STA 414/2104: Statistical Methods of Machine Learning II

Week 11: Neural Networks and Optimization (I am sorry for moving online this week)

Piotr Zwiernik

University of Toronto

1. Basics of Optimization in ML

2. Introducing neural networks

3. Backpropagation

Basics of Optimization in ML

Gradients

Differentiable function $f : \mathbb{R}^d \to \mathbb{R}$. $\mathbf{w} = (w_1, \ldots, w_d),$ gradient of f at w $\nabla f(\mathbf{w}) = \begin{bmatrix} \frac{\partial f}{\partial w_1}(\mathbf{w}) \\ \vdots \\ \frac{\partial f}{\partial w_1}(\mathbf{w}) \end{bmatrix}$ $f(\mathbf{w} + \eta \mathbf{u}) \approx f(\mathbf{w}) + \eta \nabla f(\mathbf{w})^{\top} \mathbf{u}$

Important geometric interpretation of the gradient

The gradient gives the direction of the steepest local increase of f.

What is optimization?

- Typical setup (in machine learning, other areas):
 - ► Formulate a problem
 - Design a solution (usually a model)
 - ► Use some quantitative measure to determine how good the solution is.
- E.g., classification:
 - Create a system to classify images
 - ▶ Model is some classifier, like the logistic regression
 - Quantitative measure is misclassification error (lower is better in this case)
- In almost all cases, you end up with a loss minimization problem of the form

minimize_w
$$E(w)$$

• Example: Least squares minimize $E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (\mathbf{x}_n^\top \mathbf{w} - t_n)^2$.

• Training an ML model always reduces to solving an optimization problem

minimize_w
$$E(\mathbf{w})$$
, $\mathbf{w}^* := \arg\min_{\mathbf{w}} E(\mathbf{w})$.

- Standard approach is gradient descent w^{t+1} = w^t η∇E(w^t), where η ∈ (0,1] is the step size (aka learning rate) with w⁰ some initial point.
- For the least squares, minimize $E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (\mathbf{x}_n^\top \mathbf{w} t_n)^2$ we have

$$abla E(\mathbf{w}) = \sum_{n=1}^{N} \mathbf{x}_n (\mathbf{x}_n^\top \mathbf{w} - t_n).$$

Gradient descent derivation

- Suppose we are at w and we want to pick a direction u such that E(w + ηu) is smaller than E(w) for a step size η, ||u|| = 1.
- The first-order Taylor series approximation of $E(\mathbf{w} + \eta \mathbf{u})$ around \mathbf{w} is:

$$E(\mathbf{w} + \eta \mathbf{u}) = E(\mathbf{w}) + \eta \nabla E(\mathbf{w})^{\top} \mathbf{u} + o(\eta) \approx E(\mathbf{w}) + \eta \nabla E(\mathbf{w})^{\top} \mathbf{u}.$$

- Direction *u* should have a negative inner product with $\nabla E(\mathbf{w})$, e.g. $-\frac{\nabla E(\mathbf{w})}{\|\nabla E(\mathbf{w})\|}$.
- This approximation gets better as η gets smaller.

How do we choose the step size in GD? $\mathbf{w}^{t+1} = \mathbf{w}^t - \eta \nabla E(\mathbf{w}^t)$

- Simple strategy: start with a big η and progressively make it smaller by e.g. halving it until the function decreases.
- The sequence of step sizes is referred to as learning rate schedule.

- The vector \mathbf{w} is a fixed point if $\nabla E(\mathbf{w}) = \mathbf{0}$.
- This is never possible in practice. So we stop iterations if gradient is smaller than a threshold, $\|\nabla E(\mathbf{w})\| < \tau$.
- If the function is convex then we have reached a global minimum.
- If the function is not convex, what did we obtain?
- Probably a local minimum or a saddle point.

In most cases, we minimize an average over data points:

$$E(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} L(t_n, y(\mathbf{x}_n, \mathbf{w})), \qquad \nabla E(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{n} \nabla L(t_n, y(\mathbf{x}_n, \mathbf{w})),$$

which is hard to compute when N is very large.

