the likelihood at every step.

While the EM algorithm is guaranteed to increase the likelihood
at each step, it may not necessarily converge to the global maxi-
mum. Instead, the algorithm converges to a local maximum of the
likelihood function. Convergence can be understood through the
following results:

3.3.5 EM Algorithm for Gaussian Mixture Models (GMM)

The complete data log-likelihood for GMMs is given by:

ℓF(θ) =
n

∑
i=1

K

∑
k=1

1(zi = k) [log Nm(xi; µk, Σk) + log πk] .
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Here, Nm(x; µk, Σk) denotes the Gaussian probability density function
for component k with mean µk and covariance matrix Σk.

E-step
In the E-step, we compute the expected value of the complete

data log-likelihood, given the current parameter estimates θ0 =

{π0
k , µ0

k , Σ0
k}. Specifically,

Q(θ; θ0) =
n

∑
i=1

k

∑
k=1

EZ|X,θ0
[1(Z = k)|X = xi, θ0] [log Nm(xi; µk, Σk) + log πk]

=
n

∑
i=1

k

∑
k=1

P(zi = k|X = xi, θ0) [log Nm(xi; µk, Σk) + log πk]

we compute the posterior probabilities, or the responsibilities, that
each point xi belongs to component k:

wik = P(zi = k|xi, θ0) =
π0

k Nm(xi; µ0
k , Σ0

k)

∑K
l=1 π0

l Nm(xi; µ0
l , Σ0

l )
.

Using these responsibilities, the expected complete log-likelihood is:

Q(θ; θ0) =
n

∑
i=1

K

∑
k=1

wik [log Nm(xi; µk, Σk) + log πk] .

M-step
In the M-step, we maximize Q(θ; θ0) with respect to the parame-

ters θ = {πk, µk, Σk}. This leads to the following updates:

Deriving the updates for πk and µk is
relatively straightforward. The update
on Σk requires either some persistence
or some experience with calculus of
matrix-functions. We live this as an
exercise.

πk =
1
n

n

∑
i=1

wik,

µk =
∑n

i=1 wikxi

∑n
i=1 wik

,

Σk =
∑n

i=1 wik(xi − µk)(xi − µk)
⊤

∑n
i=1 wik

.

These updates have intuitive interpretations: µ̂k is the weighted av-
erage of the data points assigned to component k, where the weights
are the posterior probabilities wik; Σ̂k is the weighted covariance ma-
trix of the points assigned to component k; π̂k is the proportion of
points assigned to component k.

The EM algorithm iterates between the E-step and M-step until
convergence, at which point the log-likelihood no longer increases
significantly.

3.3.6 Example: EM Algorithm for Gaussian Mixture Models (GMM)

Suppose we have a dataset where each observation is drawn from
a mixture of two Gaussian distributions. The goal is to estimate the
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parameters (means, covariances, and mixing proportions) of these
Gaussian components using the Expectation-Maximization (EM)
algorithm.

Assume the data consists of n points in 2D, where each observa-
tion xi comes from one of two Gaussian distributions. Let πk repre-
sent the mixing proportion of the k-th Gaussian component, µk the
mean vector, and Σk the covariance matrix for component k, with
k = 1, 2. The dataset is a mixture of these distributions with some
overlap.

Data Simulation We can generate a 2D dataset from two Gaussian
distributions, one with

µ1 =

[
2
2

]
, Σ1 =

[
1 0.5

0.5 1

]
and the other with

µ1 =

[
7
7

]
, Σ1 =

[
1 −0.3
−0.3 1

]
The mixing parameter is π1 = 0.4 = 1− π2. We use the following R
code:

set.seed(123)

n <- 300 # number of points

pi_true <- c(0.4, 0.6) # true mixing proportions

mu_true <- list(c(2, 2), c(7, 7)) # true means

sigma_true <- list(matrix(c(1, 0.5, 0.5, 1), 2), matrix(c(1, -0.3, -0.3,

1), 2)) # covariances↪→

# Sample labels from a multinomial distribution

z <- rbinom(n, size = 1, prob = pi_true[2])

x <- matrix(0, nrow = n, ncol = 2)

# Generate points from the two Gaussians

for (i in 1:n) {

if (z[i] == 0) {

x[i, ] <- MASS::mvrnorm(1, mu_true[[1]], sigma_true[[1]])

} else {x[i, ] <- MASS::mvrnorm(1, mu_true[[2]], sigma_true[[2]])}

}

# Plotting the data points with color corresponding to the group

plot(x, col = z + 1, pch = 19, main =

"Generated Data from a Gaussian Mixture",xlab = "X1", ylab = "X2")↪→

legend("topright", legend = c("Group 1", "Group 2"), col = c(1, 2), pch =

19)↪→
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Figure 3.4: This is how the data looks
like when we color points by group
assigment. In practice, this group
assigment is not observed.This code generates a dataset from two Gaussian distributions

with different means and covariances.

EM Algorithm for GMMs Now we apply the EM algorithm to esti-
mate the parameters of the Gaussian mixture model. The following R
code implements the EM algorithm:
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# Function to calculate Gaussian density

dGaussian <- function(x, mu, sigma) {exp(-0.5 * t(x - mu) %*% solve(sigma)

%*% (x - mu)) / sqrt(det(2 * pi * sigma))}↪→

# Initial estimates

K <- 2 # number of components

pi_hat <- c(0.5, 0.5) # initial guess for mixing proportions

mu_hat <- list(c(0, 0), c(1, -1)) # initial guess for means

sigma_hat <- list(diag(2), diag(2)) # initial guess for covariances

# Modified EM algorithm to extract responsibilities at specific iterations

em_gmm_with_responsibilities <- function(x, K, pi_hat, mu_hat, sigma_hat,

steps_to_plot, max_iter = 100, tol = 1e-4) {↪→

n <- nrow(x)

d <- ncol(x)

log_likelihoods <- numeric(max_iter)

responsibility_snapshots <- list()

for (iter in 1:max_iter) {

# E-step: Compute the responsibilities

gamma <- matrix(0, n, K)

for (i in 1:n) {

for (k in 1:K) {

gamma[i, k] <- pi_hat[k] * dGaussian(x[i, ], mu_hat[[k]],

sigma_hat[[k]])↪→

}

gamma[i, ] <- gamma[i, ] / sum(gamma[i, ]) # Normalize

}

# Save responsibilities if requested

if (iter %in% steps_to_plot) {

responsibility_snapshots[[as.character(iter)]] <- gamma

}

# M-step: Update parameters

N_k <- colSums(gamma)

pi_hat <- N_k / n

for (k in 1:K) {

mu_hat[[k]] <- colSums(gamma[, k] * x) / N_k[k]

sigma_hat[[k]] <- matrix(0, d, d)

for (i in 1:n) {

sigma_hat[[k]] <- sigma_hat[[k]] + gamma[i, k] * (x[i, ] -

mu_hat[[k]]) %*% t(x[i, ] - mu_hat[[k]])↪→

}

sigma_hat[[k]] <- sigma_hat[[k]] / N_k[k]

}

# Log-likelihood computation

log_likelihood <- 0

for (i in 1:n) {

temp <- 0

for (k in 1:K) {

temp <- temp + pi_hat[k] * dGaussian(x[i, ], mu_hat[[k]],

sigma_hat[[k]])↪→

}

log_likelihood <- log_likelihood + log(temp)

}

log_likelihoods[iter] <- log_likelihood
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# Check for convergence

if (iter > 1 && abs(log_likelihoods[iter] - log_likelihoods[iter - 1])

< tol) {↪→

log_likelihoods <- log_likelihoods[1:iter]

break

}

}

list(pi = pi_hat, mu = mu_hat, sigma = sigma_hat, log_likelihood =

log_likelihoods, responsibilities = responsibility_snapshots)↪→

}

# Run the EM algorithm and save responsibilities after specific steps

steps_to_plot <- c(1, 2, 30)

result <- em_gmm_with_responsibilities(x, K, pi_hat, mu_hat, sigma_hat,

steps_to_plot)↪→

# Plotting responsibilities

par(mfrow = c(3, 1))

for (step in steps_to_plot) {

gamma <- result$responsibilities[[as.character(step)]]

colors <- rgb(gamma[, 1], 0, gamma[, 2], alpha = 0.6) # Red for

component 1, Blue for component 2↪→

plot(x, col = colors, pch = 19, main = paste("Step", step), xlab = "X1",

ylab = "X2")↪→

}

par(mfrow = c(1, 1))

# Plot log-likelihood progression

plot(result$log_likelihood, type = "o", main =

"Log-Likelihood Progression", xlab = "Iteration", ylab =

"Log-Likelihood")

↪→

↪→
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Figure 3.5: Colorings of the data points
according to their posterior probabilities
after 1,2, and 30 iterations of the EM
algorithm.

When playing around with this simulation you can pay closer atten-
tion to the following problems:

• Are the estimated values of the parameters close to the true value?

• It this model identifiable?

• In this simulation we chose K = 2 both in simulations and in the
estimation step. In practice we do not know K so we may want to
check a bunch of different values. Think how this could be done
but in an ad hoc and formal way.

3.4 Higher order moments and cumulants*

For a random vector X = (X1, . . . , Xm) its moments are the expres-
sions

mk1···km := E[Xk1
1 · · ·X

km
m ]

and k := k1 + . . . + km is the order of this moment. The corresponding
central moments are

E[(X1 −E(X1))
k1 · · · (Xm −E(Xm))

km ].
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Note that the second order central moments are covariances.
Moments can be obtained from the moment generating function

MX(t) = Eet⊤X

by computing the corresponding higher order partial derivatives and
evaluating at t = 0

mk1···km =
∂k

∂k1 t1 · · · ∂km tm
MX(t)

∣∣∣∣∣
t=0

.

Cumulants are different quantities, closely related to moments.
They are defined in the same way as moments through the cumulant
generating function KX(t) = log MX(t)

ck1···km :=
∂k

∂k1 t1 · · · ∂km tm
KX(t)

∣∣∣∣∣
t=0

.

It can be shown that the first order cumulants are the means, EXi, the
second order cumulants are the covariances cov(Xi, Xj), and the third
order cumulants are equal to the third order central moments.

It is not hard to check that the moment generating function of
X ∼ Nm(µ, Σ) is

MX(t) = exp{µ⊤t + 1
2 t⊤Σt}

and consequently, the cumulant generating function is a quadratic
polynomial

KX(t) = µ⊤t + 1
2 t⊤Σt.

One important consequence of this fact is that all cumulants of order
three or higher are zero.

One fundamental characterization of the Gaussian distribution is
the following.

Theorem 3.4.1 (Marcinkiewicz). The cumulant generating function
KX(t) is a polynomial if and only if X is Gaussian.

This result allows us to conceptually model departure from Gaus-
sianity by allowing nonzero higher order cumulants. Naturally, most
of the literature focuses on the third order cumulants also known as
skewness.

3.5 Exercises

Exercise 3.5.1. Suppose that x, y ∈ Rm satisfy ∥x∥ = ∥y∥. Show that
there exists an orthogonal matrix U such that y = Ux. Conclude that if
f (x) = f (Ux) for all U ∈ O(m) then f depends on x only through its
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norm ∥x∥. Hint: Consider an orthonormal basis with x/∥x∥ as one of the
basis vectors and another orthonormal basis with y/∥y∥ as one of the basis
vectors.

Exercise 3.5.2. Show that if X has spherical distribution, then EX = 0 and
var(X) = cIm for some c ≥ 0.

Exercise 3.5.3. Let Sm−1 = {x ∈ Rm : ∥x∥ = 1} be the unit sphere
in Rm. Let Z have uniform distribution on Sm−1. Show that EZ = 0
and var(Z) = 1

m Im. Hint: Z is spherical. Moreover, tr(var(Z)) =

tr(E(ZZ⊤)) = E(Z⊤Z).

Exercise 3.5.4. Suppose X = 1√
τ

Z with Z ∼ N(0, Im), where τ > 0 is
a random variable independent of Z. Show that EX = 0 and var(X) =

E[τ−1]Im.

Exercise 3.5.5. If Z has a spherical distribution show that

1. The characteristic function ψZ(t) is of the form ϕ(∥t∥2) for some ϕ.

2. Show that each component has characteristic function ψi(s) = ϕ(s2).

3. Show that if one component of Z is Gaussian then Z is Gaussian.

Exercise 3.5.6 (*). Suppose X has elliptical distribution. Use the previous
exercise to show that if one component of X is Gaussian then X is Gaussian.

Exercise 3.5.7 (*). Show that if Z is spherical with independent compo-
nents then Z is standard normal. Hint: You will need to use the Cauchy’s
functional equation and the fact that the characteristic function is always
continuous.

Exercise 3.5.8. Let X ∼ Nm(0, Σ). Show that Σ−1/2X has a spherical
distribution. Explain why this property supports the use of spherical distri-
butions as a generalization of the multivariate normal.

Exercise 3.5.9. Let Z ∈ Rm have spherical distribution. Show that BZ is
elliptical for any fixed matrix B ∈ Rp×m.

Exercise 3.5.10. Suppose X ∼ E(µ, Σ), an elliptical distribution. Show
that any linear transformation AX + b, where A ∈ Rn×m and b ∈ Rn, is
also elliptically distributed.

Exercise 3.5.11. Prove that if X ∼ E(0, Σ), then the correlation structure
of X is determined by Σ. Explain why Σ is called the scale matrix rather
than the covariance matrix.

Exercise 3.5.12. Let X = 1√
τ

Z, where Z ∼ Nm(0, Im) and τ ∼ χ2
k/k.

Show that X follows a multivariate t-distribution with k degrees of freedom.
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Exercise 3.5.13. The multivariate Laplace distribution can be derived
as a scale mixture of normals. Specifically, for a random vector X ∈ Rd

following a multivariate Laplace distribution, the density can be expressed
as:

fX(x) =
2

(2π)m/2|Σ|1/2

∫ ∞

0
exp

(
−x⊤Σ−1x

2s

)
e−s/2

s(m+2)/2
ds,

where Σ is the covariance matrix and s is the scaling variable.

(a) Based on this representation, conclude that the multivariate Laplace
distribution is constructed by scaling a normal distribution with an
exponentially distributed random variable:

X | S = s ∼ Nm(0, sΣ), S ∼ Exp(1/2).

(b) For the univariate case (m = 1), simplify the above expression to derive
the probability density function of the univariate Laplace distribution
with scale parameter b > 0.

(c) Use the PDF from part (a) to compute the cumulative distribution
function (CDF) of the univariate Laplace distribution. Verify that the
resulting CDF is:

FX(x) =

 1
2 ex/b if x ≤ 0,

1− 1
2 e−x/b if x > 0.

Exercise 3.5.14. Consider the polar coordinates transformation for X ∈
R3. Write the explicit transformation formulas and compute the Jacobian
determinant for this case.

Exercise 3.5.15. Consider the random vector X = (X1, X2), where X is
uniformly distributed on the unit square in R2, i.e., the probability density
function of X is

f (x1, x2) =

 1
4 , if − 1 ≤ x1, x2 ≤ 1,

0, otherwise.

Answer the following questions.

1. Argue whether X follows spherical distribution.

2. Determine which of the following vectors follow the same distribution as
X:

Y1 =

(
X2

X1

)
, Y2 =

(
−X1

X2

)
, Y3 =

(√
3

2 X1 − 1
2 X2

1
2 X1 +

√
3

2 X2

)
.
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Exercise 3.5.16. Simulate data from a three-component Gaussian mixture
model in R2. Fit a GMM to the data using the EM algorithm and compare
the estimated parameters to the true values. Interpret the results.

Exercise 3.5.17. Using Sklar’s theorem, show how a Gaussian copula can
be used to model the joint distribution of X1 and X2 that both have the c.d.f.
of the form F(x) = 1− ( 1

x )
α for some fixed shape parameter α > 0 (Pareto

distribution with scale parameter 1). Simulate data from this model and
compute empirical and theoretical correlations.

Exercise 3.5.18. Derive the relationship between the density of a multivari-
ate elliptical distribution E(µ, Σ) and its associated spherical distribution.

Exercise 3.5.19. Simulate data from a Clayton copula and compare its tail
dependence properties to a Gaussian copula.

Exercise 3.5.20. Consider a multivariate t-distribution with k degrees of
freedom. Derive its marginal distribution for a single component Xi, and
compute its mean and variance.

Exercise 3.5.21. Verify (3.5) that gives the density of the Gaussian copula
model. Then check also (3.6).

Exercise 3.5.22 (Properties of Copulas). Let X1, X2 be two continuous
random variables with cumulative distribution functions (CDFs) F1(x) and
F2(x), respectively.

(a) Show that the random variables U1 = F1(X1) and U2 = F2(X2) are
uniformly distributed on [0, 1].

(b) Explain why the function C(u1, u2) = P(U1 ≤ u1, U2 ≤ u2) defines a
valid copula.

Exercise 3.5.23 (Gaussian Copula). Consider a bivariate normal random
vector (X1, X2) ∼ N2(0, Σ) with correlation ρ.

(a) Derive the Gaussian copula density formula for this model.

(b) Generate 5000 samples from a Gaussian copula with ρ = 0.7 and
transform them to have marginal exponential distributions with mean 1.
Plot the resulting scatterplot.

Exercise 3.5.24 (Fitting a Copula to Data). Download stock return
data for 3 stocks (e.g., AAPL, MSFT, AMZN) and estimate their empirical
copula.

(a) Compute the empirical copula function.

(b) Fit a Gaussian copula and compare its dependence structure to the
empirical copula.
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(c) Use a Kendall’s tau test to check the fit of the copula model.

Exercise 3.5.25. Equation (3.7) provides the density of the Gaussian mix-
ture model. Verify this function indeed integrates to 1.

Exercise 3.5.26. Propose an algorithm to generate samples from this model
for fixed values of all parameters. Hint: Check Section 3.3.2.

Exercise 3.5.27 (Mixture of Two Gaussians). Consider a Gaussian mix-
ture model (GMM) in R2 with two components:

f (x) = πN2(µ1, Σ1) + (1− π)N2(µ2, Σ2).

(a) Show that the density f (x) is not necessarily unimodal.

(b) Simulate 5000 samples from a GMM with

µ1 = (2, 2), Σ1 = I2, µ2 = (−2,−2), Σ2 = I2, π = 0.5.

Plot the scatterplot of the samples.

(c) Apply the Expectation-Maximization (EM) algorithm to estimate the
parameters.

Exercise 3.5.28. Consider a vector X = (X1, X2) whose distribution is a
mixture of two Gaussian distributions with parameters: π1 = 0.6, π2 = 0.4
and

µ1 = (1, 2), Σ1 =

[
1 0
0 1

]
; µ2 = (0, 0), Σ2 =

[
2 1
1 2

]
.

Denote by f1(x), f2(x) the densities of the two Gaussian components.
Suppose f1(3, 3) ≈ 0.013 and f2(3, 3) ≈ 0.005. Explain how you can use
this information to compute the probability that the observation (3, 3) comes
from the first Gaussian component.

Exercise 3.5.29. Consider a vector X = (X1, X2) whose distribution is a
mixture of two Gaussian distributions with parameters: π1 = 0.7, π2 = 0.3
and

µ1 = (1, 2), Σ1 =

[
1 0
0 1

]
; µ2 = (0, 0), Σ2 =

[
4 0
0 4

]
.

Suppose we get a i.i.d. sample of size 5 from the Bernoulli distribution with
parameter 0.3 (probability of 1) and the sample is (1, 1, 0, 1, 0) suppose we
also have an i.i.d. sample from the bivariate standard normal:[

0.04
1.31

]
,

[
0.98
0.88

]
,

[
0.48
0.97

]
,

[
−0.81
0.28

]
,

[
−0.16
1.94

]
.

Without any explicit calculations, explain how you can use it to get a sample
from the given mixture distribution.
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Exercise 3.5.30 (Likelihood of a Gaussian Mixture Model). Consider a
Gaussian mixture model with K components:

f (x) =
K

∑
k=1

πk Nm(x; µk, Σk).

(a) Write down the log-likelihood function for a sample x1, . . . , xn.

(b) Show that the log-likelihood function is not convex in general.

(c) Explain why the EM algorithm can still find reasonable parameter
estimates.

Exercise 3.5.31. Consider the Gaussian mixture model with a fixed number
of components K. Suppose that a sample x1, . . . , xn is observed and take the
corresponding log-likelihood function. We will show that this function is not
bounded.

1. Consider the density f (x; µ, σ2) of the uniform normal N(µ, σ2). What
happens to f (x; µ, σ2) when σ2 → 0 for a fixed µ? Specifically, evaluate
f (x; µ, σ2) when x = µ.

2. Now consider a GMM with K = 2 and π1 = 0.5, π2 = 0.5. Let x1 be
one of the data points. Show that if one component, say Nm(x; µ1, Σ1),
collapses onto x1 (i.e., µ1 = x1, Σ1 → 0), then the likelihood becomes
arbitrarily large.

Exercise 3.5.32 (Exercise 3.2.2, Mardia et al.). 7 Let u0, u1, . . . , um be 7 Kanti V Mardia, John T Kent, and
Charles C Taylor. Multivariate analysis,
volume 88. John Wiley & Sons, 2024

univariate Poisson random variables with parameters λ0, λ1 − λ0, . . . , λm −
λ0, respectively. Write down the joint distribution of xi = u0 + ui, i =

1, . . . , m, and show that the marginal distributions of x1, . . . , xm are all
Poisson. For m = 2 and writing (x1, x2 = (x, y), show that the p.m.f. is
given by

f (x, y) = exp(−λ1 − λ2 + λ0)
axby

x!y!

s

∑
r=0

x(r)

ar
y(r)

br
λ
(r)
0
r!

