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Basics of Optimization in ML



Gradients

Differentiable function f : Rd → R,
w = (w1, . . . ,wd),

gradient of f at w

∇f (w) =

󰀵

󰀹󰀹󰀷

∂f
∂w1

(w)
...

∂f
∂wd

(w)

󰀶

󰀺󰀺󰀸

f (w + ηu) ≈ f (w) + η∇f (w)⊤u

Important geometric interpretation of the gradient

The gradient gives the direction of the steepest local increase of f . 2



What is optimization?

• Typical setup (in machine learning, other areas):
◮ Formulate a problem
◮ Design a solution (usually a model)
◮ Use some quantitative measure to determine how good the solution is.

• E.g., classification:
◮ Create a system to classify images
◮ Model is some classifier, like the logistic regression
◮ Quantitative measure is misclassification error (lower is better in this case)

• In almost all cases, you end up with a loss minimization problem of the form

minimizew E (w)

• Example: Least squares
minimize E (w) = 1

2

N󰁛

n=1

(x⊤n w − tn)
2.
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Error minimization

• Training an ML model always reduces to solving an optimization problem

minimizew E (w), w∗ := argmin
w

E (w).

• Standard approach is gradient descent wt+1 = wt − η∇E (wt), where η ∈ (0, 1] is

the step size (aka learning rate) with w0 some initial point.

• For the least squares, minimize E (w) = 1
2

󰁓N
n=1(x

⊤
n w − tn)

2 we have

∇E (w) =
N󰁛

n=1

xn(x
⊤
n w − tn).
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Gradient descent derivation

• Suppose we are at w and we want to pick a direction u such that E (w + ηu) is

smaller than E (w) for a step size η, 󰀂u󰀂 = 1.

• The first-order Taylor series approximation of E (w + ηu) around w is:

E (w + ηu) = E (w) + η∇E (w)⊤u+ o(η) ≈ E (w) + η∇E (w)⊤u.

• Direction u should have a negative inner product with ∇E (w), e.g. − ∇E(w)
󰀂∇E(w)󰀂 .

• This approximation gets better as η gets smaller.

How do we choose the step size in GD? wt+1 = wt − η∇E (wt)

• Simple strategy: start with a big η and progressively make it smaller by e.g.

halving it until the function decreases.

• The sequence of step sizes is referred to as learning rate schedule.
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When did the GD converge?

• The vector w is a fixed point if ∇E (w) = 0.

• This is never possible in practice. So we stop iterations if gradient is smaller than

a threshold, 󰀂∇E (w)󰀂 < τ .

• If the function is convex then we have reached a global minimum.

• If the function is not convex, what did we obtain?

• Probably a local minimum or a saddle point.
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Stochastic Gradient Descent

In most cases, we minimize an average over data points:

E (w) = 1
N

N󰁛

i=1

L(tn, y(xn,w)), ∇E (w) = 1
N

n󰁛

n=1

∇L(tn, y(xn,w)),

which is hard to compute when N is very large.

At each iteration, use a sub-sample of data to estimate the gradient

wt+1 = wt − η
1

|S |
󰁛

n∈S
∇L(tn, y(xn,w)).

(Here |S | denotes the number of elements in the set S . Standard SGD has |S | = 1)

ML terminology: Computing gradients using the full dataset is called batch learning,

using subsets of data is called mini-batch learning.
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Introducing neural networks



Limits of Linear Classification

Many data sets are not linearly separable.

As a result, linear classification methods will not always work well.
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Sometimes we may choose a suitable feature map

Motivating problem

Designing feature maps can be hard. Can we learn them automatically?
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A Simpler Neuron

For neural nets, we use a simple model for neuron, or unit:

• Same as logistic regression: y = σ(w⊤x+ b)

• By throwing together lots of these simple neuron-like processing units, we can do

some powerful computations!
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A Feed-Forward Neural Network

• A directed acyclic graph

• Units are grouped into layers
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Multilayer Perceptrons

• A multi-layer network consists of fully connected layers.

• In a fully connected layer, all input units are connected to all output units.

• The outputs are a function of the input units:

y = f (x) = φ (Wx+ b)

φ : R → R is applied component-wise.
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Some Activation Functions

Identity

φ(z) = z

Rectified Linear Unit

(ReLU)

φ(z) = max(0, z)

Soft ReLU

φ(z) = log 1 + ez
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More Activation Functions

Hard Threshold

φ(z) =

󰀫
1 if z > 0

0 if z ≤ 0

Logistic

φ(z) =
1

1 + e−z

Hyperbolic Tangent

(tanh)

φ(z) =
ez − e−z

ez + e−z
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Computation in Each Layer

Each layer computes a function.

h(1) = f (1)(x) = φ(W(1)x+ b(1))

h(2) = f (2)(h(1)) = φ(W(2)h(1) + b(2))

...

y = f (L)(h(L−1))

The network computes a composition of functions.

y = f (L) ◦ · · · ◦ f (1)(x).

The last layer depends on the task.