At each iteration, use a sub-sample of data to estimate the gradient

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \eta \frac{1}{|S|} \sum_{n \in S} \nabla L(t_n, y(\mathbf{x}_n, \mathbf{w})).$$

(Here |S| denotes the number of elements in the set S. Standard SGD has |S| = 1)

ML terminology: Computing gradients using the full dataset is called **batch learning**, using subsets of data is called **mini-batch learning**.

Introducing neural networks

Many data sets are not linearly separable.

As a result, linear classification methods will not always work well.

Sometimes we may choose a suitable feature map

Motivating problem

Designing feature maps can be hard. Can we learn them automatically?

A Simpler Neuron

For neural nets, we use a simple model for neuron, or **unit**:

- Same as logistic regression: $y = \sigma(\mathbf{w}^{\top}\mathbf{x} + b)$
- By throwing together lots of these simple neuron-like processing units, we can do some powerful computations!

A Feed-Forward Neural Network

- A directed acyclic graph
- Units are grouped into layers

Multilayer Perceptrons

- A multi-layer network consists of fully connected layers.
- In a fully connected layer, all input units are connected to all output units.
- The outputs are a function of the input units:

$$\mathbf{y} = f(\mathbf{x}) = \phi \left(\mathbf{W} \mathbf{x} + \mathbf{b} \right)$$

 $\phi:\mathbb{R}\to\mathbb{R}$ is applied component-wise.

Some Activation Functions

Identity

 $\phi(z) = z$

Rectified Linear Unit (ReLU)

 $\phi(z) = \max(0, z)$

Soft ReLU

 $\phi(z) = \log 1 + e^z$

More Activation Functions

Computation in Each Layer

Each layer computes a function.

$$h^{(1)} = f^{(1)}(\mathbf{x}) = \phi(\mathbf{W}^{(1)}\mathbf{x} + \mathbf{b}^{(1)})$$

$$h^{(2)} = f^{(2)}(\mathbf{h}^{(1)}) = \phi(\mathbf{W}^{(2)}\mathbf{h}^{(1)} + \mathbf{b}^{(2)})$$

$$\vdots$$

$$\mathbf{y} = f^{(L)}(\mathbf{h}^{(L-1)})$$

The network computes a composition of functions.

$$\mathbf{y} = f^{(L)} \circ \cdots \circ f^{(1)}(\mathbf{x}).$$

The last layer depends on the task.

- Regression: $\mathbf{y} = f^{(L)}(\mathbf{h}^{(L-1)}) = (\mathbf{w}^{(L)})^{\top}\mathbf{h}^{(L-1)} + b^{(L)}$
- Classification: $\mathbf{y} = f^{(L)}(\mathbf{h}^{(L-1)}) = \sigma((\mathbf{w}^{(L)})^{\top}\mathbf{h}^{(L-1)} + b^{(L)})$

Feature Learning

Neural nets can be viewed as a way of learning features:

Feature Learning

- Suppose we try to classify images of handwritten digits.
- Each image is represented as a vector of $28 \times 28 = 784$ pixel values.
- Each hidden unit in the first layer acts as a **feature detector**.
- We can visualize **w** by reshaping it into an image.

Below is an example that responds to a diagonal stroke.

Features for Classifying Handwritten Digits

Features learned by the first hidden layer of a handwritten digit classifier:

Unlike hard-coded feature maps (e.g., in polynomial regression), features learned by neural networks adapt to patterns in the data.

- Consider a linear layer: the activation function was the identity. The layer just computes an affine transformation of the input.
- Any sequence of linear layers is equivalent to a single linear layer.

$$\mathsf{y} = \underbrace{\mathsf{W}^{(3)}\mathsf{W}^{(2)}\mathsf{W}^{(1)}}_{\triangleq \mathsf{W}'}\mathsf{x}$$

• Deep linear networks can only represent linear functions — no more expressive than linear regression.

- Multi-layer feed-forward neural networks with non-linear activation functions
- Universal Function Approximators: They can approximate any function arbitrarily well.
- True for various activation functions (e.g. thresholds, logistic, ReLU, etc.)

Expressivity of the Logistic Activation Function

- What about the logistic activation function?
- Approximate a hard threshold by scaling up w and b.

• Logistic units are differentiable, so we can learn weights with gradient descent.

What is Expressivity Good For?

- May need a very large network to represent a function.
- Non-trivial to learn the weights that represent a function.
- If you can learn any function, over-fitting is potentially a serious concern!