,

where s = min{x, y}, a = λ1 − λ0, b = λ2 − λ0, λ1 > λ0 > 0, λ2 > λ0,
and x(r) = x(x− 1) · · · (x− r + 1). Furthermore

E(y|x) = b + λ0
λ1

x, var(y|x) = b +
aλ0

λ2
1

x.

Exercise 3.5.33 (Exercise 3.2.5, Mardia et al.). A random vector has a
multivariate t distribution if its density is of the form

gν(t; µ, Σ) =
cp det Σ−1/2

[1 + ν−1(t− µ)⊤Σ−1(t− µ)](ν+p)/2
,

where

cp =
Γ((ν + p)/2)
(πν)p/2Γ(ν/2)

.

and ν is known as the number of degrees of freedom.
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(i) Let xj = yj/(S/
√

ν), j = 1, . . . , p, where y ∼ Np(0, Ip), S2 ∼ χ2
ν, and

y and S are independent. Show that x has the density gν(x; 0, Ip).

(ii) For ν = 1, the distribution is known as a multivariate Cauchy distribu-
tion. Show that its characteristic function is

exp{iµ⊤t− (t⊤Σt)1/2}.

Exercise 3.5.34 (Exercise 3.2.7, Mardia et al.). Let ei be the i-th canonical
unit vector in Rm. Let yj for j = 1, 2, . . . be a sequence of i.i.d. random
vectors such that P(y = ei) = ai for i = 1, . . . , m; we have ai ≥ 0 and
∑i ai = 1.

(i) Show that E(y) = a, var(y) = diag(a)− aa⊤,

(ii) Let x = ∑n
j=1 yj. Show that x has the multinomial distribution.

(iii) Show that E(x) = na, var(x) = n[diag(a)− aa⊤].

(i) Verify that [diag(a)− aa⊤]1 = −, and hence, conclude that var(x) is
singular.

Exercise 3.5.35 (Kurtosis and Moments). The kurtosis of a random
variable X is defined as

κ =
E[X4]

(E[X2])2 .

(a) Compute the kurtosis of the standard normal distribution N(0, 1).

(b) Compute the kurtosis of the Laplace distribution with mean 0 and vari-
ance 1.

(c) Compare the results and explain why the Laplace distribution has heav-
ier tails.

Exercise 3.5.36 (Cumulants of a Normal Distribution). The cumulant
generating function of a random variable X is defined as

KX(t) = log E[etX ].

(a) Compute KX(t) for X ∼ N(0, 1).

(b) Show that all cumulants of order k ≥ 3 are zero.

Exercise 3.5.37 (Cumulants and Heavy Tails). Consider a Student’s
t-distribution with k degrees of freedom.

(a) Compute the third cumulant of a t-distributed random variable.

(b) Compare the behavior of the t3 and N(0, 1) distributions using cumu-
lants.
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Exercise 3.5.38 (Dependence in Gaussian Mixture Models). Suppose
X ∼ N2(0, I2) with correlation ρ. Now, let Z ∼ Bernoulli(0.5), and define

Y = (1− Z)X + ZW,

where W ∼ N2(0, I2) is independent of X.

(a) Show that Y follows a Gaussian mixture model.

(b) Compute the correlation between Y1 and Y2.

(c) Explain why the dependence structure is different from that of a Gaus-
sian model.





4
Principal Component Analysis

The primary challenge in multivariate statistics is managing a
large number of variables, potentially in the millions. One approach
is to model these variables directly using high-dimensional statistical
techniques. Alternatively, dimensionality reduction methods can
be applied to derive a smaller set of variables that capture the most
significant relationships in the data. These derived variables often
serve as effective substitutes for the original data.

This chapter provides a comprehensive introduction to Principal
Component Analysis (PCA). While the lecture slides illustrate simple
examples of how PCA can project a multivariate dataset onto two
dimensions for visualization and insight, the following sections care-
fully develop the underlying theory. For a nice motivating example
see Figure 4.1 taken from the paper1. 1 Novembre et al, Genes mirror geogra-

phy within Europe, Nature, 2009

Figure 4.1: Principal Component
Analysis (PCA) applied to genetic
data from individuals across Europe,
illustrating how the first two principal
components mirror the geographical
distribution of populations. Each point
represents an individual, color-coded
by their country of origin, with clusters
forming a map-like structure of Europe.
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4.1 Principal components

We start with the following problem. Given a random m-vector
X ∼ (µ, Σ) find a scalar random variable Z = u⊤X with the largest We write X ∼ (µ, Σ) to denote that

EX = µ and var(X) = Σ.variance. This is not well defined if we allow u to be any vector in
Rm. Thus, we constrain to u ∈ Rm such that ∥u∥ = 1. We say that u is
a unit vector. Unit vectors define directions.

Recall var(u⊤X) = u⊤Σu. Thus we solve a constrained problem

maximize u⊤Σu subject to u⊤u = 1.

Since we optimize a continuous function over a compact set, this
optimum must be attained. We encode the constraint ∥u∥ = 1 as
∥u∥2 = u⊤u = 1 to avoid dealing with square roots.

The Lagrangian is

L = u⊤Σu− λ(u⊤u− 1)

and every optimum of the original problem must be a stationary
point of the Lagrangian. We get We derived these gradient formulas

earlier.

∇uL = 2Σu− 2λu.

This shows that every stationary point of L must correspond to an
eigenvector of Σ with λ being the corresponding eigenvalue. If u is
such an eigenvector then the value of the original function is

u⊤Σu = λu⊤u = λ.

Thus, the stationary point of L that gives the maximal value of the
original function is the eigenvector corresponding to the maximal
eigenvalue of Σ (which will be always strictly positive).

Suppose that we have now identified u1 as the first principal direc-
tion and λ1 as the corresponding variance.

We can now look for other linear combinations uncorrelated with
u⊤1 X with maximum variance. The uncorrelation condition is

0 = cov(u⊤1 X, u⊤X) = u⊤1 Σu = λ1u⊤1 u.

Since λ1 > 0, equivalently u⊤1 u = 0. This amounts to solving

maximize u⊤Σu subject to u⊤u = 1 and u⊤1 u = 0.

Here the Lagrangian is

L = u⊤Σu− λ(u⊤u− 1)− νu⊤1 u.

The stationary points satisfy Σu − λu = ν
2 u1. If ν ̸= 0 we get a

contradiction with u⊤u1 = 02 and so ν = 0. But in this case, we 2 Multiplying by u⊤1 from the left,
we get u⊤1 Σu − λu⊤1 u = ν/2, or
equivalently, (λ1 − λ)u⊤1 u = ν/2.
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easily show that u2 has to be the eigenvector of Σ corresponding
to the second largest eigenvalue λ2. And we can continue in this
way obtaining m random variables Z1 = u⊤1 X, . . . , Zm = u⊤m X. By
construction, the variables Zi are uncorrelated and they are ordered
by the size of their variance.

Recall the spectral theorem in Section 1.1.5, which states that we
can decompose Σ = UΛU⊤, where U is an orthogonal matrix and
Λ is diagonal with positive diagonal entries. The columns of U are
eigenvectors and the diagonal entries of Λ are the corresponding
eigenvalues. If the entries of Λ are in decreasing order, the columns
of U are the subsequent principal directions and the PCA transforma-
tion Z = (Z1, . . . , Zm) satisfies

Z = U⊤X.

4.2 Principal Components for Observed Data

Suppose we have samples x1, . . . , xn ∈ Rm. Write them as rows in a
data matrix X ∈ Rn×m. We then standardize the data so that each
column has mean zero and variance one3. Denote the normalized 3 In practice, we normalize data so

that the diagonal entries of Sn are all
equal to 1. To see why this is important,
perform a simple experiment: Take
any preferred dataset and multiply one
of the observed variables by a large
number (e.g., by 1000 when changing
units from kilograms to grams). See
how this affects the results.

data matrix by X̃.
We can then compute the sample correlation matrix Sn = 1

n X̃⊤X̃
and proceed exactly as above, replacing Σ with Sn. We again write
the spectral decomposition Sn = UΛU⊤, where U is the matrix of
loadings.

We can now use it to project the data to a d-dimensional subspace
with d < m. Let u1, . . . , ud be the first d principal directions4. The 4 These are the first d columns of U,

assuming the diagonal entries of Λ are
in the decreasing order.

scores are the images of the centered data points x̃1, . . . , x̃n in the
coordinate system defined by the d loadings. These are the points,
y1, . . . , yn, given by Recall from linear algebra that if

u1, . . . , ud is an orthogonal basis of a
linear subspace V ⊆ Rm and v ∈ V,
then v = (v⊤u1)u1 + · · ·+ (v⊤um)um

yj = (u⊤1 x̃j, . . . , u⊤d x̃j).

In other words, Y ∈ Rn×d with rows y1, . . . , yn is obtained by taking
the first d columns of X̃U.

4.3 Simple Graphics for PCA

4.3.1 Scree Plot and Fraction of Variance Explained

Suppose that U is the matrix of principal directions, that is, Sn =

UΛU⊤. Then tr(Sn) = λ1 + · · ·+ λm. It follows that Note that Sii = Var(e⊤i X) and so
λ1 ≥ maxi(Sii).

S11 + · · ·+ Smm = λ1 + · · ·+ λm

and so the total variance is preserved by PCA.
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Often, most of the variance is explained by a small number of
principal components. The amount of the total variance explained by
the first k principal components is

λ1 + · · ·+ λk
λ1 + · · ·+ λm

∈ [0, 1]

and we can choose k, for example, so that this ratio is at least 0.9.
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Figure 4.2: An example of the Scree
plot. Here the first three components
capture most of the variance. If Σii = 1
for all i, then λi

m × 100% is the percent-
age of the variance explained by the i-th
component.

In R, simply run princomp(data, cor=TRUE).

4.3.2 Biplot

In the slides, we presented a number of biplots. What is this? A PCA
biplot is a graphical representation that shows both the observations
(data points) and the principal components’ directions (loadings)
in a single plot. It provides insight into how the original variables
contribute to the principal components and how the observations
relate to each other in the space of the principal components.

The idea is simple. We compute the first two principal directions
u1, u2 ∈ Rm and each observation in the dataset is projected onto
the principal components. These projections were called scores in
Section 4.2. They are computed as (u⊤1 xi, u⊤2 xi) for i = 1, . . . , n. This
is our 2-dimensional dataset.

The loadings represent the contribution of each original variable to
the principal components. Loadings are the coefficients of the linear
combinations that define each principal component. Concretely, these
are obtained from the first two columns of the loading matrix U. In a
biplot, these are typically shown as arrows or vectors, indicating the
direction and strength of each variable’s influence on the principal
components.

4.4 PCA and Affine Approximating Subspaces

As before, let X ∈ Rn×m be the data matrix representing n points
xi in Rm. We again assume the data points in X are centered and
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PCA Biplot Figure 4.3: An example of a biplot with
scores as blue dots and loadings as
brick-red arrows.

normalized. In this case Sn = 1
n X⊤X is a correlation matrix. Recall

that Sn = UΛU⊤ is the spectral decomposition of Sn and so the SVD
of X must be of the form X = VDU⊤ for some orthogonal V and
the diagonal entries of D are the singular values of X. In this way
1
n X⊤X = 1

n UD⊤DU⊤ and we get the relation Λ = 1
n D⊤D.

Every d-dimensional affine subspace of Rm can be written as µ +

L, where L is a d-dimensional linear subspace of Rm and µ ∈ Rm.
Without loss we can assume µ ∈ L⊥5. 5 Indeed, we can uniquely decompose µ

as u + v with u ∈ L and v ∈ L⊥ and so
µ + L = v + L.

Let {w1, . . . , wd} be an orthonormal basis of L. Then, each x ∈
µ + L is of the form

x = µ + Wz,

where W is the matrix with columns w1, . . . , wd and z ∈ Rd. By
orthogonality, we have W⊤W = Id. Since µ ∈ L⊥, W⊤µ = 0.

To compute the distance of xi to µ + L, we find the orthogonal
projection of xi onto this subspace. Analytically, we solve

minimize ∥xi − (µ + Wzi)∥2 subject to zi ∈ Rd.

We easily check that the optimal zi satisfies

ẑi = W⊤(xi − µ) = W⊤xi

and so the projection of xi onto the affine subspace µ + L is

x̂i := µ + WW⊤xi.

The goal is to find an affine subspace of dimension d that mini-
mizes the sum of squared distances between the points xi and their
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projections onto this subspace. That is, we aim to solve the following
optimization problem:

minimize
n

∑
i=1
∥x̂i − xi∥2 =

n

∑
i=1
∥µ− (Im −WW⊤)xi∥2

subject to µ ∈ Rm, W ∈ Rm×d, W⊤W = Id. Optimizing first with
respect to µ we get

µ̂ = (Im −WW⊤)x̄n = 0,

where we used the fact that the data are centred. Thus, equivalently
we have

minimize
n

∑
i=1
∥xi − x̂i∥2 subject to W⊤W = Id, (4.1)

where x̂i = WW⊤xi.
Let ∥A∥F =

√
tr(AA⊤) denote the Frobenius norm of A6. We have 6 The space Rn×m admits a natural

inner product ⟨A, B⟩ = tr(AB⊤). The
Frobenius norm is the induced norm:
∥A∥F =

√
⟨A, A⟩ =

√
∑i,j A2

ij

n

∑
i=1
∥xi − x̂i∥2 = ∥X− X̂∥2

F = ∥X− XWW⊤∥2
F.

Note that XWW⊤ has rank ≤ d. Thus, the following result is relevant. ← Exercise 4.8.10

Theorem 4.4.1 (Eckart-Young Theorem). Given X ∈ Rn×m with SVD
X = VDU⊤ and the problem: minimize ∥X−M∥F subject to rank(M) ≤
d, the solution is given by M̂ = VDdU⊤, where Dd is obtained from D by
zeroing out all but the first d diagonal entries.

For a proof and a more detailed discussion, see Section I.9 in 7. 7 Gilbert Strang. Linear Algebra
and Learning from Data. Wellesley-
Cambridge Press, Wellesley, MA, 2019.
ISBN 9780692196380

Using this result, it is enough to show that there is a W with
W⊤W = Id such that M̂ = XWW⊤ or, in other words,

VDdU⊤ = VDU⊤WW⊤. (4.2)

Taking W = Ud as the first d columns of U we easily verify (4.2).
Indeed,

VDU⊤UdU⊤d = VD

[
Id

0

]
U⊤d = VD

[
U⊤d

0

]
= VDd

[
U⊤d

0

]
= VDdU⊤.

4.5 Principal Component Regression (PCR) and Probabilistic PCA
(PPCA)

4.5.1 Principal Component Regression

In some cases, PCA can be used as a preprocessing step in regression
to reduce the dimensionality of the data and remove multicollinear-
ity. By using the first few principal components as predictors in the
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regression model, we can obtain more stable estimates of the regres-
sion coefficients and improve the interpretability of the model.

Suppose y ∈ Rn is the observations of the dependent variable
and X ∈ Rn×m represents the observations of the m covariates. In
the standard linear regression setting we learn the linear regression
coefficient β by minimizing ∥y− Xβ∥2. The resulting OLS estimator
has bad statistical properties if the columns of X are colinear, which
cannot be avoided if m is larger than n. In this case, it is a natural
approach to construct a low dimensional PCA embedding of the orig-
inal data. Using r principal components we get a new data matrix
Z ∈ Rn×r that represents the scores in Rr. Now we could estimate
a new linear regression coefficient θ ∈ Rr by minimizing ∥y− Zθ∥2

exactly as before.

4.5.2 Probabilistic PCA

There is a related generative model in which we model a random
vector X through the linear relation

X = µ + WZ + ε, Z ∼ Nr(0, Ir), ε ∼ Nm(0, σ2 Im), Z ⊥⊥ ε.

To have a concrete example, suppose r = 1, m = 2, µ = (0, 0),
and W = (1, 1

2 ). Sampling Z from N(0, 1) produces blue points in
Figure 4.5.2. Additionally, sampling ε ∼ N2(0, I2) and adding it to
the corresponding blue points gives the red points, which are the
samples from the underlying PPCA model.

It is not hard to see that X|Z is Gaussian and so X is also marginally
Gaussian with mean µ and covariance σ2 Im + WW⊤. It turns out that
this model admits a closed-form formula for the MLE, which mimics
the PCA solution.
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Theorem 4.5.1. With the notation as above, let Sn = UΛU⊤ with the
diagonal entries of Λ satisfying λ1 ≥ · · · ≥ λm. The MLE in the PPCA
model satisfies

µ̂ =
1
n

n

∑
i=1

xi,

σ̂2 =
1

m− r

m

∑
i=r+1

λi,

Ŵ = Ur(Λr − σ̂2 Ir)
1
2 Q,

for any orthogonal matrix Q.

Note that the column span of Ŵ is the same as the column span of
Ud and so the MLE corresponds to PCA.

4.6 PCA and Matrix Completion*

Suppose that now X ∈ Rn×m contains some missing data denoted as
na. We would like to be able to:

1. Estimate the missing entries.

2. Compute the PCA in the presence of missing data.

We saw in Theorem 4.4.1 that SVD(r) solves

minimize∥X−M∥2
F subject to rank(M) ≤ r.

Let Ω ∈ {0, 1}n×m be such that Ωij = 0 if the corresponding entry
of X is na and Ωij = 1 otherwise. Define Ω ◦ X as the Hadamard
(entrywise) product:

(Ω ◦ X)ij =

0 if Xij = na,

Xij otherwise.

The optimization problem for estimating missing entries and per-
forming PCA is:

minimize∥Ω ◦ (X−M)∥2
F subject to rank(M) ≤ r.

4.6.1 Hardimpute Algorithm

The hardimpute algorithm iteratively solves the matrix completion
problem:

1. Initialize M0 = 0n×m.

2. Iterate until convergence:

• X∗ = Ω ◦ X + (1n×m −Ω) ◦Mj−1.

• Mj = arg minM:rank(M)≤r ∥X∗ −M∥2
F.
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4.7 Appendix: Covariance matrix estimation in high dimensions

In PCA we use the sample covariance matrix Sn as a natural estima-
tor of the population covariance matrix Σ. We note however that this
is only a good estimator when n is much larger than m. Otherwise,
we may need to use an alternative estimator. In this section we very
briefly overview some of the existing techniques.

4.7.1 Motivating alternative estimators

As noted in Section 1.3.3, the sample covariance matrix is a natu-
ral estimator due to its small bias, which diminishes rapidly as n
increases. Furthermore, it can be shown to be asymptotically Gaus-
sian under the assumption that the underlying dimension m remains
fixed. However, this asymptotic analysis becomes inadequate in sce-
narios where n is not significantly larger than m, as the standard
assumptions no longer hold.

For concreteness, suppose that we measure quality of this estima-
tor by analyzing the distance ∥Sn − Σ∥ in the operator norm

∥Sn − Σ∥ := max
∥u∥=1

∥(Sn − Σ)u∥.

Under mild moment conditions, an argument based on the classi-
cal law of large numbers (and continuous mapping theorem) can be
used to show that the difference ∥Sn − Σ∥ converges to zero in prob-
ability as n → ∞. Consequently, Sn is a consistent estimator of the
population covariance Σ in the classical setting.

What happens when we also allow m to tend to infinity? To make
this question a bit more formal, consider sequences of problems
(Sn, Σ) indexed by the pair (n, m), and suppose that we allow both n
and m grow with their ratio remaining fixed, say m/n = γ ∈ (0, 1). In
Figure 4.4 we plot the results of simulations for the case when Σ = Im

with each sample x(i) ∼ N(0, Im).
Using n samples we compute Sn and compute its eigenvalues.

They should be all nonnegative and actually positive if n ≥ p. We
then construct a histogram for these eigenvalues. Since in our sim-
ulations n is large (we take n = 1000), classical theory suggests, all
eigenvalues should be close to 1 as Sn should be close to Im. But this
is not what we observe. It actually seems that the eigenvalues follow
a distribution that is well spread out; cf. Figure 4.4.

This situation has been well studied in random matrix theory. The
underlying eigenvalue distribution is called the Marchenko-Pastur
law. Define λmin = (1−√γ)2 and λmax = (1 +

√
γ)2 then the law
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admits density

fMP(λ) =
1

2πγλ

√
(λmax − λ)(λ− λmin) for λmin ≤ λ ≤ λmax.
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Figure 4.4: The histogram of eigenval-
ues and the corresponding Marchenko-
Pastur law for n = 1000 and p = 200
(equiv. γ = 0.2) on the top, p = 500
(equiv. γ = 0.5) in the bottom.

If you want to play around with this, this is R code that produces
one of the plots in Figure 4.4.