• Regression: y = f (L)(h(L−1)) = (w(L))⊤h(L−1) + b(L)

• Classification: y = f (L)(h(L−1)) = σ
󰀃
(w(L))⊤h(L−1) + b(L)

󰀄
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Feature Learning

Neural nets can be viewed as a way of learning features:

The goal:
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Feature Learning

• Suppose we try to classify images of handwritten digits.

• Each image is represented as a vector of 28× 28 = 784 pixel values.

• Each hidden unit in the first layer acts as a feature detector.

• We can visualize w by reshaping it into an image.

Below is an example that responds to a diagonal stroke.
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Features for Classifying Handwritten Digits

Features learned by the first hidden layer of a handwritten digit classifier:

Unlike hard-coded feature maps (e.g., in polynomial regression), features learned by

neural networks adapt to patterns in the data. 18



Expressive Power of Linear Networks

• Consider a linear layer: the activation function was the identity. The layer just

computes an affine transformation of the input.

• Any sequence of linear layers is equivalent to a single linear layer.

y = W(3)W(2)W(1)
󰁿 󰁾󰁽 󰂀

≜W′

x

• Deep linear networks can only represent linear functions — no more expressive

than linear regression.
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Expressive Power of Non-linear Networks

• Multi-layer feed-forward neural networks with non-linear activation functions

• Universal Function Approximators: They can approximate any function

arbitrarily well.

• True for various activation functions (e.g. thresholds, logistic, ReLU, etc.)
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Expressivity of the Logistic Activation Function

• What about the logistic activation function?

• Approximate a hard threshold by scaling up w and b.

y = σ(x) y = σ(5x)

• Logistic units are differentiable, so we can learn weights with gradient descent.
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What is Expressivity Good For?

• May need a very large network to represent a function.

• Non-trivial to learn the weights that represent a function.

• If you can learn any function, over-fitting is potentially a serious concern!

For the polynomial feature mappings, expressivity increases with the degree M,

eventually allowing multiple perfect fits to the training data. This motivated L2

regularization.

• Do neural networks over-fit and how can we regularize them?
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Regularization and Over-fitting for Neural Networks

• The topic of over-fitting (when & how it happens, how to regularize, etc.) for
neural networks is not well-understood, even by researchers!

◮ In principle, you can always apply L2 regularization.

• A common approach is early stopping, or stopping training early, because

over-fitting typically increases as training progresses.

• Benign overfitting is a heavily studied phenomenon. 23



Backpropagation



Learning Weights in a Neural Network

• Goal is to learn weights in a multi-layer neural network using gradient descent.

• Weight space for a multi-layer neural net: one set of weights for each unit in every

layer of the network

• Define a loss L(t, y) = L(t, y(x ,w)) and compute the gradient of the cost

E (w) = 1
N

N󰁛

n=1

L(tn, y(xn,w)),

which is the average loss over all the training examples.

• How we can calculate ∇E (w) efficiently?
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Example: Two-Layer Neural Network
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Figure 1: Two-Layer Neural Network
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Computations for Two-Layer Neural Network

A neural network computes a composition of functions.

1

x1

x2

1

h1

h2

1

y1

y2

1

w
(1)
11

w
(1)
12

w
(1)
01

w
(1)
21

w
(1)
22

w
(1)
02

w
(2)
11

w
(2)
21

w
(2)
01

w
(2)
12

w
(2)
22

w
(2)
02

z
(1)
1 = w

(1)
01 · 1 + w

(1)
11 · x1 + w

(1)
21 · x2

h1 = σ(z1)

z
(2)
1 = w

(2)
01 · 1 + w

(2)
11 · h1 + w

(2)
21 · h2

y1 = z1

z
(1)
2 =

h2 =

z
(2)
2 =

y2 =

L =
1

2

󰀃
(y1 − t1)

2 + (y2 − t2)
2
󰀄
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Simplified Example: Logistic Least Squares

z = wx + b

y = σ(z)

L =
1

2
(y − t)2

x

b
w

z y
t

L

Computation Graph:

• The nodes represent the inputs and computed quantities.

• The edges represent which nodes are computed directly as a function of which

other nodes.
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Univariate Chain Rule

Let z = f (y) and y = g(x) be uni-variate functions.

Then z = f (g(x)).

dz

dx
=

dz

dy

dy

dx
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Logistic Least Squares: Gradient for w

Computing the loss:

z = wx + b

y = σ(z)

L =
1

2
(y − t)2

Computing the gradient for w :

∂L
∂w

=
∂L
∂y

∂y

∂w

=
∂L
∂y

∂y

∂z

∂z

∂w

= (y − t) σ′(z) x

= (σ(wx + b)− t)σ′(wx + b)x
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Logistic Least Squares: Gradient for b

Computing the loss:

z = wx + b

y = σ(z)

L =
1

2
(y − t)2

Computing the gradient for b:

∂L
∂b

=
∂L
∂y

∂y

∂b

=
∂L
∂y

∂y

∂z

∂z

∂b

= (y − t) σ′(z) 1

= (σ(wx + b)− t)σ′(wx + b)1
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Comparing Gradient Computations for w and b

Computing the loss: z = wx + b

y = σ(z)