For the polynomial feature mappings, expressivity increases with the degree M, eventually allowing multiple perfect fits to the training data. This motivated L^2 regularization.

• Do neural networks over-fit and how can we regularize them?

Regularization and Over-fitting for Neural Networks

- The topic of over-fitting (when & how it happens, how to regularize, etc.) for neural networks is not well-understood, even by researchers!
 - ▶ In principle, you can always apply L^2 regularization.
- A common approach is early stopping, or stopping training early, because over-fitting typically increases as training progresses.

• Benign overfitting is a heavily studied phenomenon.

Backpropagation

Learning Weights in a Neural Network

- Goal is to learn weights in a multi-layer neural network using gradient descent.
- Weight space for a multi-layer neural net: one set of weights for each unit in every layer of the network
- Define a loss $\mathcal{L}(t, y) = \mathcal{L}(t, y(x, \mathbf{w}))$ and compute the gradient of the cost

$$E(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}(t_n, y(x_n, \mathbf{w})),$$

which is the average loss over all the training examples.

• How we can calculate $\nabla E(\mathbf{w})$ efficiently?

Example: Two-Layer Neural Network

Figure 1: Two-Layer Neural Network

A neural network computes a composition of functions.

$$\begin{aligned} z_1^{(1)} &= w_{01}^{(1)} \cdot 1 + w_{11}^{(1)} \cdot x_1 + w_{21}^{(1)} \cdot x_2 \\ h_1 &= \sigma(z_1) \\ z_1^{(2)} &= w_{01}^{(2)} \cdot 1 + w_{11}^{(2)} \cdot h_1 + w_{21}^{(2)} \cdot h_2 \\ y_1 &= z_1 \\ z_2^{(1)} &= \\ h_2 &= \\ z_2^{(2)} &= \\ y_2 &= \\ \mathcal{L} &= \frac{1}{2} \left((y_1 - t_1)^2 + (y_2 - t_2)^2 \right) \end{aligned}$$

26

Simplified Example: Logistic Least Squares

Computation Graph:

- The nodes represent the inputs and computed quantities.
- The edges represent which nodes are computed directly as a function of which other nodes.

Let
$$z = f(y)$$
 and $y = g(x)$ be uni-variate functions.
Then $z = f(g(x))$.

$$\frac{\mathrm{d}z}{\mathrm{d}x} = \frac{\mathrm{d}z}{\mathrm{d}y} \ \frac{\mathrm{d}y}{\mathrm{d}x}$$

Logistic Least Squares: Gradient for *w*

Computing the loss:

$$z = wx + b$$

$$y = \sigma(z)$$

$$\mathcal{L} = \frac{1}{2}(y - t)^{2}$$

Computing the gradient for *w*:

$$\frac{\partial \mathcal{L}}{\partial w} = \frac{\partial \mathcal{L}}{\partial y} \frac{\partial y}{\partial w}$$
$$= \frac{\partial \mathcal{L}}{\partial y} \frac{\partial y}{\partial z} \frac{\partial z}{\partial w}$$
$$= (y - t) \sigma'(z) x$$
$$= (\sigma(wx + b) - t)\sigma'(wx + b)x$$

Logistic Least Squares: Gradient for b

Computing the loss:

$$z = wx + b$$

$$y = \sigma(z)$$

$$\mathcal{L} = \frac{1}{2}(y - t)^{2}$$

Computing the gradient for *b*:

$$\begin{aligned} \frac{\partial \mathcal{L}}{\partial b} &= \frac{\partial \mathcal{L}}{\partial y} \frac{\partial y}{\partial b} \\ &= \frac{\partial \mathcal{L}}{\partial y} \frac{\partial y}{\partial z} \frac{\partial z}{\partial b} \\ &= (y - t) \sigma'(z) \ 1 \\ &= (\sigma(wx + b) - t)\sigma'(wx + b) 1 \end{aligned}$$

Comparing Gradient Computations for *w* and *b*

Computing the loss:

$$z = wx + b$$

$$y = \sigma(z)$$

$$\mathcal{L} = \frac{1}{2}(y - t)^{2}$$

Computing the gradient for w:

Computing the gradient for *b*:

Drawbacks

- For larger networks these computations become cumbersome
- There will be many repeated terms, e.g. $\sigma'(z)$ appears on both sides.