# Load necessary libraries

library(MASS)

library(ggplot2)

# Simulation parameters

n <- 1000 # Number of samples

p <- 200 # Dimensionality

n_sim <- 100 # Number of simulations

# Function to compute eigenvalues of the sample covariance matrix

compute_eigenvalues <- function(n, p) {

data <- mvrnorm(n = n, mu = rep(0, p), Sigma = diag(p)) sample_cov <-

cov(data) # Compute sample covariance matrix↪→

eigen(sample_cov)$values # Return eigenvalues

}

# Perform simulations

set.seed(42) # For reproducibility

eigenvalues_list <- replicate(n_sim, compute_eigenvalues(n, p), simplify =

FALSE)↪→

all_eigenvalues <- unlist(eigenvalues_list)

# Parameters for the Marchenko-Pastur density

gamma <- p / n # Aspect ratio

lambda_min <- (1 - sqrt(gamma))^2 # Lower bound of the MP support

lambda_max <- (1 + sqrt(gamma))^2 # Upper bound of the MP support

# Marchenko-Pastur density function

mp_density <- function(lambda, gamma) {

if (lambda >= lambda_min && lambda <= lambda_max) {

return((1 / (2 * pi * gamma)) * sqrt((lambda_max - lambda) * (lambda -

lambda_min)) / lambda)↪→

} else {return(0)}

}

# Generate MP density values

lambda_seq <- seq(lambda_min, lambda_max, length.out = 500)

mp_values <- sapply(lambda_seq, mp_density, gamma = gamma)

# Plot normalized histogram and MP density

ggplot(data = data.frame(eigenvalue = all_eigenvalues), aes(x =

eigenvalue)) +↪→

geom_histogram(aes(y = ..density..), bins = 50, color = "black", fill =

"skyblue", alpha = 0.5) +↪→

geom_line(data = data.frame(lambda = lambda_seq, density = mp_values),

aes(x = lambda, y = density), color = "deepskyblue4", size = 1.2) +↪→

labs(title =

"Comparison of Eigenvalue Histogram and Marchenko-Pastur Density",↪→

x = "Eigenvalue",y = "Density") + theme_minimal()

The Marchenko-Pastur law is an asymptotic result, albeit with
a non-classical flavor, as it allows both the sample size n and the
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dimension m to diverge simultaneously. Similar to classical asymp-
totics, it provides an approximation for the distribution of eigenval-
ues even when n and m are finite. When m is not negligible relative
to n, this approximation significantly outperforms the classical one.

4.7.2 Review of alternative estimators

If the covariance matrix has some special structure, incorporating
this structure in the estimation procedures can greatly help in high-
dimensional scenarios. Regularization introduces constraints or
penalties to improve the stability and accuracy of covariance esti-
mates. Key approaches include:

Linear shrinkage. The linear shrinkage estimator is given by:

Σ̂ridge = (1− λ)Sn + λIm,

where λ ∈ [0, 1] is the shrinkage parameter. Choosing λ appropri-
ately (e.g., via cross-validation) balances bias and variance, ensuring
better performance in high-dimensional settings.

The intuition behind shrinking toward the identity matrix arises
from several considerations. First, as we already noted, in high-
dimensional settings where p ≈ n or p > n, the sample covariance
matrix Sn is often unstable, highly variable, or even singular (non-
invertible). Adding λIm stabilizes the estimate by ensuring that Σ̂ridge

is well-conditioned and invertible. Second, the shrinkage estima-
tor introduces bias by pulling Sn toward Im, but it reduces variance,
which can dominate in high dimensions. A well-chosen λ balances
this trade-off, leading to improved estimation accuracy for the covari-
ance matrix.

Graphical Lasso (Sparse Precision Matrix Estimation). For many
high-dimensional datasets, it is reasonable to assume that vari-
ables are conditionally independent given others. In Section 2.3.2 we
showed that, at least in the Gaussian case, certain type of conditional
independences correspond to zeros in the inverse covariance matrix.
In situations, where K = Σ−1 is indeed sparse we can leverage this by
using the graphical lasso:

K̂ = arg min
Θ≻0
{tr(SnK)− log det(K) + λ∥K∥1} ,

where penalizing ∥K∥1 = ∑i ̸=j |Kij| with penalty parameter λ >

0 promotes sparsity. The resulting estimate K̂ can be inverted to
approximate Σ. We discuss this estimator in much more detail in
Chapter 8.
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Factor Models. In many applications, the data can be modeled as
having a low-rank structure plus noise. A covariance matrix in such
settings can be decomposed as:

Σ = LL⊤ + Ψ,

where L ∈ Rp×r (r ≪ p) is a low-rank factor matrix, and Ψ is a
diagonal matrix capturing idiosyncratic variances. Estimation could
proceed by minimizing reconstruction error:

min
L,Ψ
∥Sn − LL⊤ −Ψ∥2

F.

We discuss the closely related Factor Analysis model in Chapter 7.

Thresholding-Based Methods. A simple and effective approach for
high-dimensional covariance estimation is to threshold small entries
in Sn, which helps reduce noise and enforce sparsity. For a given
threshold τ > 0, the thresholded covariance estimate is:

Σ̂thresh =
[
(Sn)ij · I(|(Sn)ij| > τ)

]
i,j .

Thresholding methods rely on the assumption that most entries in
the covariance matrix are small or zero, which is common in many
applications.

Banding and Tapering for Structured Covariance Matrices. For
structured data, such as time series or spatial data, covariance matri-
ces often exhibit banded or tapering structures, where correlations
decay with distance. It is them natural to impose this structure in the
estimation process. For an illustration what we mean here, consider
the problem in Exercise .

Tyler’s scatter estimator. This estimator came from the robust statis-
tics and it assumes that the data come from an elliptical distribution
centred at the origin. The objective is to estimate the scale matrix Σ.8 8 Recall from Section 3.1.5 that the

covariance matrix in the elliptical
distribution is a multiple of the scale
matrix Σ, var(X) = cΣ for some c > 0.

Suppose X ∼ E(0, Σ) and set Y = Σ−1/2X. Then Y has an spherical
distribution, so that Y/∥Y∥ has a uniform distribution on the unit
sphere in Rm. It is easy to show that the covariance matrix of such a ← Exercise 3.5.3

vector is 1
m Im. Hence

E[ 1
∥Y∥2 YY⊤] = E[ 1

X⊤Σ−1X Σ−1/2XX⊤Σ−1/2] = 1
m Im,

or equivalently, We could use our Mahalonobis distance
notation: ∥X∥2

Σ = X⊤Σ−1X.E[ 1
X⊤Σ−1X XX⊤] = 1

m Σ. (4.3)

Now suppose we observe a random sample x(1), . . . , x(n) with the
same distribution as X. The sample version of (4.3) is given by 9 9 To estimate E f (X) is it natural to use

1
n ∑i f (x(i)).
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∑
i

1
x(i)
⊤

Σ−1x(i)
x(i)x(i)

⊤
= n

m Σ. (4.4)

Under mild conditions on the data (e.g. n ≥ m and no linear depen-
dence in the data), it turns out that (4.4) has a unique solution Σ̂, say,
defined up to a scalar multiple. The estimator is typically computed
using an iterative fixed-point algorithm:

1. Start with an initial positive definite matrix Σ̂(0), such as the sam-
ple covariance matrix.

2. Iterate the update rule:

Σ̂(k+1) =
m
n

n

∑
i=1

x(i)x(i)
⊤

x(i)⊤(Σ̂(k))−1x(i)
.

4.8 Exercises

Exercise 4.8.1. Suppose you apply PCA to a dataset and find that the first
two principal components explain 95% of the variance. What does this tell
you about the structure of the data?

Exercise 4.8.2. Let X ∼ Nm(0, Σ). Show that PCA transformations
preserve normality, i.e., the principal components also follow a normal dis-
tribution. Show that in this case the principal components are independent.

Exercise 4.8.3. Explain how the PCA can be obtained from the SVD of the
underlying data matrix X. For simplicity assume that the data points are
centered.

Exercise 4.8.4. Why is it necessary to standardize the data (zero mean, unit
variance) before applying PCA when variables are measured on different
scales?

Exercise 4.8.5. Show that the principal components are uncorrelated by
computing the covariance matrix of the transformed variables.

Exercise 4.8.6. Suppose we perform PCA on a dataset where one variable is
a linear combination of the others. What will happen to the eigenvalues, and
how will this affect the principal components?

Exercise 4.8.7. Suppose we obtain the first k principal components of a
dataset. How can these be used for dimensionality reduction? What are the
consequences of choosing a very small or very large k?

Exercise 4.8.8. Perform PCA on the following dataset:

X =


1 2
3 4
5 6
7 8





86 methods for multivariate data (sta437)

Compute the covariance matrix, find the eigenvalues and eigenvectors, and
project the data onto the first principal component.

Exercise 4.8.9. If the first principal component explains 80% of the total
variance, what does this imply about the structure of the data? Provide an
example where most of the variance is captured by one component.

Exercise 4.8.10. Show that the matrix AB with A ∈ Rk×l and B ∈ Rl×m

has rank ≤ l.

Exercise 4.8.11. Consider a sample x(1), . . . , x(n) from the three-dimensional
Gaussian distribution N3(0, Σ), where Σ is assumed to take the form

Σ =

a b b
b a b
b b a

 = (a− b)I3 + b131⊤3 .

Propose an estimator for the covariance matrix and check its performance
using simulations. Bonus question: The Sylvester’s determinant theorem
states that for any two matrices A, B ∈ Rm×n it holds that det(Im +

AB⊤) = det(In + B⊤A). Use this fact to find conditions on a, b that assure
that Σ is positive definite.



5
Some Other Dimension Reduction Methods

Dimensionality reduction techniques beyond PCA are often nec-
essary when the underlying data structure is nonlinear or when
variance-based methods like PCA do not capture enough of the es-
sential relationships in the data. The goal of this chapter is to show
what are the possible ways to handle non-linearity with preserving
some of the computational advantages of linear methods. We do it
by introducing two state-of-the-art techniques: Uniform Manifold
Approximation and Projection (UMAP). This part of the lecture will
be presented on slides and will be relatively high-level.

5.1 Multidimensional Scaling (MDS)

Multidimensional Scaling (MDS) is a statistical technique used to
represent data points in a lower-dimensional space while preserving
their pairwise distances as faithfully as possible.

5.1.1 Problem Setup

Given n objects, let ∆ = [δij] be an n × n dissimilarity matrix. A
dissimilarity matrix is simply a symmetric matrix with zero diagonal
entries and nonnegative off-diagonal entries. Its entry δij represents
the dissimilarity between objects i and j. In our setting, the objects
will be the data points x1, . . . , xn ∈ Rm and δij will be their mutual
distances, but this setting is much more general.

The goal of MDS is to find a configuration of points {y1, y2, . . . , yn}
in a d-dimensional space (d≪ m) such that:

dij = ∥yi − yj∥ ≈ δij.

5.1.2 Classical MDS Solution

Classical MDS assumes that for some m ∈ N and x1, . . . , xn ∈
Rm such that the dissimilarities δij are Euclidean distances, δij =
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∥xi − xj∥. Let ∆ ⊙ ∆ = [δ2
ij] be the matrix of squared dissimilarities

(Hadamard product of ∆ with itself). Note that the entries of XX⊤ Do not confuse XX⊤ with X⊤X.

satisfy (XX⊤)i,j = x⊤i xj and

δ2
ij = ∥xi − xj∥2 = (XX⊤)i,i + (XX⊤)j,j − 2(XX⊤)i,j.

Equivalently, using matrix algebra,

∆⊙ ∆ = diag(XX⊤)11⊤ + 11⊤diag(XX⊤)− 2XX⊤.

Recall that the centering matrix H = In − 1
n 11⊤ satisfies H1 = 0 and

so
B := −1

2
H(∆⊙ ∆)H = HX(HX)⊤ = X̃X̃⊤.

A natural way to get a lower-dimensional embedding of the centered
data x̃1, . . . , x̃n in a d-dimensional space that approximately preserves
the mutual distances is by approximating the matrix B with a rank d
matrix YY⊤ with Y ∈ Rn×d. We already saw in Theorem 4.4.1 how to
solve this problem. In this way we obtain y1, . . . , yn ∈ Rd such that
∑i,j(⟨xi, xj⟩ − ⟨yi, yj⟩)2 is minimized

As suggested by Theorem 4.4.1, we first perform eigenvalue de-
composition: B = VΛV⊤, or equivalently, singular value decompo-
sition of HX. Then, we select the top d eigenvalues λ1, λ2, . . . , λd (as-
sumed positive) and their corresponding eigenvectors u1, u2, . . . , ud.
The n× d configuration matrix is:

Y = UdΛ1/2
d ,

where Ud contains the top d eigenvectors, and Λ1/2
d is the diagonal

matrix of the square roots of the top d eigenvalues.
Below is a simple example demonstrating classical MDS using

simulated data:

# Generate sample data and apply classical MDS

set.seed(42)

library(MASS)

library(ggplot2)

# Generate sample data

X <- mvrnorm(100, mu = rep(0, 5), Sigma = diag(5))

# Compute distance matrix and apply MDS

dist_matrix <- dist(X)

mds_result <- cmdscale(dist_matrix, k = 2)

# Plot the results

data <- data.frame(X1 = mds_result[, 1], X2 = mds_result[, 2])

ggplot(data, aes(x = X1, y = X2)) +

geom_point(color = "blue", alpha = 0.7) +

ggtitle("Classical MDS Projection") +

xlab("MDS Dimension 1") +

ylab("MDS Dimension 2") +

theme_minimal()
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The above code generates 5-dimensional data and applies classical
MDS to project it onto a two-dimensional space, preserving the pair-
wise distances as much as possible. Extend this code to compare the
original distances to the one obtained by MDS.

5.1.3 Duality between Classic MDS and PCA

The solution for classical MDS was given by the top d eigenvectors
of B = HX(HX)⊤ ∈ Sn. On the other hand, the d principal direc-
tions in PCA with data X were defined as the top d eigenvectors of
(HX)⊤HX ∈ Sm.

Suppose n ≤ m. Let ui ∈ Rm denote the i-th principal component
loading vector, where ∥ui∥ = 1 and i = 1, . . . , m. Thus, we have
(HX)⊤HX = UΛU⊤, where U = [u1, . . . , um] and Λ ∈ Sm is the
diagonal matrix with the corresponding eigenvalues. By the singular
value decomposition we have, HX = VΛ̃1/2U⊤ for some V ∈ O(n).
Here Λ̃1/2 ∈ Rn×m is a matrix such that (Λ̃1/2)ii =

√
λi for i =

1, . . . , m and all the other entries are zero. Thus,

HX(HX)⊤ = V

[
Λ 0
0 0

]
V⊤.

Recall from Section 4.2 that the scores in PCA after taking the first
d principal directions are given by the first d columns of HXU =

VΛ̃1/2. In other words, we get the following result.

Theorem 5.1.1. Consider the data X ∈ Rn×m. The classical MDS problem
on δij = ∥xi − xj∥ for i ̸= j is equivalent to the PCA problem on the centred
data HX.

5.2 Laplacian Eigenmaps (Spectral Embedding)

Laplacian Eigenmaps, also known as spectral embedding, is a non-
linear dimensionality reduction technique that constructs low-
dimensional representations of data while preserving local geometric
structure. It is widely used in manifold learning and graph-based
machine learning.

5.2.1 Problem Setup

Let x1, x2, . . . , xn be data points in a high-dimensional space Rm.
The goal is to map these points into a low-dimensional space Rd

(d ≪ m) such that local proximity relationships in the original space
are preserved.

We start by constructing a weighted graph G = (V, E, W), where:

• V = {1, 2, . . . , n} represents the data points.
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• E represents edges between points based on some notion of prox-
imity (e.g., k-nearest neighbors or ϵ-neighborhoods).

• W is the weight matrix, where Wij represents the similarity be-
tween points xi and xj.

For simplicity of the exposition we assume that G is connected and
all edge weights are strictly positive.

Two common methods to define W are:

• Binary Weights:

Wij =

1, if xj is a neighbor of xi,

0, otherwise.

• Heat Kernel:

Wij =

exp
(
− ∥xi−xj∥2

2σ2

)
, if xj is a neighbor of xi,

0, otherwise.

Here, σ > 0 controls the scale of the similarity.

5.2.2 Graph Laplacian

To compute the Laplacian Eigenmaps, we first define the graph
Laplacian, which captures the structure of the graph.

The degree matrix D is a diagonal matrix where Dii = ∑n
j=1 Wij

represents the degree of vertex i. Since G is connected and all weights
are positive, also all diagonal entries of D are strictly positive. The
graph Laplacian is defined by ← Exercise 5.5.2

L := D−W. (5.1)

In Exercise 5.5.2 you will show that L is a positive semi-definite ma-
trix with non-trivial kernel, L1 = 0. All its off-diagonal entries are
non-positive. Under the assumption that G is connected and all edge
weights are strictly positive we can also show that rank(L) = n− 1.

The normalized graph Laplacian is

Ln = D−1/2LD−1/2.

Note that Ln has 1s on the diagonal.

5.2.3 Objective Function

Laplacian Eigenmaps minimize an objective that preserves local
distances by penalizing large differences between embeddings of
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connected points. Let y1, . . . , yn ∈ Rd be the embedding coordinates
of the points and let Y ∈ Rn×d be the corresponding data matrix. The
objective is:

minimize
1
2 ∑

i,j
Wij∥yi − yj∥2 (5.2)

with respect to Y ∈ Rn×d. The interpretation here is clear. If the
weight Wij is high, that is when xi and xj are close, it enforces yi and
yj to be close too.

To efficiently deal with this objective function, we formulate the
following result.

Lemma 5.2.1. We have 1
2 ∑i,j Wij∥yi − yj∥2 = tr(Y⊤LY).

Proof. We use similar arguments as in Section 5.1.2. Note that (YY⊤)i,j =

y⊤i yj and that the diagonal entries of 11⊤W and W11⊤ are in both
cases equal to the diagonal entries of D1. Also, directly by definition, 1 Indeed, (11⊤W)i,i = e⊤i 11⊤Wei =

1⊤Wei and (W11⊤)i,i = e⊤i W11⊤ei =
e⊤i W1. Both quantities are equal be-
cause W is symmetric.

W1 = D1. We also easily verify that the matrix

E = diag(YY⊤)11⊤ + 11⊤diag(YY⊤)− 2YY⊤

has entries Eij = ∥yi − yj∥2 and so 1
2 ∑i,j Wij∥yi − yj∥2 = 1

2 tr(WE).
Since D is a diagonal matrix and E has zeros on the diagonal, we get
that tr(WE) = − tr(LE). Since L1 = 0 we get also that tr(LE) =

−2 tr(LYY⊤). It follows that

1
2 ∑

i,j
Wij∥yi − yj∥2 = 1

2 tr(WE) = − 1
2 tr(LE) = tr(LYY⊤),

which concludes the proof.

By Lemma 5.2.1, the optimization problem in (5.2) is equivalent
to minimizing tr(Y⊤LY) with respect to Y ∈ Rn×d. To avoid trivial
solutions (e.g., Y = 0), we impose:

• Orthogonality constraint: Y⊤DY = Id.

• Centering constraint (optional): Y⊤D1 = 0.

The optimization problem becomes:

minimize tr(Y⊤LY) subject to Y⊤DY = Id and Y⊤D1 = 0.

Denoting Ỹ = D1/2Y we equivalently get

minimize tr(Ỹ⊤LnỸ) subject to Ỹ⊤Ỹ = Id and Ỹ⊤D1/21 = 0.
(5.3)

Denote by y1, . . . , yd the columns of Ỹ. The constraints in (5.3) say
that y1, . . . , yd are orthonormal and they are all orthogonal to the
vector y0 = D1/21. This vector is special as it corresponds to the
eigenvector of Ln with eigenvalue 0.
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To link (5.3) to a known optimization problem, note that

tr(Ỹ⊤LnỸ) = y⊤1 Lny1 + · · ·+ y⊤d Lnyd.

We know from our discussion PCA that the optimal solution can be
found by first optimizing y⊤1 Lny1 subject to ∥y1∥ = 1 and y1 ⊥ y0,
then proceed recursively, at each step t = 2, . . . , d optimizing y⊤t Lnyt

subject to the restriction that ∥yt∥ = 1 and yt ⊥ y0, . . . , yt−1. The
solution is obtained by finding the first d + 1 eigenvectors of the
eigenproblem:

Lny = λy,

corresponding to d + 1 smallest eigenvalues, disregrading the first
eigenvector, and stucking the reminaing d vectors as columns of Ỹ.

5.2.4 Example: Twisted curve

To have a simple illustration of this method, consider data that align
along a twisted curve as depicted in Figure 5.1. The following code
takes the corresponding data (blue points on the curve) and feeds
them both to PCA and Laplacian eigenmap method.

Twisted curve
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Figure 5.1: Twisted curve in 3D.

# Load libraries

library(Rdimtools)

library(ggplot2)

library(scatterplot3d)

library(gridExtra)

# Generate twisted curve data

set.seed(123)

n <- 1000

t <- 1.5 * pi * (1 + 2 * runif(n)) # Angle

x <- t * cos(t)

y <- t * sin(t)

z <- 100*t # Add height to the roll

twisted <- data.frame(x = x, y = y, z = z)

# Plot 3D twisted curve

scatterplot3d(twisted$x, twisted$y, twisted$z, color = 'blue',

main = "Twisted curve", xlab = "x", ylab = "y", zlab = "z")

# Convert twisted curve data to matrix

twisted_matrix <- as.matrix(twisted)

# Apply PCA

pca_result <- prcomp(twisted_matrix, center = TRUE, scale. = TRUE)

pca_2d <- as.data.frame(pca_result$x[, 1:2]) # Select first 2 principal

components↪→

colnames(pca_2d) <- c("PC1", "PC2")

# Apply Laplacian Eigenmaps

lapeig_result <- do.lapeig(twisted_matrix, ndim = 2, type =

c("proportion", 0.1))↪→

lapeig_2d <- as.data.frame(lapeig_result$Y)

colnames(lapeig_2d) <- c("LE1", "LE2")
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# Plot PCA result

p1 <- ggplot(pca_2d, aes(x = PC1, y = PC2, color = z)) +

geom_point() +

labs(title = "PCA Projection",

x = "Principal Component 1", y = "Principal Component 2") +

theme_minimal()

# Plot Laplacian Eigenmaps result

p2 <- ggplot(lapeig_2d, aes(x = LE1, y = LE2, color = z)) +

geom_point() +

labs(title = "Eigenmaps Projection",

x = "Laplacian Dimension 1", y = "Laplacian Dimension 2") +

theme_minimal()

# Display plots side by side using gridExtra

grid.arrange(p1, p2, ncol = 2)
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Figure 5.2: PCA and Laplacian eigen-
map projections of the twisted curve
data. The coloring corresponds to the
value of the z-axis.

