
STA 414/2104:

Statistical Methods of Machine Learning II

Week 11: Kernel Methods

Piotr Zwiernik

University of Toronto

Table of contents

1. Recap: Linear Regression

2. Kernel trick

3. Kernel regression

4. Bayesian Linear Regression

5. Gaussian processes

Gaussian processes for regression

Gaussian processes for classification

Learning for Gaussian Processes

1

Overview

First we discuss discuss kernel methods.

• Kernel trick

• Kernel regression

• Overview of kernels

2

Recap: Linear Regression

Recap: Linear Regression

• Given a training set of inputs and targets {(x(i), y (i))}Ni=1

• Linear model:

y = w⊤ψ(x) +

where ψ(x) : RD → RM is the feature map, w ∈ RM .

• We have the design matrix X ∈ RN×D in input space and

Ψ =

− ψ(x(1)) −
− ψ(x(2)) −

...

− ψ(x(N)) −

∈ RN×M

is the feature matrix, and predictions

ŷ = Ψw.

3

Linear Regression as Maximum Likelihood

• Linear regression gets probabilistic interpretation by assuming a Gaussian noise model:

y | x ∼ N (w⊤ψ(x), σ2)

• The MLE under the first model leads to ordinary least squares.

• We can also do full Bayesian inference as explained last week.

• Recall MAP estimator with a special Gaussian prior becomes equivalent to the ridge

regression estimator.

4

Some problems with this formulation

• The MLE will not be uniquely defined if N < M.

◮ We can use ridge regression or other regularization.

• Flexibility may require a large number M of features, which may need to depend on N.

• We would like to have a method that is more automatic.

• Kernel regression offers such a flexible framework.

Kernel methods are applicable widely beyond regression problems.

• We cover classification later in the context of Gaussian Processes.

5

Kernel trick

Regularized Linear Regression: towards the kernel trick

• In the ridge regression problem we minimize

E (w) =
1

2
y −Ψw2 + λ

2
w⊤w

∇E (w) = Ψ⊤Ψw −Ψ⊤y + λw.

6

Regularized Linear Regression: towards the kernel trick

• In the ridge regression problem we minimize

E (w) =
1

2
y −Ψw2 + λ

2
w⊤w

∇E (w) = Ψ⊤Ψw −Ψ⊤y + λw.

• Taking ∇E (w) = 0 is equivalent to solving:

w =
1

λ
Ψ⊤(y −Ψw) = Ψ⊤a ∈ RM ,

where a = (y −Ψw)/λ ∈ RN .

6

Regularized Linear Regression: towards the kernel trick

• In the ridge regression problem we minimize

E (w) =
1

2
y −Ψw2 + λ

2
w⊤w

∇E (w) = Ψ⊤Ψw −Ψ⊤y + λw.

• Taking ∇E (w) = 0 is equivalent to solving:

w =
1

λ
Ψ⊤(y −Ψw) = Ψ⊤a ∈ RM ,

where a = (y −Ψw)/λ ∈ RN .

• Substitute w = Ψ⊤a back in E (w), we get

E (a) =
1

2
y −ΨΨ⊤a2 + λ

2
a⊤ΨΨ⊤a

Note: Ψ⊤Ψ is M ×M and ΨΨ⊤ is N × N.

6

Kernel Ridge Regression

• Introduce the gram matrix K = ΨΨ⊤, i.e.

Kij = ψ(x(i))⊤ψ(x(j)) =: k(x(i), x(j))

which we call the kernel matrix. Function k(x, x′) is the kernel.

7

Kernel Ridge Regression

• Introduce the gram matrix K = ΨΨ⊤, i.e.

Kij = ψ(x(i))⊤ψ(x(j)) =: k(x(i), x(j))

which we call the kernel matrix. Function k(x, x′) is the kernel.

• Therefore, we minimize (note: no unique minimum)

E (a) =
1

2
y − Ka2 + λ

2
a⊤Ka

• Plugging w = Ψ⊤a to a = (y −Ψw)/λ we get λa = y − Ka and so

a = (K + λIN)
−1y.

7

Kernel Ridge Regression

• Introduce the gram matrix K = ΨΨ⊤, i.e.