Structured Way of Computing Gradients

Computing the loss:

$$z = wx + b$$

$$y = \sigma(z)$$

$$\mathcal{L} = \frac{1}{2}(y - t)^{2}$$

Computing the gradients:

$$\frac{\partial \mathcal{L}}{\partial y} = (y - t)$$
$$\frac{\partial \mathcal{L}}{\partial z} = \frac{\partial \mathcal{L}}{\partial y} \sigma'(z)$$

$$\frac{\partial \mathcal{L}}{\partial w} = \frac{\mathrm{d}\mathcal{L}}{\mathrm{d}z} \frac{\mathrm{d}z}{\mathrm{d}w} = \frac{\mathrm{d}\mathcal{L}}{\mathrm{d}z} x$$

$$\frac{\partial \mathcal{L}}{\partial b} = \frac{\mathrm{d}\mathcal{L}}{\mathrm{d}z} \frac{\mathrm{d}z}{\mathrm{d}b} = \frac{\mathrm{d}\mathcal{L}}{\mathrm{d}z} \, 1$$

Error Signal Notation

- Let \overline{y} denote the derivative $d\mathcal{L}/dy$, called the error signal.
- Error signals are just values our program is computing (rather than a mathematical operation).

Computing the loss:

Computing the derivatives:

 $z = wx + b \qquad \overline{y} = (y - t)$ $y = \sigma(z) \qquad \overline{z} = \overline{y} \sigma'(z)$ $\mathcal{L} = \frac{1}{2}(y - t)^2 \qquad \overline{w} = \overline{z} \times \quad \overline{b} = \overline{z}$

(previous slide: $\frac{\partial \mathcal{L}}{\partial y} = (y - t), \quad \frac{\partial \mathcal{L}}{\partial z} = \frac{\partial \mathcal{L}}{\partial y} \sigma'(z), \quad \frac{\partial \mathcal{L}}{\partial w} = \frac{d\mathcal{L}}{dz} x, \quad \frac{\partial \mathcal{L}}{\partial b} = \frac{d\mathcal{L}}{dz} 1$)

Computation Graph has a Fan-Out > 1

$$egin{aligned} &z = wx + b \ &y = \sigma(z) \ &\mathcal{L} = rac{1}{2}(y-t)^2 \ &\mathcal{R} = rac{1}{2}w^2 \ &\mathcal{L}_{ ext{reg}} = \mathcal{L} + \lambda \mathcal{R} \end{aligned}$$

Computation Graph has a Fan-Out > 1

Suppose we have functions f(x, y), x(t), and y(t).

$$\frac{\mathrm{d}}{\mathrm{d}t}f(x(t),y(t)) = \frac{\partial f}{\partial x}\frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial f}{\partial y}\frac{\mathrm{d}y}{\mathrm{d}t}$$

Example:

In the context of back-propagation:

In our new notation:
$$\overline{t} = \overline{x} \frac{\mathrm{d}x}{\mathrm{d}t} + \overline{y} \frac{\mathrm{d}y}{\mathrm{d}t}$$

Backpropagation for Regularized Logistic Least Squares

Forward pass:

z = wx + b
$y = \sigma(z)$
$\mathcal{L} = \frac{1}{2}(y-t)^2$
$\mathcal{R}=rac{1}{2}w^2$
$\mathcal{L}_{ ext{reg}} = \mathcal{L} + \lambda \mathcal{R}$

Backward pass:	
$\overline{\mathcal{L}_{\mathrm{reg}}}=1$	
$\overline{\mathcal{R}} = \frac{\mathrm{d}\mathcal{L}_{\mathrm{reg}}}{\mathrm{d}\mathcal{R}} = \lambda$	$\overline{z} = \overline{y} \frac{\mathrm{d}y}{\mathrm{d}z} = \overline{y} \sigma'(z)$
$\overline{\mathcal{L}} = rac{\mathrm{d}\mathcal{L}_{\mathrm{reg}}}{\mathrm{d}\mathcal{L}} = 1$	$\overline{w} = \overline{z} \frac{\partial z}{\partial w} + \overline{\mathcal{R}} \frac{\mathrm{d}\mathcal{R}}{\mathrm{d}w} = \overline{z} x + \overline{\mathcal{R}} w$
$\overline{y} = \overline{\mathcal{L}} \frac{\mathrm{d}\mathcal{L}}{\mathrm{d}y} = \overline{\mathcal{L}} (y - t)$	$\overline{b} = \overline{z} \frac{\partial z}{\partial b} = \overline{z}$

Full Backpropagation Algorithm:

Let v_1, \ldots, v_N be an ordering of the computation graph where parents come before children (aka topological ordering).

 v_N denotes the variable for which we try to compute gradients (\mathcal{L} , \mathcal{L}_{reg} etc).