As observed in Figure 5.2 the principal directions chosen by PCA
project the data so that points that are very far away from each other
get glued together. On the other hand the nonlinear embedding
defined by the eigenmap separated all the points. In other words,
the method is able to learn the underlying manifold and propose an
embedding that preserves the geometry.

5.2.5 Theoretical background story*

I did not provide any explanation behind the Laplacian eigenmap
method. This story is however very beautiful and I recommend you
to read about this if you have the necessary background. On a very
high level: The Laplace operator ∆ is a second-order differential
operator in Rm. For each twice differentiable function it is defined by

∆ f =
m

∑
i=1

∂2 f
∂x2

i
.

The spectrum of the Laplace operator consists of all eigenvalues λ ∈
R for which there is a corresponding eigenfunction f with ∆ f = λ f .
This is known as the Helmholtz equation. If Ω is a bounded domain
in Rm, then the eigenfunctions of the Laplacian are an orthonormal
basis for the Hilbert space L2(Ω).

Now, more generally, on a smooth Riemannian manifoldM, the
Laplace-Beltrami operator ∆M is a differential operator that gener-
alizes the Laplacian from Euclidean space. Eigenfunctions of ∆M
(solutions to ∆M f = λ f ) reveal the intrinsic geometry of the man-
ifold. When we do not have explicit access to the manifoldM, we
work with a discrete approximation using a graph constructed from
the data points {xi} ⊂ M. The graph Laplacian acts as a discrete ver-
sion of the Laplace-Beltrami operator. As the number of data points
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increases and the graph becomes finer, L converges to ∆M under cer-
tain conditions. In particular, the eigenvectors of L approximate the
eigenfunctions of ∆M.

5.3 Uniform Manifold Approximation and Projection (UMAP)

One of the limitations of PCA is that it works well only when the first
2–3 principal components capture most of the variability in the data.
Multidimensional scaling (MDS) and Laplacian eigenmaps attempt
to address this by preserving local distances and capturing some
nonlinear patterns. However, both methods have notable drawbacks.
MDS becomes slow and impractical for large datasets, while Lapla-
cian eigenmaps tend to focus too much on local structure and often
distort the global arrangement, causing distant points to collapse
together (a problem known as ’crowding’).

UMAP (Uniform Manifold Approximation and Projection) was de-
veloped to address these issues by offering a better balance between
local and global structure. Unlike eigenmaps, UMAP retains both
local neighborhoods and the broader shape of the data, producing
more meaningful embeddings. Additionally, UMAP scales efficiently
to large datasets and is more robust to parameter choices. This makes
UMAP a powerful tool for visualizing complex data and uncovering
patterns that methods like PCA or eigenmaps might miss.

This exposition is based on the excellent tutorial by Ghojogh et
al.2, while the original UMAP paper offers more technical details. 2 Benyamin Ghojogh, Ali Ghodsi, Fakhri

Karray, and Mark Crowley. Uniform
manifold approximation and projection
(umap) and its variants: tutorial and
survey. arXiv:2109.02508, 2021

5.3.1 Key idea

Consider data x1, . . . , xn in Rm, where Rm can be very big. Like for
eigenmaps, the key idea of UMAP and many similar methods is to
embed the data points into a much lower dimensional subspace Rd,
say yi = umap(xi) so that two points yi and yj are close to each other
if and only if the corresponding xi, xj are close to each other.

5.3.2 Example: Applying UMAP to the Iris Dataset

Before we present the method, we will see it in action.
The Iris dataset is a classic example in multivariate statistics. It

consists of 150 observations of iris flowers, with four continuous
features (sepal length, sepal width, petal length, petal width) and a
categorical label (species).

A linear method like PCA can give some separation between
species in the first two principal components, but this separation
is not always very distinct. UMAP, on the other hand, attempts

https://arxiv.org/pdf/2109.02508
https://arxiv.org/abs/1802.03426
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to preserve both local and global structures of the data in a low-
dimensional embedding. As a result, UMAP often produces a more
visually separable and intuitively meaningful representation.

The following code compares the performance of both PCA and
UMAP on the Iris dataset.
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# Load necessary libraries

library(umap)

# Load the Iris data

data(iris)

iris_data <- iris[, 1:4] # numeric features

iris_labels <- iris$Species # species labels

set.seed(123)

#### UMAP ####

umap_result <- umap(iris_data)

# UMAP Plot

plot(umap_result$layout, col = as.integer(iris_labels), pch = 19, xlab =

"UMAP1", ylab = "UMAP2", main = "UMAP Projection of the Iris Dataset")↪→

legend("topright", legend = levels(iris_labels), col = 1:3, pch = 19)

#### PCA ####

pca_result <- prcomp(iris_data, scale. = TRUE)

pca_scores <- pca_result$x

# PCA Plot using the first two principal components

plot(pca_scores[, 1], pca_scores[, 2], col = as.integer(iris_labels), pch

= 19, xlab = "PC1", ylab = "PC2", main =

"PCA Projection of the Iris Dataset")

↪→

↪→

legend("topright", legend = levels(iris_labels), col = 1:3, pch = 19)

In the resulting plots, we see that observations from the same
species form relatively distinct clusters. Compared to a simple PCA
plot, these groups may be more compact and better separated. This
suggests that UMAP can capture nonlinear relationships and subtle
differences between classes that PCA might not.

5.3.3 High-level description of the algorithm

The UMAP algorithm performs dimensionality reduction in three key
steps:

1. construction of a k-nearest neighbor (kNN) graph,

2. initialization using Laplacian eigenmap embedding,

3. optimization via stochastic gradient descent (SGD) to minimize a
carefully designed cost function.

Below, we provide more details for each step.



96 methods for multivariate data (sta437)

5.3.4 Step 1: Data Graph in the Input Space

Consider a training dataset X ∈ Rn×m, where n is the sample
size. We first construct a k-Nearest Neighbors (kNN) graph for this
dataset, with k = 15 by default. More precisely, we construct a graph
such that each node, represented by a data point xi, is connected to
another point xj if xj is among the k closest neighbors of xi. Here the
distance is arbitrary but we often use the Euclidean distance. For
each data point xi, let Ni denote its set of k nearest neighbors.

We further refine this procedure as follows. For each pair of points
xi and its neighbour xj ∈ Ni, we compute the probability pj|i ∈ (0, 1) ← Exercise 5.5.3

that xi selects xj as a neighbor:

pj|i = exp
(
−
∥xi − xj∥ − ρi

σi

)
, (5.4)

where ρi is the distance from xi to its nearest neighbour3, and σi is a 3 So that the closest point in Ni becomes
a neighbour with probability 1.scaling factor computed such that the total similarity to neighbours is

normalized:
n

∑
j=1

pj|i = log2(k).

This is a directional similarity measure, but we symmetrize it to
ensure symmetry between points: ← Exercise 5.5.4

pij = pj|i + pi|j − pj|i pi|j. (5.5)

5.3.5 Data Graph in the Embedding Space

UMAP aims to create a lower-dimensional embedding Y = [y1, . . . , yn] ∈
Rn×d of the original data X ∈ Rn×m, where d << m. The similarity
between two points in this embedding space is measured as:

qij =
1

1 + a∥yi − yj∥2b , (5.6)

where a > 0 and b > 0 are hyperparameters typically set to a ≈ 1.929
and b ≈ 0.7915.

We still need to explain better how the embeddeding y1, . . . , yn
is defined. The goal of UMAP is to make the data graph in the low-
dimensional embedding space as similar as possible to the graph
in the input space. This is achieved by minimizing the fuzzy cross-
entropy cost: ← Exercise 5.5.5

← Exercise 5.5.6

c(y1, . . . , yn) = ∑
i ̸=j

(
pij log

pij

qij
+ (1− pij) log

1− pij

1− qij

)
. (5.7)

This cost function has two terms: the attractive force (first term),
which brings neighbors closer in the embedding, and the repulsive
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force (second term), which pushes non-neighbor points apart. Min-
imizing this function ensures that points that are neighbors in the
input space are also neighbors in the embedding space and vice
versa. ← Exercise 5.5.7

5.3.6 Step 2: Initialization using the spectral embedding

UMAP initializes the embedding y1, . . . , yn in a low-dimensional
space using a Laplacian eigenmap discussed in Section 5.2. The spec-
tral embedding step ensures that the initial positions of points in the
low-dimensional space approximate the global structure of the graph,
reducing the computational burden on the subsequent optimization
phase.

5.3.7 Step 3: Training Algorithm

To refine the initial embedding, UMAP minimizes the cost function
in (5.7), which depends on y1, . . . , yn through (5.6). UMAP employs
stochastic gradient descent (SGD) to optimize the cost function c.
Unlike traditional gradient descent, which updates all points simul-
taneously, SGD: 1. Samples pairs of points (yi, yj) randomly in mini-
batches. 2. Updates yi and yj incrementally based on the gradient of
c1 with respect to their positions.

5.4 Autoencoders*

Autoencoders provide another approach to dimensionality reduction,
offering a neural network-based alternative to methods like PCA,
MDS, eigenmaps, and UMAP. While UMAP is effective at preserving
local and global structures, it is a non-parametric method that does
not directly produce a model for embedding new data. Autoencoders
address this limitation by learning a parametric mapping from the
input space to a low-dimensional representation, making it possible
to quickly embed new data without retraining.

UMAP and autoencoders differ in their approaches to dimension-
ality reduction. UMAP focuses on preserving local neighborhoods
using a graph-based approach, while autoencoders minimize recon-
struction error through neural networks. UMAP often produces more
interpretable global structures when the manifold is well-defined, but
autoencoders can model more complex nonlinear patterns, especially
when using deep networks. Additionally, UMAP is non-parametric,
meaning it requires re-computation for new data points, whereas
autoencoders, as parametric models, can quickly embed new data
once trained. Unlike UMAP, autoencoders can also incorporate la-
bels during training to produce class-aware embeddings. Moreover,
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it is possible to combine the two approaches: an autoencoder can
be trained on UMAP embeddings, blending UMAP’s neighborhood
preservation with the generalization capabilities of a neural network.

An autoencoder consists of two neural networks: an encoder,
which maps input data X ∈ Rn×d to a lower-dimensional represen-
tation Z ∈ Rn×p with p < d, and a decoder, which reconstructs the
input from Z. The training objective is to minimize the reconstruction
error, typically measured using mean squared error (MSE):

L(X, X̂) =
1
n

n

∑
i=1
∥xi − x̂i∥2,

where X̂ is the output of the decoder.
In summary, autoencoders offer a parametric, flexible approach

that can learn mappings from high-dimensional data to low-dimensional
representations. They are valuable for supervised learning, efficient
generalization to new data, and can complement methods like UMAP
to combine local neighborhood preservation with powerful, learned
embeddings.

We can use the code below to do some basic dimensionality reduc-
tion on the MNIST dataset. We provide UMAP results for compari-
son.

library(keras)

library(umap)

library(ggplot2)

library(gridExtra)

# Load MNIST dataset

mnist <- dataset_mnist()

x_train <- mnist$train$x / 255

x_test <- mnist$test$x / 255

# Flatten the images (from 28x28 to 784)

x_train <- array_reshape(x_train, c(nrow(x_train), 784))

x_test <- array_reshape(x_test, c(nrow(x_test), 784))

#### -------------------- Autoencoder -------------------- ####

# Autoencoder architecture

input_layer <- layer_input(shape = c(784))

# Encoder

encoded <- input_layer %>%

layer_dense(units = 128, activation = 'relu') %>%

layer_dense(units = 64, activation = 'relu') %>%

layer_dense(units = 2, activation = 'linear') # 2D embedding

# Decoder

decoded <- encoded %>%

layer_dense(units = 64, activation = 'relu') %>%

layer_dense(units = 128, activation = 'relu') %>%

layer_dense(units = 784, activation = 'sigmoid')



some other dimension reduction methods 99

# Compile Autoencoder

autoencoder <- keras_model(input_layer, decoded)

autoencoder %>% keras::compile(

optimizer = keras::optimizer_adam(amsgrad = TRUE),

loss = keras::loss_mean_squared_error()

)

# Train Autoencoder

history <- autoencoder %>% fit(

x_train, x_train,

epochs = 20,

batch_size = 256,

validation_data = list(x_test, x_test)

)

# Encoder Model for Dimensionality Reduction

encoder <- keras_model(input_layer, encoded)

low_dim_embeddings <- encoder %>% predict(x_test)

# Plot Autoencoder results

embedding_df <- data.frame(

X1 = low_dim_embeddings[,1],

X2 = low_dim_embeddings[,2],

label = as.factor(mnist$test$y)

)

p1 <- ggplot(embedding_df, aes(x = X1, y = X2, color = label)) +

geom_point(alpha = 0.6) +

labs(title = "2D Representation (Autoencoder)") +

theme_minimal()

#### ----------------------- UMAP ----------------------- ####

# Run UMAP for comparison

umap_result <- umap(x_test, n_neighbors = 15, min_dist = 0.1, n_components

= 2)↪→

# Plot UMAP results

umap_df <- data.frame(

X1 = umap_result$layout[,1],

X2 = umap_result$layout[,2],

label = as.factor(mnist$test$y)

)

p2 <- ggplot(umap_df, aes(x = X1, y = X2, color = label)) +

geom_point(alpha = 0.6) +

labs(title = "2D Representation (UMAP)") +

theme_minimal()

#### -------------------- Comparison Plot -------------------- ####

grid.arrange(p1, p2, ncol = 2)

The resulting plot in given in Figure 5.4. From this picture we see
that Autoencoder does not do a great job separating the groups.
UMAP seems to be much better at this. On the other hand, Autoen-
coder learns the function that gives this lower-dimensional embed-
ding. For any new dataset, we can apply
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As an exercise, you can play around with different network archi-
tectures (e.g. the number of layers to see if the performance of the
Autoencoder can be improved.

5.5 Exercises

Exercise 5.5.1. Suppose C ∈ S
n. Show that Cii + Cjj − 2Cij ≥ 0. Show

that the distances d2
ij = Cii + Cjj − 2Cij satisfy the triangle inequality.

Exercise 5.5.2. Show that the graph Laplacian matrix L in (5.1) is positive
definite and it has at least one zero eigenvalue.

Exercise 5.5.3. Show that pj|i defined in (5.4) lies in the interval (0, 1).

Exercise 5.5.4. Show that symmetrized probability pij in UMAP defined in
(5.5) is nonnegative.

Exercise 5.5.5. Let p, q be two probability distributions over some space
X . Define the Kullback-Leibler divergence KL(p, q) = Ep log p(X)

q(X)
. Show

that KL(p, q) ≥ 0 and it is equal to zero if and only if p, q define the same
distribution. Hint: Use the Jensen’s inequality and the fact that −log is a
strictly convex function.

Exercise 5.5.6. Suppose Xi ∼ Bern(pi) and Yj ∼ Bern(qj) are all inde-
pendent. Show that the Kullback-Leibler divergence between the distribution
p of X = (X1, . . . , Xm) and the distribution q of Y = (Y1, . . . , Ym) is given
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by the formula

KL(p, q) =
m

∑
i=1

(
pi log pi

qi
+ (1− pi) log 1−pi

1−qi

)
.

Exercise 5.5.7. Show that the expression in (5.7) is always nonegative and
it is equal to zero if and only if pij = qij for all i ̸= j.

Exercise 5.5.8. Implement classical MDS on a random dataset. Compare
the distances between the original points and the MDS embedding.

Exercise 5.5.9. Compare PCA, UMAP, and Laplacian Eigenmaps on the
Iris dataset. Which method better separates the species?

Exercise 5.5.10. Modify the Laplacian Eigenmaps code to explore the effect
of changing the number of neighbors in the graph.

Exercise 5.5.11. Use an autoencoder on the MNIST dataset to reduce
dimensionality. Compare the results with UMAP.

Exercise 5.5.12. Explain why classical MDS and PCA give the same
embedding for Euclidean distances.

Exercise 5.5.13. What is the significance of the first nonzero eigenvalue of
the graph Laplacian in Laplacian Eigenmaps?

Exercise 5.5.14. Show that the graph Laplacian L is positive semi-definite
and has at least one zero eigenvalue.





6
Canonical Correlation Analysis

In this chapter, we consider two datasets X ∈ Rn×p and Y ∈
Rn×q that represent observations of vectors X ∈ Rp and Y ∈ Rq,
respectively. The goal is to find non-zero linear combinations a⊤X
and b⊤Y with the largest possible correlation. Canonical Correlation
Analysis (CCA) addresses this problem by finding pairs of linear
combinations from each dataset that are maximally correlated.
Example 6.0.1 (Human Connectome Project). The Human Connectome
Project collects data on brain connectivity patterns (e.g., from functional
MRI scans) and behavioral measures (e.g., cognitive performance, personal-
ity traits, and lifestyle factors). Let X represent brain connectivity features
and Y represent behavioral and demographic variables. Canonical Correla-
tion Analysis (CCA) can uncover pairs of linear combinations from these
two sets that are maximally correlated, revealing how certain patterns of
brain activity relate to cognitive abilities or mental health outcomes. For
instance, one canonical pair may indicate that increased connectivity in spe-
cific brain regions is strongly associated with better working memory and
fluid intelligence.

6.1 Population CCA

We proceed similarly like for PCA by first discussing the population
case.

6.1.1 Principal Correlation Vectors

Let ΣXX = var(X), ΣYY = var(Y), and ΣXY = cov(X, Y). The
correlation between a⊤X and b⊤Y is given by

ρ(a, b) :=
a⊤ΣXYb√

a⊤ΣXXa b⊤ΣYYb
.

This expression can be challenging to optimize directly. To simplify,
we reparametrize the problem using α = Σ1/2

XX a and β = Σ1/2
YY b. This
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transforms the correlation expression into

ρ(α, β) =
α⊤Σ−1/2

XX ΣXYΣ−1/2
YY β

∥α∥∥β∥ =
α⊤Mβ

∥α∥∥β∥ =

(
α

∥α∥

)⊤
M
(

β

∥β∥

)
,

where we define the matrix

M = Σ−1/2
XX ΣXYΣ−1/2

YY .

To maximize the correlation, we now solve the following optimiza-
tion problem:

max
α,β

α⊤Mβ subject to ∥α∥ = ∥β∥ = 1.

The Lagrangian for this constrained optimization is given by:

L = 2α⊤Mβ− σ(α⊤α− 1)− σ′(β⊤β− 1).

At a stationary point, we get the following system of equations:

Mβ = σα and M⊤α = σ′β.

By computing α⊤Mβ from both expressions, we conclude that σ =

σ′. From this, it follows that

M⊤Mβ = σ2β and MM⊤α = σ2α.

Thus, the optimal α is the eigenvector of MM⊤ corresponding to the
largest eigenvalue, and the optimal β is the eigenvector of M⊤M cor-
responding to the same eigenvalue. This eigenvalue, say λ1, satisfies
λ1 = σ2

1 , where σ1 is the largest singular value of M.

Remark 6.1.1. If we decompose M using the Singular Value Decomposition
(SVD), M = UDV⊤, where U and V are orthogonal matrices and D is
zero outside of the diagonal, then MM⊤ = UDD⊤U⊤ and M⊤M =

VD⊤DV⊤. The eigenvectors of MM⊤ are the left singular vectors of M,
and the eigenvectors of M⊤M are the right singular vectors of M. The
singular values are the canonical correlations.

6.1.2 First r Principal Correlation Vectors

As in PCA, we can recursively find more canonical correlation di-
rections after obtaining the first one. Let a1, b1 be the first pair of
canonical correlation vectors. To find the next pair (a2, b2), we solve
the following constrained problem:

max
α,β

α⊤Mβ subject to ∥α∥ = ∥β∥ = 1 and α⊤α1 = β⊤β1 = 0.

The solution corresponds to the second largest singular values and
their corresponding left and right singular vectors. Repeating this
process provides the subsequent pairs a3, b3, . . . , ar, br.
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6.1.3 Correlations Between Canonical Correlation Variables

Let η1 = a⊤1 X and ϕ1 = b⊤1 Y be the first pair of canonical correlation
variables. The covariance between η1 and ϕ1 is given by

cov(η1, ϕ1) = a⊤1 ΣXYb1 = α⊤1 Mβ1 = σ1,

where σ1 is the largest canonical correlation. Moreover,

cov(η1, ϕ2) = a⊤1 ΣXYb2 = α⊤1 Mβ2 = σ2α⊤1 α2 = 0.

This can be easily generalized.

Theorem 6.1.2. Let ηi = a⊤i X and ϕi = b⊤i Y for i = 1, . . . , r be the first
r canonical correlation variables. The covariance matrix of η = (η1, . . . , ηr)

and ϕ = (ϕ1, . . . , ϕr) is block-diagonal:

var

([
η

ϕ

])
=

[
Ir Dr

Dr Ir

]
,

where Dr = diag(σ1, . . . , σr) contains the first r canonical correlations.
Hence, the variables η1, . . . , ηr and ϕ1, . . . , ϕr are uncorrelated across differ-
ent pairs but correlated within each pair.