L =
1

2
(y − t)2

Computing the gradient for w :

∂L
∂w

=
∂L
∂y

∂y

∂z

∂z

∂w

= (y − t) σ′(z) x

Computing the gradient for b:

∂L
∂b

=
∂L
∂y

∂y

∂z

∂z

∂b

= (y − t) σ′(z) 1

Drawbacks

• For larger networks these computations become cumbersome

• There will be many repeated terms, e.g. σ′(z) appears on both sides.
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Structured Way of Computing Gradients

Computing the loss:

z = wx + b

y = σ(z)

L =
1

2
(y − t)2

x

b

w

z y

t

L

Computing the gradients: ∂L
∂y

= (y − t)

∂L
∂z

=
∂L
∂y

σ′(z)

∂L
∂w

=
dL
dz

dz

dw
=

dL
dz

x
∂L
∂b

=
dL
dz

dz

db
=

dL
dz

1
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Error Signal Notation

• Let y denote the derivative dL/dy , called the error signal.

• Error signals are just values our program is computing (rather than a

mathematical operation).

Computing the loss:

z = wx + b

y = σ(z)

L =
1

2
(y − t)2

Computing the derivatives:

y = (y − t)

z = y σ′(z)

w = z x b = z

(previous slide: ∂L
∂y = (y − t), ∂L

∂z = ∂L
∂y σ′(z), ∂L

∂w = dL
dz x , ∂L

∂b = dL
dz 1)
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Computation Graph has a Fan-Out > 1

z = wx + b

y = σ(z)

L =
1

2
(y − t)2

R =
1

2
w2

Lreg = L+ λR
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Computation Graph has a Fan-Out > 1

zℓ =
󰁛

j

wℓjxj + bℓ

yk =
ezk󰁓
ℓ e

zℓ

L = −
󰁛

k

tk log yk
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Multi-variate Chain Rule

Suppose we have functions f (x , y), x(t), and y(t).

d

dt
f (x(t), y(t)) =

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt

Example:

f (x , y) = y + exy

x(t) = cos t

y(t) = t2

df

dt
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt

= (yexy ) · (− sin t) + (1 + xexy ) · 2t
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Multi-variate Chain Rule

In the context of back-propagation:

In our new notation: t = x dx
dt + y dy

dt
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Backpropagation for Regularized Logistic Least Squares

Forward pass:

z = wx + b

y = σ(z)

L =
1

2
(y − t)2

R =
1

2
w2

Lreg = L+ λR

Backward pass:

Lreg = 1

R =
dLreg

dR = λ

L =
dLreg

dL = 1

y = L dL
dy

= L (y − t)

z = y
dy

dz
= y σ′(z)

w= z
∂z

∂w
+RdR

dw
= z x +Rw

b = z
∂z

∂b
= z
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Full Backpropagation Algorithm:

Let v1, . . . , vN be an ordering of the computation graph where parents come before

children (aka topological ordering).

vN denotes the variable for which we try to compute gradients (L, Lreg etc).

• forward pass:

For i = 1, . . . ,N,

Compute vi as a function of Parents(vi ).

• backward pass:

v̄N = 1

For i = N − 1, . . . , 1,

v̄i =
󰁛

j∈Children(vi )
v̄j
∂vj
∂vi
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Backpropagation

• The algorithm for efficiently computing gradients in neural nets.

• Gradient descent with gradients computed via backprop is used to train the

overwhelming majority of neural nets today.

• Even optimization algorithms much fancier than gradient descent

(e.g. second-order methods) use backprop to compute the gradients.
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Auto-Differentiation

• Autodifferentiation performs backprop in a completely mechanical and automatic

way.

• Many autodiff libraries: PyTorch, Tensorflow, Jax, etc.

• Although autodiff automates the backward pass for you, it’s still important to

know how things work under the hood.

• In the tutorial, we will use an autodiff framework to build complex neural networks.
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Backpropagation for Two-Layer Neural Network

Forward pass:

zi =
󰁛

j

w
(1)
ij xj + b

(1)
i , hi = σ(zi )

yk =
󰁛

i

w
(2)
ki hi + b

(2)
k , L =

1

2

󰁛

k

(yk − tk)
2

Backward pass:

L = 1

yk = L (yk − tk)

w
(2)
ki = yk hi

b
(2)
k = yk

hi =
󰁛

k

ykw
(2)
ki

zi = hi σ
′(zi )

w
(1)
ij = zi xj

b
(1)
i = zi
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Backpropagation for Two-Layer Neural Network

In vectorized form:

Forward pass:

z = W(1)x+ b(1), h = σ(z)

y = W(2)h+ b(2), L =
1

2
󰀂t− y󰀂2

Backward pass:

L = 1

y = L (y − t)

W(2) = yh⊤

b(2) = y

h = W(2)⊤y

z = h ◦ σ′(z)

W(1) = zx⊤

b(1) = z
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Conclusion

Today we discussed neural networks:

• We discussed their expressive power.

◮ Can approximate any function (roughly speaking).

• Introduced backpropagation.

◮ We also worked out the updates for a two-layer neural network.

• Please fill out course evaluations!
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