• forward pass:

For
$$i = 1, ..., N$$
,
Compute v_i as a function of Parents (v_i) .

• backward pass:

$$ar{v}_{\mathcal{N}} = 1$$

For $i = \mathcal{N} - 1, \dots, 1$,
 $ar{v}_i = \sum_{j \in \mathsf{Children}(v_i)} ar{v}_j rac{\partial v_j}{\partial v_i}$

- The algorithm for efficiently computing gradients in neural nets.
- Gradient descent with gradients computed via backprop is used to train the overwhelming majority of neural nets today.
- Even optimization algorithms much fancier than gradient descent (e.g. second-order methods) use backprop to compute the gradients.

- Autodifferentiation performs backprop in a completely mechanical and automatic way.
- Many autodiff libraries: PyTorch, Tensorflow, Jax, etc.
- Although autodiff automates the backward pass for you, it's still important to know how things work under the hood.
- In the tutorial, we will use an autodiff framework to build complex neural networks.

Backpropagation for Two-Layer Neural Network

Forward pass:

$$z_{i} = \sum_{j} w_{ij}^{(1)} x_{j} + b_{i}^{(1)}, \quad h_{i} = \sigma(z_{i})$$
$$y_{k} = \sum_{i} w_{ki}^{(2)} h_{i} + b_{k}^{(2)}, \quad \mathcal{L} = \frac{1}{2} \sum_{k} (y_{k} - t_{k})^{2}$$

Backward pass:

 $\overline{\mathcal{L}} = 1$ $\overline{y_k} = \overline{\mathcal{L}} \left(y_k - t_k \right)$ $\overline{w_{ki}^{(2)}} = \overline{y_k} h_i$ $\overline{b_k^{(2)}} = \overline{y_k}$ $\overline{h_i} = \sum_k \overline{y_k} w_{ki}^{(2)}$ $\overline{z_i} = \overline{h_i} \sigma'(z_i)$ $\overline{w_{ii}^{(1)}} = \overline{z_i} \, x_j$ $\overline{h_i^{(1)}} = \overline{z_i}$

42

In vectorized form:

Forward pass:

$$\begin{split} \mathbf{z} &= \mathbf{W}^{(1)}\mathbf{x} + \mathbf{b}^{(1)}, \quad \mathbf{h} = \sigma(\mathbf{z}) \\ \mathbf{y} &= \mathbf{W}^{(2)}\mathbf{h} + \mathbf{b}^{(2)}, \quad \mathcal{L} = \frac{1}{2}\|\mathbf{t} - \mathbf{y}\|^2 \end{split}$$

Backward pass:

$$\begin{split} \overline{\mathcal{L}} &= 1\\ \overline{\mathbf{y}} &= \overline{\mathcal{L}} \left(\mathbf{y} - \mathbf{t} \right)\\ \overline{\mathbf{W}^{(2)}} &= \overline{\mathbf{y}} \mathbf{h}^\top\\ \overline{\mathbf{b}^{(2)}} &= \overline{\mathbf{y}}\\ \overline{\mathbf{h}} &= \mathbf{W}^{(2)\top} \overline{\mathbf{y}}\\ \overline{\mathbf{z}} &= \overline{\mathbf{h}} \circ \sigma'(\mathbf{z})\\ \overline{\mathbf{W}^{(1)}} &= \overline{\mathbf{z}} \mathbf{x}^\top\\ \overline{\mathbf{b}^{(1)}} &= \overline{\mathbf{z}} \end{split}$$

Today we discussed neural networks:

- We discussed their expressive power.
 - Can approximate any function (roughly speaking).
- Introduced backpropagation.
 - ► We also worked out the updates for a two-layer neural network.
- Please fill out course evaluations!