6.2 Sample CCA

In practice, we do not know the population covariance matrices
ΣXX , ΣYY, ΣXY. Instead, we estimate them from data. Let X ∈ Rn×p

and Y ∈ Rn×q represent the two datasets, and let SXX , SYY, SXY de-
note the sample covariance matrices of X and Y1. As long as SXX 1 Note that in this setting we need joint

observations of X and Y. If such joint
observations are not available (e.g.
these variables come from different
domains and so cannot be observed
jointly) we need to employ other
techniques that assume some latent
joint structure.

and SYY are invertible, we can apply the same procedure as for the
population case, using the sample estimates2.

2 Recall from Section 4.7 that there may
be better ways to estimate the underly-
ing covariance matrix. This is especially
important in high-dimensional situa-
tions.

The sample CCA maximizes the sample correlation between linear
combinations of X and Y:

ρ̂(a, b) =
a⊤SXYb√

a⊤SXXa b⊤SYYb
.

The sample canonical correlation vectors can be found by solving the
generalized eigenvalue problem for the matrix

M̂ = S−1/2
XX SXYS−1/2

YY .

We then compute the SVD M̂ = UDV⊤ ∈ Rp×q and, like before,
we denote the columns of U and V by αi, βi respectively. We then
compute ai = S−1/2

XX αi and bi = S−1/2
YY βi.

Based on these calculations, we can get the canonical correlation
variables

ηi = Xai, ϕi = Ybi for i = 1, . . . , r. (6.1)
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6.3 Practical Considerations and Applications

6.3.1 Data Preprocessing

Before applying CCA, both datasets X and Y should be centered to
ensure that the covariance matrices reflect the relationships between
the variables, not the differences in their means. If the variables have
different scales, it may also be necessary to standardize them to have
unit variance.

6.3.2 Applications

Canonical Correlation Analysis (CCA) is widely applied in fields
where understanding relationships between two datasets is crucial.
In neuroscience, CCA is used to uncover associations between brain
activity, such as EEG or fMRI signals, and behavioral responses or
external stimuli. This helps researchers understand which neural
patterns correlate with specific cognitive or motor activities.

In genomics, CCA identifies relationships between gene expres-
sion levels and phenotypic traits. By analyzing how combinations
of genes relate to observable characteristics, it aids in discovering
genetic influences on traits or diseases.

Marketing research also benefits from CCA. When consumer sur-
vey data, such as preferences and opinions, are paired with purchas-
ing behavior records, CCA reveals which combinations of attitudes
drive purchasing patterns. This insight helps businesses tailor their
marketing strategies effectively.

Additionally, CCA is vital for multimodal data fusion. For ex-
ample, when both image and text data are collected for the same
observations, CCA highlights how visual patterns align with tex-
tual descriptions, supporting tasks such as cross-modal retrieval and
analysis.

In economics and finance, CCA explores connections between eco-
nomic indicators, such as inflation and unemployment, and financial
metrics, like stock prices and interest rates. Such analyses help reveal
how macroeconomic trends jointly influence financial markets.

6.4 Interpretation and Visualization of CCA Results

Interpreting CCA results requires clear visualization techniques that
reveal relationships between canonical variables and the original
data. Below are three common approaches:



canonical correlation analysis 107

6.4.1 Biplots

Biplots illustrate the relationship between original variables and
canonical variables. Typically, pairs of canonical variables (η1, ϕ1),
(η2, ϕ2), and so on are plotted in 2D; see (6.1) for definitions. Orig-
inal variables are shown as vectors, with their length and direction
indicating their correlation with the canonical variables.

6.4.2 Heatmaps of Canonical Correlations

If we want to get a visual understanding of the relations between
variables in the system, it is natural to look at the sample correlation
matrices. Instead of looking at the numbers, it is common to indicate
them by colored arrays like in Figure 6.1.

Figure 6.1: A simple example of correla-
tion heatmap.

6.5 Example: Real Data Analysis in R

To demonstrate Canonical Correlation Analysis, we will use the
mtcars dataset, which contains various automobile attributes. We
will split the dataset into two groups of variables:

• Group 1 (X); Variables related to performance: mpg (Miles per
gallon), hp (Gross horsepower), drat (Rear axle ratio).

• Group 2 (Y); Variables related to design: wt (Weight (1000 lbs),
qsec (1/4 mile time), gear (Number of forward gears).

Our goal is to identify pairs of canonical variables that capture the
strongest relationships between these two groups of variables.

Step 1: Load and Preprocess Data
We load the mtcars dataset and split it into two groups of vari-

ables. All variables are standardized to ensure comparability.

#Load necessary library and data

library(CCA)

data(mtcars)

#Group 1: Performance-related variables

X <- mtcars[, c('mpg', 'hp', 'drat')]

#Group 2: Design-related variables

Y <- mtcars[, c('wt', 'qsec', 'gear')]

#Standardize the datasets

X <- scale(X)

Y <- scale(Y)

Step 2: Perform Canonical Correlation Analysis
We use the cancor function in R to compute the canonical correla-

tions and the corresponding canonical variables.
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# Perform CCA

cca_result <- cancor(X, Y)

#Print the canonical correlations

print(cca_result$cor)

The canonical correlations are the correlations between the canon-
ical variables derived from the two datasets. For this dataset, the val-
ues are: 0.94, 0.75, 0.22, indicating a strong relationship between
the first pair of canonical variables.

Step 3: Extract Canonical Variables
The canonical variables for X and Y can be computed using the

canonical weights.

# Extract canonical weights

x_weights <- cca_result$xcoef

y_weights <- cca_result$ycoef

# Create a data frame for weights

weights <- data.frame(

Variable = c(colnames(X), colnames(Y)),

Canonical1 = c(x_weights[, 1], y_weights[, 1]),

Canonical2 = c(x_weights[, 2], y_weights[, 2]),

Canonical3 = c(x_weights[, 3], y_weights[, 3]))

# Compute canonical scores

x_scores <- as.matrix(X) %*% x_weights

y_scores <- as.matrix(Y) %*% y_weights

# Create a data frame for visualization

scores_df <- data.frame(

Canonical_X1 = x_scores[, 1],

Canonical_Y1 = y_scores[, 1],

Canonical_X2 = x_scores[, 2],

Canonical_Y2 = y_scores[, 2])

Now we can plot scatter plots for the first two canonical variables
in both groups.

library(ggplot2)

# Scatterplot for the first pair of canonical variables

ggplot(scores_df, aes(x = Canonical_X1, y = Canonical_Y1)) +

geom_point(color = "blue", size = 3, alpha = 0.7) +

geom_smooth(method = "lm", color = "red", linetype = "dashed") +

labs(

title = "Canonical Variables: First Pair",

x = "Canonical Variable 1 (X group)",

y = "Canonical Variable 1 (Y group)") + theme_minimal()

# Scatterplot for the second pair of canonical variables

ggplot(scores_df, aes(x = Canonical_X2, y = Canonical_Y2)) +

geom_point(color = "green", size = 3, alpha = 0.7) +

geom_smooth(method = "lm", color = "red", linetype = "dashed") +

labs(
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title = "Canonical Variables: Second Pair",

x = "Canonical Variable 2 (X group)",
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The plots above shows the relationship between the first pair and
the second pair of canonical variables. A strong linear relationship is
evident, reflecting the high canonical correlation of 0.94 and 0.75.

6.6 Exercises

Exercise 6.6.1. Consider two centered random vectors X ∈ Rp and Y ∈ Rq

with covariance matrices ΣXX , ΣYY, and ΣXY. Show that the canonical
correlation problem

max
a,b

a⊤ΣXYb√
a⊤ΣXXa b⊤ΣYYb

is equivalent to the following generalized eigenvalue problem:[
0 ΣXY

ΣYX 0

] [
a
b

]
= λ

[
ΣXX 0

0 ΣYY

] [
a
b

]
.

Exercise 6.6.2. Prove that the first pair of canonical correlation vectors
a1, b1 are solutions to the singular value decomposition (SVD) problem:

M = Σ−1/2
XX ΣXYΣ−1/2

YY = UDV⊤.

where a1 and b1 are the left and right singular vectors corresponding to the
largest singular value.

Exercise 6.6.3. Show that the squared canonical correlations are roots of
the equation det(ΣXYΣ−1

YYΣYX − λΣXX) = 0 and the canonical correlation
vectors satisfy

ΣXYαi = λiΣXXαi.

Exercise 6.6.4. Suppose that X and Y are jointly Gaussian with mean zero
and covariance matrix: [

ΣXX ΣXY

ΣYX ΣYY

]
.

Show that the canonical correlation variables (ηi, ϕi) are jointly Gaussian
and derive their joint distribution explicitly.

Exercise 6.6.5. Let X ∈ Rp and Y ∈ Rq be two random vectors. Show that
if ΣXY = 0, then all canonical correlations are zero and interpret this result.

Exercise 6.6.6. The canonical correlations σ1, σ2, . . . , σr are typically or-
dered as σ1 ≥ σ2 ≥ · · · ≥ σr ≥ 0. Show that if X and Y are independent,
then all canonical correlations satisfy σi = 0.



110 methods for multivariate data (sta437)

Exercise 6.6.7. Consider a special case where p = q = 2 and the covariance
matrix of (X, Y) is given by:

Σ =


1 0.8 0.5 0.3

0.8 1 0.6 0.4
0.5 0.6 1 0.9
0.3 0.4 0.9 1

 .

Compute the canonical correlations numerically.

Exercise 6.6.8. In the case where p = q = 1, show that canonical correla-
tion analysis reduces to finding the Pearson correlation coefficient between X
and Y.

Exercise 6.6.9. Derive the form of the canonical correlation vectors for the
case where X, Y are multivariate normal with a known block structure in
their covariance matrix.

Exercise 6.6.10. Show that the canonical variables η1, . . . , ηr and ϕ1, . . . , ϕr

are mutually uncorrelated across different indices but correlated within each
pair.

Exercise 6.6.11. Write a function in R that computes the canonical correla-
tion coefficients using the ‘svd‘ function instead of ‘cancor‘. Apply it to the
‘mtcars‘ dataset and compare the results.

Exercise 6.6.12. Consider the problem of high-dimensional CCA where
p, q ≫ n. Discuss the problems that arise in computing CCA in this setting
and suggest possible regularization techniques to mitigate these problems.

Exercise 6.6.13. Modify the R code in the notes to include a permutation
test for statistical significance of the canonical correlations.

Exercise 6.6.14. Explain why standardizing variables (subtracting the
mean and dividing by standard deviation) before performing CCA can affect
the canonical correlation results.

Exercise 6.6.15. Suppose that instead of maximizing correlation, we want
to find pairs of vectors (a, b) that maximize the mutual information between
a⊤X and b⊤Y. How would this change the formulation of the problem?

Exercise 6.6.16. Discuss how CCA can be extended to nonlinear relation-
ships using kernel methods (Kernel CCA). Provide an example of a kernel
function that could be used.



7
Factor analysis and Independent Component Analysis

Factor Analysis (FA) and Independent Component Analysis (ICA)
are two foundational methods for understanding dependencies and
uncovering latent structures in multivariate data. FA models the
dependence between observed variables by assuming that their vari-
ation can be largely attributed to a few common latent factors. ICA,
on the other hand, seeks to decompose observed signals into sta-
tistically independent components, making it particularly useful in
applications like blind-source separation. Both methods share con-
ceptual connections with Probabilistic Principal Component Analysis
(PCA), discussed in Section 4.5.2. In this chapter, we motivate and
explore these models, highlighting their theoretical foundations, prac-
tical applications, and relationships to modern multivariate analysis
techniques.

7.1 Motivating examples

In this section we provide some examples to build some intuition
behind factor analysis and related models. In all this examples, latent
representations of the data have an intuitive interpretation and allow
to significantly reduce the underlying dimensionality.

7.1.1 FA: Motivating Examples

Example 7.1.1 (Capital Asset Pricing Model (CAPM)). In finance, the
Capital Asset Pricing Model (CAPM) provides a foundational framework
for understanding stock returns. Suppose we observe the returns of m stocks
denoted by X1, X2, . . . , Xm. According to CAPM, the returns of individual
stocks can largely be explained by their sensitivity to a single common factor,
often referred to as the market return. This is mathematically represented as:

Xi = µi + wiZ + εi, i = 1, . . . , m,

where Z is the market return (common factor), wi is the sensitivity (or
loading) of stock i to the market, µi is the mean return of stock i, and εi is
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the idiosyncratic error, assumed to be uncorrelated across stocks.

As we will see in this chapter, FA generalizes CAPM by allowing
for multiple latent factors that jointly explain the dependence struc-
ture of stock returns. For instance, additional factors could account
for sector-specific trends or macroeconomic variables like interest
rates or inflation.

The origins of FA can be traced back to early studies on human
intelligence. We now present this classical example.

Example 7.1.2 (Human Intelligence and Pearson’s Work). In the early
20th century, Charles Spearman and Karl Pearson investigated relationships
between scores on different cognitive tasks. Spearman hypothesized the ex-
istence of a single general intelligence factor (Z) that underlies performance
in various tests, such as mathematics, verbal reasoning, and spatial visu-
alization; we denote these tasks by (X1, . . . , Xm). This relationship can be
expressed as:

Xi = µi + wiZ + εi, i = 1, . . . , m,

where Xi represents the score on the i-th test, Z is the general intelligence
factor, wi is the loading of test i on Z, and εi represents unique abilities or
measurement noise.

Later studies expanded the model to include multiple latent fac-
tors representing specific abilities like memory, language, or reason-
ing. FA formalizes these models, enabling researchers to estimate the
latent factors and their relationships with observed variables.

The next example links to recommender systems and the famous
Netflix challenge. This is not directly related to the Factor Analysis
model discussed here but it uses similar principles.

Example 7.1.3 (Recommender systems). Recommender systems deal
with a large user-item interaction matrix, where rows correspond to users,
columns correspond to items (e.g., movies, books, or products), and entries
represent interactions such as ratings, purchases, or clicks. However, the
observed data is often sparse, with many missing entries.

It is typically assumed that the observed interactions (e.g., user ratings)
are influenced by a small number of underlying latent factors:

• Latent user preferences: Each user has a set of preferences or tastes, such
as a liking for action movies, romantic comedies, or documentaries.

• Latent item attributes: Each item can be described by its attributes, like
genre, production quality, or popularity.

We then model the interaction Xij (e.g., the rating of user i for item j) as a
linear combination of:

Xij = z⊤i λj + ϵij,



factor analysis and independent component analysis 113

where zi is the latent vector for user i, λj is the latent vector for item j, εij

captures noise or unique factors not explained by the latent structure. Such
a latent model may provide massive dimensionality reduction making the
model computationally efficient. By estimating the latent factors zi and λj,
the model predicts missing entries in the matrix (e.g., whether a user will
like an unwatched movie).

7.1.2 ICA: Motivating Examples

Independent Component Analysis (ICA) aims to separate observed
signals into independent components. Here are two motivating ex-
amples that highlight its importance:

Example 7.1.4 (Cocktail Party Problem). Consider the classic cocktail
party problem, where multiple people are speaking simultaneously, and you
have several microphones placed around the room. Each microphone captures
a mixture of the voices due to overlapping sound waves. We model this as:

X = WZ,

where X is the observed mixed signal (from the microphones), Z is the vector
of independent source signals (e.g., individual voices), W is the mixing
matrix describing how the source signals combine. The goal of ICA is to
recover the (unobserved) independent signals Z and the mixing matrix W
using only the observed mixed signals Z, without prior knowledge of W or
Z.

Example 7.1.5 (Biomedical Signal Processing (EEG/MEG Data)). In
neuroscience, ICA is widely used to analyze data from electroencephalogra-
phy (EEG) or magnetoencephalography (MEG), which record electrical or
magnetic activity in the brain. The observed signals are mixtures of:

• Neural signals originating from different brain regions.

• Artifacts, such as eye movements, muscle activity, or electrical interfer-
ence.

ICA helps disentangle these sources by assuming that the neural and artifact
signals are statistically independent. This enables researchers to isolate
brain activity and remove unwanted artifacts, significantly improving the
interpretability of the data.

7.2 Definitions

In factor analysis (FA), the idea is to explain the correlations among
a set of m observed variables by introducing a set of r unobserved
latent variables, or factors, where r ≤ m. The FA model for a random
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vector X ∈ Rm assumes that each observed variable can be expressed
as a linear combination of these common factors, plus a unique error
term. Specifically, the FA model can be written as:

X = µ + WZ + ε, (7.1)

where Z ∈ Rr is the vector of common factors (latent variables),
assumed to follow a standard normal distribution Z ∼ Nr(0, Ir),
W ∈ Rm×r is the factor loading matrix, which relates the common
factors Z to the observed variables X, and ε ∈ Rm is the vector of
unique factors (specific errors) with ε ∼ Nm(0, Ψ), where Ψ is a
diagonal matrix. We assume Z⊥⊥ ε.

The factor loadings in W represent the relationship between each
observed variable and the common factors Z. The unique variances
in Ψ represent the variance in each observed variable that is not
explained by the common factors. If an entry of Ψ is small, it means
that the corresponding variable is well explained by the common
factors. The interpretation of W is less clear and we will discuss
this in more detail in Section 7.3.2 with a notable example given in
Section 7.6.

Note that this model is almost exactly the same as the Probabilis-
tic PCA model in Section 4.5.2 with the only difference that in PCA
Ψ = σ2 Im for some σ2. One important consequence of simpler as-
sumptions of PPCA is that the model results in closed formulas for
the MLE. In the case of FA, maximizing the likelihood function re-
quires the EM algorithm or some other numerical scheme.

The Independent Component Analysis model assumes a very
similar stochastic representation1 1 In practice, both before applying ICA

and FA, the data are centred. So, with
no loss of generality, we could assume
µ = 0 throughout.X = µ + WZ,

which effectively corresponds to the FA model with ε ≡ 0 (Ψ =

0m×m). Here however the main difference is that typically it is as-
sumed that r = m with W invertible and also that Z ∼ (0, Ir) with
independent components but not necessarily jointly Gaussian. We
will comment more on that in a second.

7.3 Model Implications and identifiability

7.3.1 The covariance matrix

Since X in (7.1) is an affine combination of independent Gaussian
vectors, it is Gaussian itself. It is clear that EX = µ. Moreover, the
covariance matrix Σ of the observed data X can be derived from the
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model as follows:

Σ = var(WZ + ε)

= W var(Z)W⊤ + var(ε)

= WW⊤ + Ψ.

(7.2)

Thus, the model imposes the constraint that the covariance matrix Σ
can be decomposed into two parts: a low-rank2 matrix WW⊤, which 2 Note that rank(WW⊤) ≤ r.

captures the shared variance among the variables due to the common
factors, and a diagonal matrix Ψ that captures the unique variances
of each observed variable (i.e., the variance not explained by the
common factors).

7.3.2 Lack of identifiability and Varimax notation

Unlike in PPCA, the loadings in Factor Analysis are assumed to have
a meaning. This follows because the latent variable in this contexts
often has a clear interpretation as in the example we gave earlier.
In this section we show that we should be very careful trying to
interpret the estimated loading matrix because there are infinitely
many loading matrices that explain the data equally well.

To see this, note that for any orthogonal matrix U ∈ O(r) it holds
that WW⊤ = WU(WU)⊤. Thus, in the factor analysis model the
parameters (W, Ψ) lead to the same observed distribution as the
parameters (WU, Ψ) for any U ∈ O(r). We say that the model is not
identifiable.

There are several approaches to pick the canonical loading ma-
trix from the set of all equivalent ones. Usually this is resolved by
rotating the factor loadings to satisfy an arbitrary constraint such as To get some idea why this quantity

makes sense note that we can rewrite
(7.1) by defining ε̃ = Ψ−1/2ε ∼ N(0, Im):

tildeX = µ̃ + W̃Z + ε̃.

Similarly as in PCA, it is natural to
assume that the columns of W are
orthogonal. In other words W̃⊤W̃ is
diagonal.

W⊤Ψ−1W is diagonal, (7.3)

where the diagonal elements are written in decreasing order.
The varimax method of orthogonal rotation is another way to get

a unique W, proposed by Kaiser in 1958. Its rationale is to provide
axes with a few large loadings and as many near-zero loadings as
possible. This is accomplished by an iterative maximization of a
quadratic function of the loadings.

Let W ∈ Rm×r be a matrix of unrotated loadings. This could
be, for example, the output of the maximum likelihood estimation
procedure. Let U ∈ O(r) leading to the rotated loading matrix WU.
We choose U using the varimax criterion that maximizes the sum of
variances of the squared loadings within each column of the loading
matrix, where each row is properly normalized.
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More concretely, let M ∈ Rm×r be the matrix with entries

Mij =
(WU)2

ij

∑r
k=1(WU)2

ij
.

Note that the entries of M are nonnegative and, by definition, M1r =

1m. In other words, M is a stochastic matrix3. In the varimax ap- 3 A stochastic matrix is a nonnegative
matrix whose rows all sum to 1.proach, we choose U by maximizing ∥M − 1

m 1m1⊤m M∥2
F, the Frobe-

nius distance from M to the matrix 1
m 1m1⊤m M.

To understand this better, note that this distance is zero if and
only if Hm M = 0, where Hm = Im − 1

m 1m1m is the centering matrix.
In other words, each column of M is constant. By maximizing the
distance over U we obtain M such that in each column there are a
few big entries and the remaining entries are negligible.

The varimax rotation is implemented in the base package in R.

# Example data: unrotated factor loadings

loadings <- matrix(c(0.7, 0.3, 0.2, -0.5, 0.8, 0.4), nrow = 3)

# Apply varimax rotation

rotated <- varimax(loadings)

# View rotated loadings

print(rotated$loadings)

7.3.3 Identifiability via Non-Gaussianity*

An alternative and more robust approach to establish the identifia-
bility of the matrix W in factor analysis and independent component
analysis (ICA) relies on the assumption of non-Gaussianity of the
underlying components.

One way to understand the issue of non-identifiability in the Gaus-
sian setting is to observe that, if Z ∼ Nr(0, Ir), then for any orthog-
onal matrix U ∈ O(r), the transformed vector UZ has the same
distribution as Z. In particular, the entries of UZ remain indepen-
dent, regardless of the choice of U. This invariance to orthogonal
transformations is a special property of Gaussian distributions, which
does not generally hold for non-Gaussian random vectors.

To formalize this, we cite a result by Kac that highlights the
uniqueness of the Gaussian distribution in maintaining independence
under orthogonal transformations:

Theorem 7.3.1 (Kac). If Z = (Z1, Z2) is a random vector such that
Z1⊥⊥ Z2 and (UZ)1⊥⊥ (UZ)2 for some orthogonal matrix U ∈ O(2) with
all entries non-zero, then Z follows a Gaussian distribution.

If U ∈ O(2) has a zero, it must be
one of the eight matrices of the form[
±1 0
0 ±1

]
,
[

0 ±1
±1 0

]
.

Example 7.3.2. For a simpler illustration of this result consider two in-
dependent variables (Z1, Z2) distributed uniformly on [0, 1]. Their joint
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Figure 7.1: Rotating data coming from
two independent variables breaks
independence.

samples are depicted on the top in Figure 7.1. Rotating these data by 45
degrees, results in the bottom picture. We can think of it as a sample of the
vector (Y1, Y2), which is a rotation of (Z1, Z2). From the picture it should
be clear that Y1 and Y2 cannot be independent as the support of Y1 depends
on Y2 and vice versa.

Theorem 7.3.1 can be generalized to higher dimensions in a suit-
able sense, illustrating that Gaussian distributions are uniquely char-
acterized by their invariance under orthogonal transformations that
preserve independence.

In the context of ICA, this property of Gaussian distributions is
exploited to establish identifiability of the mixing matrix:

Theorem 7.3.3 (Comon). If EZ = 0, var(Z) = Ir, the components of
Z are independent, and at most one of them is Gaussian, then the mixing
matrix W can be identified up to permutations of its columns and sign
changes.

The assumption of non-Gaussianity also allows for other estima-
tion techniques. In the Gaussian distributions the whole information
about the distribution is contained in the mean vector µ and the co-
variance matrix Σ. In general, higher order moments can also be
exploited. We briefly explain this in the next section.

7.4 Fitting FA and ICA

Several methods exist for fitting the Factor Analysis (FA) and Inde-
pendent Component Analysis (ICA) models. One of the most com-
mon approaches for FA is maximum likelihood estimation, where we
aim to find the parameters Λ and Ψ that maximize the likelihood of
the observed data given the factor analysis model. For ICA, maxi-
mum likelihood is often replaced by the method of moments, which
leverages higher-order statistics.
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7.4.1 Maximum Likelihood Estimation for FA

Maximum likelihood estimation in FA aims to find parameters W
(the factor loading matrix) and Ψ (the diagonal covariance of unique
variances) that best explain the observed covariance structure in (7.2).

Jöreskog’s method simplifies the maximum likelihood estimation
by providing an analytic update for the loading matrix W and itera-
tively optimizing over Ψ. The key idea is to iteratively: (1) Update W
using an analytic formula. (2) Numerically optimize Ψ.

Theorem 7.4.1. Let Ψ be fixed, and let S̃n = Ψ−1/2SnΨ−1/2. Using the
spectral decomposition, write

S̃n = UΛ̃U⊤.

Then, the values of W that maximize the likelihood function are of the form

Ŵ = UrΘQ for any Q ∈ O(m),

where Ur is obtained from the first r columns of U (corresponding to the
largest eigenvalues) and Θ is a diagonal matrix with i-th entry equal to√

max{0, Λ̃ii − 1}.

Proof Sketch. We have

Σ = Ψ + WW⊤ = Ψ1/2(Im + W̃W̃⊤)Ψ1/2.

If Ψ is fixed then maximizing the log-likelihood function log det Σ−1−
tr(SnΣ−1) is equivalent to maximizing

log det(Im + W̃W̃⊤)−1 − tr(S̃n(Im + W̃W̃⊤)−1).

The rest of the proof is essentially the same as the proof of Theo-
rem 4.5.1 with the additional restriction that σ2 = 1.

We now describe this method in detail:
Initialization: Start with an initial guess for Ψ(0), typically the diago-
nal elements of the sample covariance matrix Σ̂.
Update W: For a fixed Ψ, update the loading matrix W analytically
by solving:

W = ΣV−1/2Uq,

where V = Ψ + WW⊤ is the fitted covariance matrix, and Ur consists
of the eigenvectors corresponding to the r largest eigenvalues of
V−1/2ΣV−1/2.

7.4.2 Method of Moments for FA and ICA

Another approach to fitting FA and ICA models is the method of
moments, which leverages statistical moments of the data.
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In general the method of moments refers to estimating procedures
where the population moments can be explicitly expressed as func-
tions of the model parameters m(θ). Then we try to solve m̂ = m(θ),
where m̂ refers to the corresponding vector of sample moments. Of
course, in general there is no guarantee that such equation has a solu-
tion or that this solution is unique so typically additional theoretical
analysis is required. When there is no solution, a decent alternative is
given by minimizing ∥m̂−m(θ)∥4. 4 This is referred to as the Generalized

Method of Moments.In FA, the covariance structure of the observed data X is modeled
as in (7.2). The method of moments matches the sample covariance
matrix Sn to its theoretical counterpart Σ. The estimation involves
solving:

minimize ∥Sn − (ΛΛ⊤ + Ψ)∥2
F.

However, this approach should not be preferred over the MLE pre-
sented in the previous section.

The method of moments approach is particularly effective for
ICA, where the assumption of non-Gaussianity enables us to exploit
higher-order moments such as skewness and kurtosis; see Section 3.4
for some definitions. The assumption of non-Gaussianity ensures that
W is identifiable up to scaling and permutation.

One example of this algorithm is the JADE algorithm that takes
a look at the fourth cumulant of the data. Since X = WZ and W is
invertible, we have Z = AX with A = W−1. By independence of
the components of Z the m × m × m × m table M that contains all
4-th order cumulants of Z is diagonal. Moreover, by multilinearity
of cumulants, its (i, j, k, l)-th (assuming i, j, k, l are not equal) entry
satisfies

0 = cum(Zi, Zj, Zk, Zl) =
m

∑
i′ ,j′ ,k′ ,l′=1

Aii′Ajj′Akk′All′cum(Xi′ , Xj′ , Xk′ , Xl′).

This gives quartic equations in the entries of A that we solve by re-
placing the array of cumulants of X by its sample estimator. This
is essentially what the JADE algorithm does. The following code
presents some simple illustration.

library(JADE)

# Generate synthetic data

set.seed(123) # For reproducibility

n <- 1000 # Number of samples

# Create two independent components

Z1 <- runif(n, -1, 1) # Uniform distribution

Z2 <- rt(n, df = 5) # t-distribution with 5 degrees of freedom

Z <- cbind(Z1/sd(Z1), Z2/sd(Z2)) # Combine into a matrix

# Create a mixing matrix
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W <- matrix(c(2, -1, 1, 2), nrow = 2)

# Generate mixed signals

X <- Z %*% t(W) # Mixed signals: observed data

# Apply the JADE algorithm

ica_result <- JADE(X, n.comp = 2)

# Check the estimated W (mixing matrix)

print(ica_result$A)

Note that in the code below we have

W =

[
2 1
−1 2

]
and Ŵ =

[
0.74 2.10
2.11 −0.76

]
.

The matrices do not look that similar. However, W can be identi-
fied only up to permuting columns and swapping their signs so we
should compare W with permuted Ŵ where the two columns are
swapped.

7.5 Choosing the Number of Latent Components

Determining the appropriate number of latent components r in factor
analysis is crucial for balancing model complexity and explanatory
power. An optimal choice of r ensures that the model captures the
underlying structure without overfitting or underfitting the data.
Several established methods can guide this selection, including
Horn’s parallel analysis, information-theoretic approaches, scree
plots, and Velicer’s Minimum Average Partial (MAP) test. In this
section we cover Horn’s parallel analysis.

If there was no latent signal in the data and only random noise,
then the sample correlation matrix should be close to the identity
matrix. But we already saw in Section 4.7 that this closeness becomes
tricky in high dimensions and it may depend on m and n. Horn’s
idea was to compare the eigenvalues of the sample correlation matrix
with the values obtained from Monte-Carlo simulations where mul-
tiple samples from the standard normal are used to compute sample
correlation matrices and then the distribution of each consecutive
eigenvalue is computed by averaging across the experiments.

Mathematically, let X be an n× m data matrix. Define the sample
correlation matrix R as:

Rn = D−1/2SnD−1/2,

where Sn is the sample covariance matrix and D is the diagonal ma-
trix of variances of the variables.

Horn’s Parallel Analysis consists of the following steps:
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1. Compute the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λm of the sample
correlation matrix Rn.

2. Generate B simulated datasets X(b) ∈ Rn×m, b = 1, . . . , B, where
the entries of each X(b) are drawn independently from a standard
normal distribution N(0, 1).

3. Compute the sample correlation matrix R(b)
n for each simulated

dataset X(b).

4. Compute the average (or percentile-based) eigenvalues from the
null distribution:

λrandom
j =

1
B

B

∑
b=1

λ
(b)
j , j = 1, . . . , m.

5. Compare the observed eigenvalues λj with the corresponding
eigenvalues from the null distribution. Retain factors where:

λj > λrandom
j .

This procedure ensures that the retained factors explain more
variance than what would be expected under pure noise. Parallel
analysis provides an empirical, data-driven alternative to heuristic
criteria such as Kaiser’s rule (retaining eigenvalues greater than 1),
and is particularly useful in high-dimensional settings where random
noise can inflate eigenvalues.

7.6 Illustrative application

Here is an example using real data to illustrate how Factor Analy-
sis can be used in practice. We use the psych package and the bfi

dataset from the psych package, which contains responses to the Big
Five Personality Test. The dataset consists of 2,800 observations (sur-
vey responses). It includes 25 personality-related questions that mea-
sure the Big Five Personality Traits: Openness (O), Conscientiousness
(C), Extraversion (E), Agreeableness (A), Neuroticism (N). Responses
are recorded on a Likert scale (1 to 6), where higher values indicate
stronger agreement with the statement. Additionally, the dataset con-
tains demographic information such as gender, education, age. We
are going to discard these demographic data and try to show that the
survey responses do support the existence of five latent personality
traits.

# Load necessary packages

library(psych)

# Load the Big Five personality dataset from the psych package
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data(bfi)

# Select a subset of personality trait variables (excluding demographic

variables)↪→

bfi_subset <- bfi[, 1:25] # Selecting only the 25 personality questions

# Remove missing values

bfi_subset <- na.omit(bfi_subset)

# Determine the number of factors using parallel analysis

fa_parallel <- fa.parallel(bfi_subset, fa = "fa")

# Extract the suggested number of factors, with a fallback to a default

(e.g., 5)↪→

num_factors <- ifelse(!is.na(fa_parallel$ncomp), fa_parallel$ncomp, 5)

# Print chosen number of factors for debugging

print(paste("Number of factors chosen:", num_factors))

# Fit a Factor Analysis model with a safe fallback for nfactors

if (!is.na(num_factors) && num_factors > 0) {

fa_model <- fa(bfi_subset, nfactors = num_factors, rotate = "varimax")

print(fa_model$loadings) # Print factor loadings

fa.diagram(fa_model) # Visualize the factor structure

} else {

print("Error: No valid number of factors found. Try specifying nfactors manually.")↪→

}

In the code we try to automatically get the number of latent factors
and the answer is. . . five. When we learn loadings using the varimax
rotation we get that the latent traits correpond exactly to what we
would hope; see Figure 7.2.

Factor Analysis

N1
N2
N3
N4
N5
E2
E4
E1
E3
E5
C2
C4
C5
C3
C1
A3
A2
A5
A4
A1
O3
O5
O1
O2
O4

MR2

MR1

MR3

MR5

MR4

0.8
0.8
0.7
0.6
0.5

−0.7
0.6

−0.6
0.5
0.5

0.6
−0.6
−0.6
0.6
0.5

0.7
0.6
0.5
0.4

−0.4

0.6
−0.5
0.5

−0.5
0.4

Figure 7.2:

7.7 Exercises

Exercise 7.7.1 (Basic Properties of Factor Analysis). Consider the Factor
Analysis model in (7.1). Show carefully that the marginal distribution of X
is Gaussian and rederive its mean and covariance matrix.

Exercise 7.7.2. If X is a Gaussian random vector whose covariance matrix
can be written in the form Σ = WW⊤ + Ψ, show that there exist factors
Z, ε such that (7.1) holds.

Exercise 7.7.3. If WW⊤ = W̃W̃⊤, show that W̃ = WQ for an orthogonal
Q.

Exercise 7.7.4 (Identifiability in FA). Show that if (W, Ψ) satisfies the FA
model, then for any orthogonal matrix U ∈ O(r), the pair (WU, Ψ) defines
the same observed distribution for X. What does this imply for parameter
estimation?

Exercise 7.7.5 (Maximum Likelihood Estimation in FA). The log-
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likelihood function in FA is given by:

ℓ(W, Ψ) = −n
2

[
log det(WW⊤ + Ψ) + tr(Sn(WW⊤ + Ψ)−1)

]
.

Explain why maximizing the likelihood is difficult and why iterative meth-
ods such as EM are required.

Exercise 7.7.6 (Choosing the Number of Factors). Implement one of the
methods to determine the number of factors in FA. Test it using a simulated
dataset.

Exercise 7.7.7 (Comparison with PCA). Consider a dataset where all
observed variables are generated from a latent factor model. Compare FA and
PCA in terms of:

• The estimated loadings

• The explained variance

• The ability to recover the true latent factors

Which method is more appropriate and why?

Exercise 7.7.8 (Generalization to Non-Gaussian Factors). In standard
FA, the latent factors Z are assumed to be Gaussian. Suppose instead that Z
follows a multivariate Laplace distribution. What impact would this have on
estimation and inference?

Exercise 7.7.9 (ICA and FA Differences). ICA is based on a similar
decomposition to FA:

X = WZ.

However, ICA assumes that the components of Z are independent but not
necessarily Gaussian. Explain why ICA requires non-Gaussianity for identi-
fiability.

Exercise 7.7.10 (Deriving the ICA Objective Function). A common
ICA method minimizes mutual information. Show that for a random vari-
able Z with independent components, minimizing the mutual information
I(Z1, Z2, . . . , Zm) is equivalent to maximizing the sum of marginal en-
tropies ∑i H(Zi) under a fixed covariance constraint.

Exercise 7.7.11 (Fourth-Order Cumulants in ICA). The JADE algorithm
for ICA uses fourth-order cumulants to estimate the independent compo-
nents. Derive the fourth-order cumulant tensor for a 2D random vector and
show how it can be used to separate sources in ICA.

Exercise 7.7.12 (FA vs ICA in High Dimensions). In high-dimensional
data where m ≫ n, discuss the advantages and disadvantages of FA and
ICA. How does the curse of dimensionality affect estimation in these mod-
els?





8
Graphical Models

In this chapter we only cover basics of graphical models and pro-
vide a short introduction to Gaussian graphical models. If you are
interested in more details of this beautiful theory, see 1. 1 Steffen L. Lauritzen. Graphical Models,

volume 17 of Oxford Statistical Science
Series. Clarendon Press, Oxford, 1996.
ISBN 978-0-19-852219-5

8.1 Introduction

Graphical models are an important tool for representing and ana-
lyzing the relationships between variables in multivariate data. They
combine ideas from graph theory and probability to describe how
variables depend on each other. These models provide a clear and
structured way to understand complex systems, making them very
useful in modern statistics and data science.

Let X = (X1, . . . , Xm) be a random vector. A graphical model for
X consists of a graph G = (V, E), where V := {1, . . . , m} is a set
of nodes representing the random variables, and E is a set of edges.
If there is an edge between two nodes i and j, we write ij ∈ E. In
graphical models, if ij /∈ E, Xi and Xj are conditionally indepen-
dent given some other variables. This way of showing how variables
depend on each other is helpful for tasks like prediction, testing hy-
potheses, and choosing the right model.

Graphical models are used in many areas of science and industry.
In genetics and biology, they help uncover how genes interact and
how biological processes work. In finance and economics, they help
understand how different financial factors affect each other and how
risks spread through a system. Graphical models also form the basis
of many machine learning methods2. 2 The computational aspects of graphi-

cal models are treated more in detail in
STA414. Here we focus on modelling
and statistical aspects.

There are three main types of graphical models. Undirected graph-
ical models, also called Markov random fields, represent relation-
ships where the direction does not matter. Directed graphical models,
or Bayesian networks, show relationships with a specific direction,
often representing cause-and-effect. Mixed graphical models com-
bine both directed and undirected edges to describe more complex
relationships. Each type of model is suited to different kinds of prob-
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lems.
In this chapter, we will focus on undirected graphical models

because they are easier to understand and widely used. Directed
and mixed models will be mentioned briefly, but we leave a deeper
discussion of these models for more advanced studies.

8.2 Appendix: Conditional independence

Independence and conditional independence are fundamental distri-
butional restrictions that are both statistically interpretable and allow
for scaling down very high dimensional problems. For that reason
they have also a considerable impact on machine learning.

Suppose we have a random vector X ∈ Rm with density f (x)3. Let 3 The same definitions hold for discrete
variables. In this case f is the probabil-
ity mass function and integrals below
should be replaced with sums.

X = (XA, XB) be an arbitrary split with XA ∈ Rk and XB ∈ Rm−k.
The marginal density fB of XB is

fB(xB) :=
∫

Rk
fX(xA, xB)dxA

and we have the analogous definition of the marginal density fA of
XA. We say that XA is independent of XB if the joint density factor-
izes f (x) = fA(xA) fB(xB) for all x ∈ Rm; we write XA⊥⊥XB. It can
be shown that XA⊥⊥XB if and only if Xi ⊥⊥Xj for all i ∈ A, j ∈ B.

Let fA|B be the conditional density of XA|XB, that is,

fA|B(xA|xB) :=
fX(xA, xB)

fB(xB)
.

Note that if XA⊥⊥XB then, equivalently,

fA|B(xA|xB) = fA(xA).

This characterization of independence gives also its convenient inter-
pretation: If we want to predict (or sample etc) XA then the informa-
tion about XB is irrelevant.

Now consider a split X = (XA, XB, XC). We say that XA is
conditionally independent of XB given XC, which we denote by
XA⊥⊥XB|XC, if

fA∪B|C(xA, xB|xC) = fA|C(xA|xC) fB|C(xB|xC)

or equivalently

fA|B∪C(xA|xB, xC) =
fA∪B|C(xA, xB|xC)

fB|C(xB|xC)
= fA|C(xA|xC).

In other words, if we want to predict (sample, etc) XA after observing
the value of XC then an additional observation of XB should not
change our predictions.
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8.2.1 Testing independence

Suppose we observe some bivariate dataData: (X1, Y1), . . . , (Xn, Yn)

i.i.d. from bivariate distribution PX,Y. How would you test if the
components of the underlying vector are independent? We con-
sider testing problem: H0 : X⊥⊥Y, H1 : X⊥⊥̸ Y. There are many
tests of independence. For example, we know that if X1⊥⊥X2 then
corr(X1, X2) = 0. We could then compute the sample correlation and
try to draw conclusions from this. Many popular independence tests
are based on the sample correlation or on its nonparametric version
the Kendall’s τ. Consider the following code.

> set.seed(1); n <- 200; rho <- 0.2; Z <- runif(n);

> X <- runif(n)^2+sqrt(rho)*Z; Y <- runif(n)+sqrt(rho)*Z

> cor.test(X, Y, method = "pearson")$p.value

[1] 0.03417231

> cor.test(X, Y, method = "kendall")$p.value

[1] 0.01100592

Here we sample a bivariate vector with some non-negligible depen-
dence structure. The vector is highly non-Gaussian so the standard
test based on the Pearson correlation (using Fisher’s z-transform) is
generally not valid, and we see that the p-value is rather high when
we use this test. The nonparametric test based on the Kendall’s tau is
better behaved.

8.2.2 Some cautionary examples

I want to emphasize however that, using such tests is in general a
very bad idea. Remember, corr(X1, X2) = 0 is not equivalent to
independence! One important cautionary example is the dataset
considered by Bowman& Azzalini (1997) on aircraft wing span and
speed data.

> library(sm); set.seed(1);

> X <- aircraft$Span

> Y <- aircraft$Speed

> cor.test(X,Y)$p.value

[1] 0.7816014

> dcor.test(X,Y,R=1000)$p.value

[1] 0.000999001

The correlation based tests all retain the null hypothesis simply be-
cause the sample correlation is −0.01 and so, very close to zero. But
these two variables are very highly dependent, just dependence is
non-linear. Here the distance correlation test is a nonparametric test
of dependence that works under general assumptions, its p-value is
nearly zero, confirming dependence in the data.

I have another cautionary example regarding conditional inde-
pendence. This one is often referred to as the Simpson’s paradox.
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Consider the admission figures of the grad school at UC Berkeley
in 1973: 8442 (44%) men, 4321 (35%) women admitted. A group of
statisticians started looking into these data trying to understand
this potential disparity. Is there a dependence between the random
variable representing the gender and another binary random vari-
able representing The conclusion becomes strikingly different if we
condition on a third variable, the department: Try to think what is

Department Men: Applicants Men: Admitted Women: Applicants Women: Admitted

A 825 62% 108 82%

B 560 63% 25 68%

C 325 37% 593 34%

D 417 33% 375 35%

E 191 28% 393 24%

F 373 6% 341 7%

a possible explanation for this seemingly paradoxical situation? As
the original study puts it: “Measuring bias is harder than is usually
assumed, and the evidence is sometimes contrary to expectation.”4. 4 Bickel et al, Sex Bias in Graduate

Admissions: Data From Berkeley, Science,
1975

Figure 8.1 gives yet another illustration for what the Simpson
paradox is. Here we observe 2D dataset with points corresponding to
two groups (regions). In each group the effect is clearly positive but if
we analyse the data jointly the trend is negative.

Figure 8.1: Simpson’s paradox in action.

8.3 Graphs and Conditional Independence

A graph G = (V, E) consists of a set of nodes V = {1, . . . , m} and
edges E. Nodes represent random variables, and edges represent
direct dependencies or associations between the variables. A simple
example with m = 5 is given in Figure 8.3. This will be the running
example in this chapter.

1

2

3

4 5
Figure 8.2: A simple graph with five
nodes and six edges.

Graphs can be represented in multiple ways. An adjacency ma-
trix is a square matrix A where Aij = 1 if there is an edge between
nodes i and j, and Aij = 0 otherwise. For example, for the graph in
Figure 8.3, the adjacency matrix is

A =


0 1 1 1 0
1 0 1 0 0
1 1 0 0 1
1 0 0 0 1
0 0 1 1 0

 .

Another way to represent a graph is by listing for each node the
set of all its neighbors. In our running example: N1 = {2, 3, 4},
N2 = {1, 3}, N3 = {1, 2, 5}, N4 = {1, 5}, and N5 = {3, 4}.
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A clique is a subset of nodes in an undirected graph where every
pair of nodes is connected by an edge. A maximal clique is a clique
that is maximal with respect to inclusion (no other clique strictly
containing it).

In the running example, the maximal
cliques are {1, 2, 3}, {1, 4}, {3, 5}, {4, 5}.
On the other hand, {1, 3} is a clique but
it is not maximal.

A path is a sequence of nodes connected by edges. A cycle is a
path that starts and ends at the same node.

Separation in graphs is a crucial concept for us. We say that two
subsets A, B ⊆ V are separated from each other by a subset C ⊆ V if
every path between any node i ∈ A and j ∈ B necessarily contains a
node in C; we write A ⊥G B|C. For example, in Figure 8.3, A = {2} is
separated from B = {4, 5} by C = {1, 3}. However, C′ = {1} does not
separate A from B.

8.3.1 Graph factorization

An important defining concept in graphical models is that of factor-
ization with respect to G. Let G be an undirected graph with nodes
V = {1, . . . , m} and maximal cliques C1, . . . , Ck. For any C ⊆ V, xC

denotes a subvector of x, xC = (xi)i∈C.
We say that density5 f (x) of X factorizes according to G if 5 When we say “density” we mean

the density function for continuous
distributions or the probability mass
function for discrete distributions.

f (x) = ∏
C∈C

ϕC(xC) for all x ∈ X , (8.1)

where ϕC(xC) ≥ 0.6 For the graph in Figure 8.3, 6 This is a notion of simplicity, which
states that the distribution can be glued
in a specific way from simpler pieces.f (x1, x2, x3, x4, x5) = ϕ123(x1, x2, x3)ϕ14(x1, x4)ϕ35(x3, x5)ϕ45(x4, x5).

We define the graphical model M(G) as the set of all distributions on
X that factorize with respect to G.

8.3.2 Conditional Independence and Graph Separation

Conditional independence and separation are the core ideas linking
graphs to probabilistic models. In undirected graphs, conditional
independence is determined by the concept of graphical separation
called the Global Markov Property: If a set of nodes C separates A
from B in the graph, then XA⊥⊥XB|XC. For example, in the graph in
Figure 8.3, X2⊥⊥{X4, X5}|{X1, X2}.

The most fundamental result of graphical models that links the
Global Markov property with factorization is the Hammersley-
Clifford theorem. ← Exercise 8.6.2

Theorem 8.3.1 (Hammersley-Clifford theorem). Let f > 0 be a density
function for X = (X1, ..., Xm). Then the following are equivalent:

(F) f factorizes according to G = (V, E).
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(G) XA⊥⊥XB|XC whenever C separates A and B in G.

(P) Xi ⊥⊥Xj|XV∖{i,j} for all ij /∈ E.7 7 (P) is called the Pairwise Markov
Property.

By the Hammersley-Clifford theorem, graphical models could be
equivalently defined by specific conditional independences.8 8 For simplicity, in this lecture, we

work only with positive distributions
for which the Hammersley-Clifford
theorem applies.

In what follows, we discuss two most important versions of undi-
rected graphical models. One for Gaussian distributions and the
other for finite discrete distributions.

8.4 Gaussian Graphical Models

Gaussian Graphical Models (GGMs) describe the conditional inde-
pendence structure of multivariate normal distributions. They are
widely used in statistics, machine learning, and computational biol-
ogy due to their interpretability and mathematical tractability.

8.4.1 Definition and Properties

We already learned about the multivariate normal distributions, and
many of its properties will become essential here in this chapter. In
particular, recall Proposition 2.3.2, which states that Kij = 0 if and
only if Xi ⊥⊥Xj|XV∖{i,j}. By the Hammersley-Clifford theorem9, this 9 Note that the Gaussian density is

always positive so this theorem applies.is equivalent to density factorization with respect to the graph that
represents the support of the inverse covariance matrix K = Σ−1,
namely the graph G given by

(i, j) /∈ E ⇐⇒ Kij = 0.

Moreover, by the Global Markov Property, we get a way of reading
from the graph other more complicated conditional independences.
Slightly abusing notation, we write

M(G) = {Σ ∈ Sm : Σ−1
ij = 0 if ij /∈ E}.

In other words, we associate the Gaussian graphical model over G
with the family of covariance matrices for distributions in M(G). The
graphical model makes no restrictions on the mean vector.

8.4.2 Estimation with fixed G

Given n i.i.d. samples x1, . . . , xn ∈ Rm consider the sample covari-
ance matrix Sn as defined in (1.4). Throughout we assume that the
sample comes from N(µ, Σ), Σ ∈ M(G). A natural way to estimate
parameters in a Gaussian graphical model M(G) is by maximizing
the log-likelihood function. This results in a consistent and asymptot-
ically normal estimator by standard results.



graphical models 131

Note that the mean µ is unrestricted in this model and so, by the
same argument as in Section 2.4.1, the maximum likelihood estimator
of µ is equal to the sample average; µ̂ = x̄n. Thus, expressed in terms
of K = Σ−1, the log-likelihood function takes a simpler form (as in
(2.6)):

ℓ(x̄, K) = const + n
2 (log det(K)− tr(SnK)).

Denote f (K) = − log det(K) + tr(SnK) so that maximizing ℓ(x̄, K) is
equivalent to minimizing f (K). We noted already in Section 2.4.1 that
f is a strictly convex function of K. Define the linear subspace ← Exercise 8.6.3

V(G) = {K ∈ Sm : Kij = 0 if ij /∈ E}.

With this notation optimizing the log-likelihood for a Gaussian
graphical model results in being equivalent to minimizing f (K) a
convex optimization problem; min f (K) subject to K ∈ V(G) ∩ Sm

+.10 10 Intersection of two convex sets is
convex. Moreover, Sm

+ is convex directly
by definition.

This problem does not have a closed form solution in general11 so we

11 It does if and only if G is decompos-
able. See Lauritzen 1996 for details.

solve it using numerical methods.
Some of the most efficient methods use the dual formulation of the

maximum likelihood problem.

Proposition 8.4.1. The maximum likelihood estimator Σ̂, if it exists, is the
unique maximizer of log det Σ subject to Σii = (Sn)ii for all i ∈ V and
Σij = (Sn)ij for all ij ∈ E.

The idea of the following proof sketch applies to a wide range of
related problems in multivariate statistics. Thus, it is beneficial to
follow it closely.

Proof Sketch. We can extend f to whole Sm by setting f (K) = +∞
if K /∈ Sm

+. Minimizing this extended f over Sm is equivalent to
minimizing f over Sm

+. Consider the orthogonal complement 12 12 If a finite dimensional linear subspace
is defined by vanishing of some of
the coordinates then its orthogonal
complement is defined by vanishing of
the remaining coordinates.

W(G) := V(G)⊥ = {K ∈ Sm : Kii = 0 for all i and Kij = 0 for ij ∈ E}.

Observe that

sup
Λ∈W(G)

f (K) + tr(ΛK) =

 f (K) if K ∈ V(G),

+∞ otherwise.

Indeed, if K ∈ V(G) then tr(ΛK) = 0 and so f (K) + tr(ΛK) = f (K).
On the other hand, if K /∈ V(G), there exists Λ ∈ W(G) such that
tr(ΛK) > 0. Taking tΛ with t → ∞ shows that supΛ∈W(G) f (K) +
tr(ΛK) = +∞. This all implies that

inf
K∈Sm

f (K) = inf
K∈Sm

sup
Λ∈W(G)

f (K) + tr(ΛK).

By the minimax theorem from convex analysis13, which we are not 13 This is the only informal step of this
proof sketch.
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going to prove here, we have

inf
K∈Sm

sup
Λ∈W(G)

f (K) + tr(ΛK) = sup
Λ∈W(G)

inf
K∈Sm

f (K) + tr(ΛK).

The latter expression is easy to handle since

inf
K∈Sm

f (K) + tr(ΛK) = inf
K∈Sm

− log det(K) + tr((Sn + Λ)K)

=

− log det((Sn + Λ)−1) + m if Sn + Λ ∈ Sm
+,

−∞ otherwise.

where the last equality comes from the fact that minimizing the mid-
dle expression is equivalent to maximizing the (unrestricted) Gaus-
sian log-likelihood with sample covariance matrix Sn + Λ, which we
did in Section 2.4.3. We get that

inf
K∈Sm

f (K) = sup
Λ∈W(G),Sn+Λ∈Sm

+

log det(Sn + Λ) + m,

which gives the desired conclusion.

8.4.3 Matrix completion

Proposition 8.4.1 implies that the MLE Σ̂ has the same diagonal as
the sample covariance matrix Sn. The same applies to all entries cor-
responding to the edges of G. Thus, it remains to fill in the remaining
entries so that the determinant is maximally possible.

In the example of Figure 8.3, if S is the
sample covariance matrix then the MLE
is of the form

Σ̂ =


S11 S12 S13 S14 ∗
S12 S22 S23 ∗ ∗
S13 S23 S33 ∗ S35
S14 ∗ ∗ S44 S45
∗ ∗ S35 S45 S55

 .
Denote Σ∖i,∖i ∈ Sm−1

+ the submatrix of Σ obtained by removing the
i-th row/columns. Let Σ∖i,i ∈ Rm−1 be the i-th column of Σ with the
i-th entry removed. Note that by fixing the i-th row/column, we can
write

det(Σ) = det(Σ∖i,∖i)(Σii − Σi,∖iΣ−1
∖i,∖iΣ∖i,i).

Suppose we want to optimize the determinant with respect to y :=
Σ∖i,i only. Since det(Σ∖i,∖i) > 0, equivalently, we minimize y⊤Σ−1

∖i,∖iy.
Since Σ∖i,∖i is positive definite14, the global optimum of this quadratic 14 Every principal submatrix of a posi-

tive definite matrix is positive definite.form is y = 0. But in our case y = Σ∖i,i must satisfy Σji = (Sn)ji for
j − i ∈ E. Nevertheless, this is a simple quadratic problem with
linear constraints for which there are very efficient algorithms and
implementations.

We can now imagine an iterative procedure, where we update
Σ row by row. This is an example of block coordinate descent. Al-
though we are not going to prove this formally, since the original
function log det Σ is strictly concave, this is guaranteed to converge to
the global optimum.
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8.4.4 Challenges in High-Dimensional Settings

Let us reiterate what we already mentioned earlier in these notes.
Estimating the covariance is hard! Estimating the inverse covariance
matrix is even harder. Consider a trivial scenario of a well-behaved
5 × 5 covariance matrix in the model M(G) over the graph in Fig-
ure 8.3 as in the code below.

The true inverse covariance matrix is

K =


1 0.3 0.4 0.5 0

0.3 1 0.2 0 0
0.4 0.2 1 0 0.4
0.5 0 0 1 0.5
0 0 0.4 0.5 1


and

Σ =


3.62 −0.63 −2.29 −3.02 2.43
−0.63 1.16 0.13 0.45 −0.28
−2.29 0.13 2.79 2.27 −2.25
−3.02 0.45 2.27 3.95 −2.89
2.43 −0.28 −2.25 −2.89 3.34



library(MASS)

Sigma <- solve(matrix(c(1, 0.3, 0.4, 0.5, 0,

0.3, 1, 0.2, 0, 0,

0.4, 0.2, 1, 0, 0.4,

0.5, 0, 0, 1, 0.5,

0, 0, 0.4, 0.5, 1), nrow = 5))

set.seed(123)

X10 <- mvrnorm(10,c(0,0,0,0,0),Sigma);

S10 <- cov(X10)

X100 <- mvrnorm(100,c(0,0,0,0,0),Sigma)

S100 <- cov(X100)

X1000 <- mvrnorm(1000,c(0,0,0,0,0),Sigma)

S1000 <- cov(X1000)

round(solve(Sigma),2)

round(solve(S10),2)

round(solve(S100),2)

round(solve(S1000),2)

The following output shows that only for very large sample sizes the
inverse of the sample covariance matrix becomes a decent estimation
of the inverse covariance matrix.

> round(solve(Sigma),2)

[,1] [,2] [,3] [,4] [,5]

[1,] 1.0 0.3 0.4 0.5 0.0

[2,] 0.3 1.0 0.2 0.0 0.0

[3,] 0.4 0.2 1.0 0.0 0.4

[4,] 0.5 0.0 0.0 1.0 0.5

[5,] 0.0 0.0 0.4 0.5 1.0

> round(solve(S10),2)

[,1] [,2] [,3] [,4] [,5]

[1,] 1.29 0.12 0.30 0.28 -0.52

[2,] 0.12 6.28 2.21 -3.70 -3.63

[3,] 0.30 2.21 1.62 -1.44 -0.63

[4,] 0.28 -3.70 -1.44 3.63 3.28

[5,] -0.52 -3.63 -0.63 3.28 5.06

> round(solve(S100),2)

[,1] [,2] [,3] [,4] [,5]

[1,] 1.07 0.31 0.57 0.53 0.08

[2,] 0.31 1.01 0.19 0.02 0.10

[3,] 0.57 0.19 1.28 0.10 0.53

[4,] 0.53 0.02 0.10 1.14 0.59

[5,] 0.08 0.10 0.53 0.59 1.06

> round(solve(S1000),2)

[,1] [,2] [,3] [,4] [,5]

[1,] 1.05 0.30 0.44 0.54 0.04

[2,] 0.30 1.00 0.16 0.02 -0.05

[3,] 0.44 0.16 1.02 0.02 0.42

[4,] 0.54 0.02 0.02 1.03 0.53

[5,] 0.04 -0.05 0.42 0.53 1.02
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For this reason, whenever the problem has some structure, it is im-
portant to exploit it. In this chapter we will show how to use the fact
that the true inverse covariance matrix has some zeros. We will go
back to this example in the next section to illustrate how graphical
model constraints can help.

The problem with estimating the inverse covariance matrix be-
comes particularly profound in higher-dimensional scenarios. We
noted already in Section 4.7 that if the underlying dimension is not
negligible with respect to n, the classical asymptotic results may not
be very accurate. For this reason, in modern applications, we use
estimators that rely on some form of regularization. We will discuss
in Section 8.4.7 a form of regularization that allows us to learn the
underlying graph G.

8.4.5 Appendix: Likelihood Ratio Test

Hypothesis Testing in multivariate statistics offer comes with many
issues related with high-dimensionality of the problems. Likelihood
Ratio Test provides a rather general approach that can be used in a
variety of situations and which, under some regularity conditions
comes with asymptotic statistical guarantees.

Consider a parametric model with parameter space Θ. Given
Θ0 ⊆ Θ we consider the null hypothesis H0 : θ ∈ Θ0. Given the
log-likelihood function ℓn(θ) = ∑i log f (xi). Define ℓ∗1 = supθ∈Θ ℓn(θ)

and ℓ∗0 = supθ∈Θ0
ℓn(θ). The likelihood ratio statistics is then defined

as
Λn = 2(ℓ∗1 − ℓ∗0).

Note that Λn is always nonnegative. In general, one tends to favor H1

when the LR statistics is low, and H0 when it is high. More formally,
the Likelihood Ratio Test of size α for testing H0 against H1 has as its
rejection region

R = {X : Λn < c},

where c is determined so that

sup
θ∈Θ0

Pθ(X ∈ R) = α.

For the hypotheses we are interested in, the distribution of Λn does
not depend on the particular value of θ ∈ Θ0, so the above supre-
mum is unnesessary. The LRT has the following very important
property.

Theorem 8.4.2. If Θ0 ⊆ Θ with dim(Θ) = q and dim(Θ0) = r then,
under suitable regularity conditions, for each θ ∈ Θ0, Λn has an asymptotic
χ2

q−r distribution as n→ ∞.
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Example 8.4.3. Consider the Gaussian distribution Nm(µ, Σ) and H0 :
µ = µ0 for some fixed vector µ0. As this constrained defined m additional
restrictions, we get that, under the null, Λn will have the asymptotic χ2

m
distribution.

8.4.6 Structure learning (aka model selection)

In practice, the graph G is rarely known. In this case, the focus is
on learning/selecting a suitable graph based on the observed data.
In this section we briefly discuss some classic approaches to model
selection.

Likelihood Ratio Test. A classical approach to determine the
structure of G is to test a candidate graph G0 (the null model M(G0))
against its supergraph G (the alternative model M(G)) using the
likelihood ratio test.

Suppose X ∼ Nm(µ, Σ). Let x1, . . . , xn be a random sample from
this distribution. Let G0 = (V, E0) be a graph of interest and G =

(V, E) be any graph containing it (E0 ⊆ E). Based on the observed
data we would like to test

H0 : Σ ∈ M(G0) against H1 : Σ ∈ M(G).

Let ℓ(x̄n, K) be as defined in (2.6). Let K̂ be the MLE of the con-
centration matrix under the model M(G) and let K̂0 be the the MLE
under the submodel M(G0). The likelihood ratio statistic is defined
as:

Λn := 2
(
ℓ(x̄n, K̂)− ℓ(x̄n, K̂0)

)
.

Proposition 8.4.4. If G0 = (V, E0) is a subgraph of G = (V, E) , and
ν = |E ∖ E0|, then under the null hypothesis that M(G0) is the true model:

Λn
d→ χ2

ν.

This result allows us to test whether the additional edges in G
significantly improve the model fit, by comparing Λn to the critical
value of the χ2

ν distribution: ← Exercise 8.6.4

1. Compute Λn based on the data.

2. Compute p-value as P = P(χ2
ν ≥ Λn).

3. If P is small, say less then 0.05, reject the null hypothesis.

We illustrate the process using a small simulated dataset. Sup-
pose we observe data from a multivariate normal distribution, and
we wish to select a Gaussian graphical model that explains the de-
pendencies among the variables. In this code, the true covariance
matrix generating the data lies in the model defined by the graph in



136 methods for multivariate data (sta437)

Figure 8.3. We will test this model against the unrestricted Gaussian
model defined by the complete graph. ← Exercise 8.6.6

library(ggm)

# Generate synthetic data for illustration

set.seed(123)

n <- 100 # Sample size

p <- 5 # Number of variables

# Simulate data from a multivariate normal distribution

Sigma <- solve(matrix(c(1, 0.3, 0.4, 0.5, 0,

0.3, 1, 0.2, 0, 0,

0.4, 0.2, 1, 0, 0.4,

0.5, 0, 0, 1, 0.5,

0, 0, 0.4, 0.5, 1), nrow = 5))

data <- MASS::mvrnorm(n = n, mu = rep(0, p), Sigma = Sigma)

# Define two competing graphs (G0: subgraph, G: full graph)

G0 <- matrix(c(0, 1, 1, 1, 0,

1, 0, 1, 0, 0,

1, 1, 0, 0, 1,

1, 0, 0, 0, 1,

0, 0, 1, 1, 0), nrow = 5, byrow = TRUE)

G <- matrix(1, nrow = 5, ncol = 5) # Full graph (fully connected)

diag(G) <- 0

# Assign variable names

var_names <- c("X1", "X2", "X3", "X4", "X5")

colnames(data) <-colnames(G0) <-colnames(G) <-rownames(G) <-rownames(G0)

<- var_names↪→

S <- cov(data)

# Fit models under G0 and G

Shat0 <- fitConGraph(G0,S, nrow(data))$Shat

Shat <- fitConGraph(G,S, nrow(data))$Shat

Khat0 <- solve(Shat0)

Khat <- solve(Shat)

# Likelihood Ratio Test

logLik_G0 <- (n/2)*(log(det(Khat0))-sum(Khat0*S))

logLik_G <- (n/2)*(log(det(Khat))-sum(Khat*S))

LRT_stat <- 2 * (logLik_G - logLik_G0)

df <- (sum(G) - sum(G0))/2 # Difference in number of edges

p_value <- pchisq(LRT_stat, df = df, lower.tail = FALSE)

cat("Likelihood Ratio Test Statistic:", LRT_stat, "\n")

cat("Degrees of Freedom:", df, "\n")

cat("p-value:", p_value, "\n")

The corresponding p-value15 of the likelihood ratio test is 0.294, this 15 Recall that the p-value is the proba-
bility (under the null) that Λn is greater
than what was observed in the data.
Very small values provide evidence
against H0.

is not super conclusive but we have no enough evidence to reject the
null hypothesis.

Remark 8.4.5. We note in passing that the estimator of the inverse covari-
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ance matrix under the true graph in Figure 8.3 is
1.04 0.34 0.40 0.48 0
0.34 1.02 0.17 0 0
0.40 0.17 0.99 0 0.47
0.48 0 0 0.99 0.51

0 0 0.47 0.51 1.19

 .

This is a slightly more accurate estimator of the real inverse covariance
matrix than the one given by the inverse of the sample covariance matrix in
Section 8.4.4.

Akaike’s Information Criterion (AIC) and Bayesian Information
Criterion (BIC). An alternative approach to model selection is based
on information criteria, which balance the goodness of fit and model
complexity. The dimension of the model M(G) is simply the number
of nodes m plus the number of edges E; dim M(G) = m + |E|. AIC is
defined as:

AIC = −2ℓ(x̄n, K̂) + 2 · dim M(G)

and BIC is defined as:

BIC = −2ℓ(x̄n, K̂) + log(n) · dim M(G).

The model with the smallest AIC/BIC value is selected. Unlike hy-
pothesis testing, information criteria provide a way to compare non-
nested models directly.

The number of possible undirected graphs on m nodes is 2(
m
2 ) and

so it grows exponentially, making exhaustive search computation-
ally infeasible for even moderate m. A stepwise procedure offers a
practical alternative:

1. Start with the complete graph or a simpler initial model.

2. Iteratively add or remove edges:

• Evaluate all models obtained by adding or removing one edge.

• Select the model with the smallest AIC/BIC.

3. Stop when no improvement in AIC/BIC is observed. ← Exercise 8.6.5

This greedy approach does not guarantee the globally optimal model,
but it is computationally efficient.

The package gRim offers an implementation of such a stepwise
procedure in R. Consider the following code.

Note that the “aic” criterion in the code
refers in fact to the BIC as k = log(n).

library(gRim)

library(qgraph)

sat.model <- cmod(~.^.,data=data);
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test.model <-

stepwise(sat.model,details=1,criterion="aic",type="unrestricted",k=log(↪→

n))

# plot(test.carc) or using the qgraph package

Sigma.hat <- solve(test.model$fitinfo$K)

qgraph::qgraph(Sigma.hat,graph="pcor")

X1

X2

X3X4

X5

Figure 8.3: The selected model is close
to the true graph. Only the edge 2− 3 is
missing.

We used here the package qgraph only to plot the underlying par-
tial correlation graph. We will mention this package again when
discussing high-dimensional scenarios.

8.4.7 Graphical LASSO

In high-dimensional scenarios, stepwise procedures described above
are impractical and we often use other approaches based on regular-
ization techniques.

The graphical LASSO estimates sparse precision matrices by solv-
ing the optimization problem:

K̂ = arg max
K∈Sm

+

{
log det(K)− tr(SnK)− λ∥K∥1,off

}
, (8.2)

where λ > 0 is a fix penalty parameter and

∥K∥1,off := ∑
i ̸=j
|Kij|.

In other words the graphical LASSO estimator is obtained by pe-
nalizing the log-likelihood function with a term that penalizes the
off-diagonal entries to be too large effectively pushing some of them
to be zero. This is in the same spirit as the LASSO approach in linear
regression, hence the name.

An efficient algorithm to find K̂ follows exactly the same lines
as the block coordinate descent algorithm for maximizing the log-
likelihood function. First we formulate a variational form of ∥K∥1,off.
Noting that |x| = sup−1≤y≤1 xy we get

λ∥K∥1,off = λ ∑
i ̸=j

sup−1≤Λij≤1ΛijKij = sup
Λ

tr(ΛK),

where the supremum is taken over all Λ ∈ Sm with zeros on the
diagonal and off-diagonal entries in [−λ, λ].

This allows to rewrite the main function in (8.2) as

sup
Λ

{
log det(K)− tr((Sn + Λ)K)

}
.

Proceeding as in the proof of Proposition 8.4.1, we get that the dual
problem is to maximize log det Σ subject to Σii = (Sn)ii for i =

1, . . . , m and |Σij − (Sn)ij| ≤ λ.
We can again solve this problem using the same block coordinate

descent approach.
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1. Set Σ = Sn.

2. For each i = 1, . . . , m, set Σ∖i,i and Σi,∖i to be equal to ŷ, which is
the minimizer of y⊤(Σ∖i,∖i)

−1y subject to yj = (Sn)ij for all j such
that ij ∈ E.

3. Check a convergence criterion (pick one you like in advance). If it
is not satisfied, go back to Step 2. Otherwise stop.

Here is an example of applying the graphical LASSO in R using
the glasso package:

library(glasso)

# Simulated data

set.seed(123)

n <- 100

p <- 10

X <- matrix(rnorm(n * p), nrow = n, ncol = p)

# Sample covariance matrix

S <- cov(X)

# Apply graphical LASSO

lambda <- 0.1

fit <- glasso(S, rho = lambda)

# Extract precision matrix

precision_matrix <- fit$wi

print(precision_matrix)

Remark 8.4.6. Many packages, like glasso, penalize in (8.2) not only
the off-diagonal entries of K but also the diagonal entries. This however
introduces an unnecessary bias.

8.5 Log-linear Graphical Models*

In this lecture course, we have largely ignored discrete variables. We
try to partly fix this in this section by discussing discrete graphical
models.

8.5.1 Introduction

Log-linear graphical models describe the dependence structure of
discrete random variables using a graph-based factorization of the
joint probability distribution. Discrete data arise naturally in many
real-world settings, making their analysis essential in applied statis-
tics and data science. Here are a few explicit examples of scenarios
where finite discrete data are relevant:
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• Genetics: In genetics, categorical variables often represent geno-
types (e.g., AA, Aa, aa) or the presence or absence of certain ge-
netic mutations. For example, a study investigating the relation-
ship between multiple genetic variants and a disease status might
use a log-linear model to analyze these interactions.

• Market Basket Analysis: In retail analytics, log-linear models
are applied to understand the co-occurrence patterns of items in
shopping baskets. Each variable represents whether a customer
bought a specific item (e.g., milk, bread, eggs), and the observed
data are counts of item combinations.

• Survey Data: Social science surveys frequently collect categorical
responses to questions, such as political preferences (e.g., liberal,
conservative) or education levels (e.g., high school, college, grad-
uate school). Log-linear models can analyze the relationships be-
tween these variables, adjusting for potential confounding factors.

8.5.2 Notation

Let X = (X1, . . . , Xm) be a vector of discrete random variables,
where each Xi takes values in a finite set Xi. Without loss of gen-
erality, label the states as Xi = {0, 1, . . . , ri − 1} for some ri ≥ 2. The
joint distribution of X is represented by a probability mass function
f (x) = P(X = x) for x = (x1, . . . , xm) ∈ X1 × · · · × Xm =: X .

Suppose now we observe a random sample x1, . . . , xn from this
distribution. The likelihood is

n

∏
i=1

f (xi) = ∏
x∈X

f (x)n(x),

where n(x) denotes the number of times the state x was observed in
the sample. The collection of these counts n = (n(x)) is called the
contingency table. The contingency table is an r1 × · · · × rm array,
where the (x1, . . . , xm)-th entry n(x1, . . . , xm) represents the number
of times the configuration (x1, . . . , xm) is observed in the data. The
total sample size n satisfies:

n = ∑
x∈X

n(x).

If m = 2 and X1, X2 are binary variables taking values in {0, 1}, the
contingency table might look like this:

X2 = 0 X2 = 1
X1 = 0 n(0, 0) n(0, 1)
X1 = 1 n(1, 0) n(1, 1)

,

where n(0, 0) records the number of observations where (X1, X2) =

(0, 0), n(0, 1) records the number where (X1, X2) = (0, 1), and so on.
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Example 8.5.1. To make this concrete, consider a contingency table summa-
rizing the relationship between smoking status (Smoker, Non-Smoker) and
disease status (Disease, No Disease). The observed data might look like
this:

Disease No Disease
Smoker 50 200

Non-Smoker 30 300

This table indicates that 50 smokers were observed to have the disease, while
30 non-smokers were observed to have the disease, and so on. The total
sample size is n = 580.

For m > 2, the contingency table becomes a multidimensional
array. For example, if m = 3 and each Xi is binary, the contingency
table is a 2× 2× 2 cube, with entries n(x1, x2, x3) representing the
frequencies of each configuration (x1, x2, x3).

Example 8.5.2. Suppose a dataset summarizes the co-occurrence of pur-
chases of Milk, Bread, and Eggs. A contingency table is a 2× 2× 2 array
where the entry (0, 0, 0) gives the number of clients that bought none of the
three products, (0, 1, 1) entry gives the number of clients that bought both
Bread and Eggs etc

no Eggs:
no Bread Bread

no Milk 10 15
Milk 20 5

, Eggs:
no Bread Bread

no Milk 25 30
Milk 35 10

.

The joint probability of the observed contingency table is

P(n(x) : x ∈ X ) =
n!

∏x∈X n(x)! ∏
x∈X

f (x)n(x),

which differs from the likelihood by a multinomial coefficient which
is just a constant.

If we do not restrict the probabilities in any way (except requiring
that they are non-negative and sum to unity), then it is easily shown
that the maximum likelihood estimates are given by f̂ (x) = n(x)/n
for x ∈ X . The unrestricted model is known as the saturated model.
In most substantive contexts, it is of interest to restrict the probabili-
ties further to obtain parsimony and to identify or exploit structural
information.

We need a little more notation. The expected cell counts are writ-
ten m(x) = n f (x) for x ∈ X , and the fitted values as m̂(x) = n f̂ (x).
We need to work with marginal tables and to do this must first define
marginal cells. For a subset of variables C ⊆ V, we define marginal Recall V = {1, . . . , m}.
counts as:

n(xC) = ∑
y∈X :yC=xC

n(x).

We use the analogous notation for f (xC), m(xC) etc.
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8.5.3 Discrete Graphical Models through Factorization

Let C be the set of (maximal) cliques of the graph G. For each C ∈ C,
consider the set XC = ∏i∈C Xi, and let θC : XC → R. 16 The joint 16 Since dC := |XC | is finite, we can

represent θC as a vector in RdC .probability mass function f (x) = P(X = x) of a log-linear model
corresponding to G is expressed as:

f (x; θ) =
1

Z(θ)
exp

(
∑

C∈C
θC(xC)

)
, (8.3)

where Z(θ) = ∑x∈X exp (∑C∈C θC(xC)) is the normalizing constant
and θ = (θC)C∈C represents the collection of clique-specific parame-
ters.

Example 8.5.3. Consider m = 3, where X1, X2, X3 are binary variables

taking values in {0, 1}. Suppose the underlying graph G is a chain
1• − 2• −

3•. The cliques of G are C = {{1, 2}, {2, 3}}. The joint probability mass
function can be written as:

f (x1, x2, x3; θ) =
1

Z(θ)
exp (θ12(x1, x2) + θ23(x2, x3)) ,

where θ12(x1, x2) captures the interaction between X1 and X2, and θ23(x2, x3)

captures the interaction between X2 and X3. Both θ12 and θ23 are encoded
as vectors in R4:

θ12 =


θ12(0, 0)
θ12(0, 1)
θ12(1, 0)
θ12(1, 1)

 , θ23 =


θ23(0, 0)
θ23(0, 1)
θ23(1, 0)
θ23(1, 1)


so effectively we have 8 parameters17. 17 We note in passing that these param-

eters are of no direct interest. In fact
the model has only dimension 5 and
so this parametrization leads to lack of
identifiability.

The normalizing constant Z(θ) ensures that the probabilities sum to 1:

Z(θ) = ∑
x1,x2,x3∈{0,1}

exp (θ12(x1, x2) + θ23(x2, x3)) .

The formula in (8.3) is equivalent to f factorizing with respect
to G, as defined in Equation (8.1)18. By the Hammersley-Clifford 18 Clearly, if (8.3) holds then f factorizes

so it remains to show that if f > 0
factorizes then it can be always written
as (8.3).

theorem, the corresponding distributions satisfy the global, local, and
pairwise Markov properties.

This equivalence between the graph structure and conditional
independence makes log-linear models highly interpretable.

8.5.4 Working with Log-Linear Models in R

To work with log-linear models, the R package MASS provides func-
tions such as loglm, which can fit log-linear models to contingency
tables.



graphical models 143

For example, suppose we have a contingency table for three binary
variables X1, X2, X3 as in Example 8.5.2. We could fit a model with

the chain structure
1• − 2• − 3•. Here is how to fit the model in R:

# Load the MASS package

library(MASS)

# Define the contingency table

contingency_table <- array(

c(10, 20, 15, 5, 25, 35, 30, 10), # Frequencies

dim = c(2, 2, 2), # Dimensions for X1, X2, X3

dimnames = list(

X1 = c("0", "1"),

X2 = c("0", "1"),

X3 = c("0", "1")

)

)

# Fit the log-linear model with the chain structure

model <- loglm(~ X1 * X2 + X2 * X3, data = contingency_table)

# Display the results

summary(model)

The output looks like this.

Formula:

~X1 * X2 + X2 * X3

attr(,"variables")

list(X1, X2, X3)

attr(,"factors")

X1 X2 X3 X1:X2 X2:X3

X1 1 0 0 1 0

X2 0 1 0 1 1

X3 0 0 1 0 1

attr(,"term.labels")

[1] "X1" "X2" "X3" "X1:X2" "X2:X3"

attr(,"order")

[1] 1 1 1 2 2

attr(,"intercept")

[1] 1

attr(,"response")

[1] 0

attr(,".Environment")

<environment: R_GlobalEnv>

Statistics:

X^2 df P(> X^2)

Likelihood Ratio 0.5906840 2 0.7442770

Pearson 0.5844156 2 0.7466134

The p-values in this code refer to the test of this model with respect
to the saturated model.

8.5.5 The Log-Likelihood Function

Suppose we have observed data points x1, . . . , xn, where each xi takes
values in the discrete space X . For a fixed graph G, the goal is to
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maximize the log-likelihood function

ℓ(θ) =
n

∑
i=1

log f (xi; θ) =
n

∑
i=1

∑
C∈C

θC((xi)C)− n log Z(θ),

where f (x; θ) is the joint probability mass function parameterized by
θ, and Z(θ) is the normalizing constant ensuring f (x; θ) sums to 1

over all configurations of x.
The notation here may seem dense, so let us break it down step by

step. In the above expression, the double summation over i and C can
be reordered because both ranges are finite:

n

∑
i=1

∑
C∈C

θC((xi)C) = ∑
C∈C

n

∑
i=1

θC((xi)C).

For a fixed clique C ∈ C, the term ∑n
i=1 θC((xi)C) can be simplified by

grouping terms according to xC ∈ XC

n

∑
i=1

θC((xi)C) = ∑
xC∈XC

nC(xC)θC(xC).

Substituting this back into the log-likelihood function gives:

ℓ(θ) = ∑
C∈C

∑
xC∈XC

nC(xC)θC(xC)− n log Z(θ).

8.5.6 Fitting Log-linear Models: Iterative Proportional Scaling (IPS)

The parameter vectors θC ∈ R|XC | in log-linear models can be es-
timated using a simple iterative procedure. For simplicity of expo-
sition, we present a dual algorithm, called Iterative Proportional
Scaling, that tries to estimate the expectations m(x) for x ∈ X .

Let C be the set of maximal cliques of the graph G. The corre-
sponding marginal tables nC(xC) are a set of sufficient statistics. The
maximum likelihood estimate is obtained by equating the sufficient
statistics with their expectations mC(xC).

Initially the m(x) are set to some constant, say m(x) = 1 for all
x ∈ X . One iteration consists of updating for each C ∈ C

m(x) ← m(x)
nC(xC)

mC(xC)
∀x ∈ X .

Iteration continues until convergence which happens when mC(xC) =

nC(xC) for all C and x. The algorithm is always theoretically con-
vergent with the limiting value being the maximum likelihood esti-
mate under the model {m̂(x)}x∈X , although these may not all have
m̂(x) > 0 for all cells x and thus may not admit a logarithmic expan-
sion.
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8.5.7 The Ising Model

The dimensionality of log-linear models does not scale well with the
number of variables and their number of values. For this reason, it
is important to consider simpler models for discrete data that retain
computational feasibility while capturing essential dependencies.
One prominent example is the Ising model.

The Ising model is a special case of a log-linear graphical model
that is widely used in statistics, machine learning, and physics. It
models binary variables with pairwise interactions.

Consider a random vector X = (X1, . . . , Xm), where each Xi ∈
{−1, 1}. Fix a graph G = (V, E). The probability mass function is
given by:

f (x) = P(X = x) ∝ exp

∑
i∈V

θixi + ∑
(i,j)∈E

θijxixj

 ,

where θi are node potentials representing individual variable effects,
and θij are edge potentials representing pairwise interactions between
variables. The normalization constant, or partition function, Z(θ), is:

Z(θ) = ∑
x∈{−1,1}m

exp

∑
i∈V

θixi + ∑
(i,j)∈E

θijxixj

 .

Applications. The Ising model is highly versatile and is widely
applied in different domains:

• Network Analysis: Social networks where binary variables Xi

represent the presence or absence of a specific behavior or trait
for individual i, and θij encodes the strength of the interaction
between individuals i and j.

• Spatial Statistics: Modeling dependencies in spatial data, such as
image segmentation, where Xi represents the label of pixel i (e.g.,
foreground or background) and θij captures the similarity between
neighboring pixels.

• Statistical Physics: Originally proposed to model ferromagnetic
materials, where Xi represents the spin of an electron, and θij

models the coupling between spins.

• Genetics: Modeling binary genetic traits with pairwise dependen-
cies between genes.

Statistical Estimation and Inference. Consider a random sample
x(1), . . . , x(n). Maximum likelihood is the canonical method to esti-



146 methods for multivariate data (sta437)

mate the parameters θi and θij. The log-likelihood is

ℓ(θ) =
n

∑
k=1

∑
i∈V

θix
(k)
i + ∑

(i,j)∈E
θijx

(k)
i x(k)j

− n log Z(θ),

The log-likelihood can be maximized using iterative procedures like
IPS described above.

The presence of Z(θ) makes exact inference and parameter estima-
tion computationally challenging for large graphs. Indeed, comput-
ing Z(θ) requires performing a sum over wm terms, which is often
computationally prohibitive. This motivates other estimation meth-
ods.
Pseudo-Likelihood Methods: To avoid the computational burden of
Z(θ), one can replace the likelihood with the pseudo-likelihood:

ℓpseudo(θ) =
n

∑
k=1

∑
i∈V

log P(Xi = x(k)i | X−i),

where X−i denotes all variables except Xi. This approximation sig-
nificantly reduces computational cost while providing reasonably
accurate parameter estimates.
Regularization: Sparse Ising models can be estimated using pe-
nalized pseudo-likelihood, incorporating ℓ1-penalties on the edge
parameters θij.

Below is a simple example of fitting an Ising model using the
qgraph package in R.

# Install and load necessary packages

install.packages("qgraph")

library(qgraph)

# Generate synthetic binary data

set.seed(123)

n <- 100 # Number of observations

p <- 5 # Number of variables

data <- matrix(sample(c(-1, 1), n * p, replace = TRUE), nrow = n)

# Fit Ising model using pseudo-likelihood

fit <- IsingFit(data, plot = TRUE)

# Display estimated node and edge parameters

fit$thresholds # Node potentials

fit$weights # Edge potentials

This code generates synthetic data, fits an Ising model using
pseudo-likelihood, and plots the resulting graph. The output in-
cludes estimated node and edge parameters, which can be inter-
preted in the context of the problem domain.
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8.6 Exercises

Exercise 8.6.1. For three variables X = (X1, X2, X3) with density
f (x1, x2, x3). Show that 1⊥⊥ 2|3 and 1⊥⊥ 3 implies that 1⊥⊥ 2. In the
special case when X ∼ N3(0, Σ) is multivariate Gaussian this can be shown
by expressing 1⊥⊥ 2|3 and 1⊥⊥ 3 in terms of the restrictions on the covari-
ance matrix (what are those?) and concluding Σ12 = 0.

Exercise 8.6.2. Consider all binary distributions that factorize f (x1, x2, x3) =

ϕ12(x1, x2)ϕ23(x2, x3) for (x1, x2, x3) ∈ {0, 1}3. Prove the Hammerley-
Clifford theorem in this very special case.

Exercise 8.6.3. Show that the set Sm
+ is convex. Also, show that intersection

of two convex sets must be also convex.

Exercise 8.6.4. Verify by simulations that the likelihood ratio statistics
has the reported asymptotic distribution χ2

4 in the leading example of Sec-
tion 8.4.6.

Exercise 8.6.5. Suppose we compare a graph G with G0 obtained from G
by removing a single edge. What difference in likelihood is needed so that the
AIC/BIC criteria prefer the bigger model?

Exercise 8.6.6. Consider the code on estimating the inverse covariance
matrix for the simple graphical model in Figure 8.3, where the true inverse
covariance matrix is

K =


1 0.3 0.4 0.5 0

0.3 1 0.2 0 0
0.4 0.2 1 0 0.4
0.5 0 0 1 0.5
0 0 0.4 0.5 1

 .

Using simulations, study the performance of the MLE of K under M(G)

compared to the full graph as provided in the code in Section 8.4.4.
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