Kij = ψ(x(i))⊤ψ(x(j)) =: k(x(i), x(j))

which we call the kernel matrix. Function k(x, x′) is the kernel.

• Therefore, we minimize (note: no unique minimum)

E (a) =
1

2
y − Ka2 + λ

2
a⊤Ka

• Plugging w = Ψ⊤a to a = (y −Ψw)/λ we get λa = y − Ka and so

a = (K + λIN)
−1y.

• Substitute back in to the linear regression model

ŷ(x) = ψ(x)⊤w = ψ(x)⊤Ψ⊤a = k(x)⊤(K + λIN)
−1y

where k(x) = Ψψ(x) = [ψ(x(i))⊤ψ(x)]i = [k(x(i), x)]i .

7

Kernel Ridge Regression

• This is known as a dual formulation, aka Kernel trick.

• We have

ŷ(x) = k(x)⊤(K + λIN)
−1y,

where [k(x)]i = k(x(i), x), Kij = k(x(i), x(j)).

• The prediction at x is given by a linear combination y.

• The coefficients depend on “proximity” of x to x(i) (large if close).

• Dual formulation requires inverting an N × N matrix, whereas the standard one requires

inverting an M ×M matrix.

• The advantage of the dual formulation is that it is expressed entirely in terms of the kernel

function with no explicit reference to the feature map ψ(x) (can use features of high

dimension).

8

Kernel regression

Kernels: Formal definition

• A symmetric matrix A ∈ RN×N is positive semidefinite (PSD) if for every vector u ∈ RN

u⊤Au ≥ 0.

9

Kernels: Formal definition

• A symmetric matrix A ∈ RN×N is positive semidefinite (PSD) if for every vector u ∈ RN

u⊤Au ≥ 0.

Definition: Kernel function (Schoenberg 1938)

A kernel k(x, x′) is any function such that for any N ≥ 1 and for any data points x(i) for

i = 1, ...,N, the kernel matrix K ∈ RN×N with entries Kij = k(x(i), x(j)) is PSD.

9

Kernels: Formal definition

• A symmetric matrix A ∈ RN×N is positive semidefinite (PSD) if for every vector u ∈ RN

u⊤Au ≥ 0.

Definition: Kernel function (Schoenberg 1938)

A kernel k(x, x′) is any function such that for any N ≥ 1 and for any data points x(i) for

i = 1, ...,N, the kernel matrix K ∈ RN×N with entries Kij = k(x(i), x(j)) is PSD.

• We can use feature maps ψ : RD → RM to define kernels:

k(x, x′) = ψ(x)⊤ψ(x′).

• Feature maps define kernels but not all kernels are like that (this can be generalized to

“infinite dimensional” feature maps).

9

Feature map defines a kernel

• Let k(x, x′) = ψ(x)⊤ψ(x′)

• The kernel matrix is given as Kij = k(x(i), x(j)), K = ΨΨ⊤.

• We show that this matrix is positive semi-definite, ∀u ∈ RN ,

u⊤Ku = u⊤ΨΨ⊤u = (Ψ⊤u)⊤Ψ⊤u = Ψ⊤u2 ≥ 0.

Main points:

• Forget the feature map.

• We can directly choose a kernel and work with it!

• The dimension of the feature space does not matter anymore.

• Kernels provide a measure of proximity between x and x′.

10

Kernels: Examples

Example 1:

• D-dimensional inputs: x = (x1, x2, ..., xD)
⊤ and z = (z1, z2, ...zD)

⊤

k(x, z) =(x⊤z)2 = (x1z1 + x2z2 + ...)2

=x21 z
2
1 + 2x1z1x2z2 + x22 z

2
2 + ...

=(x21 , x
2
2 , ...,

√
2x1x2, ...)

⊤(z21 , z
2
2 , ...,

√
2z1z2, ...)

=ψ(x)⊤ψ(z)

Example 2 (Gaussian kernel): k(x, z) = exp(−x− z2/2σ2).

• The feature vector has infinite dimension here! (a bit of functional analysis)

11

Constructing kernels from kernels

Given valid kernels k1(x, x′) and k2(x, x′), the following kernels will also be valid:

k(x, x′) = ck1(x, x
′) for c > 0,

k(x, x′) = f (x)k1(x, x
′)f (x′)

k(x, x′) = k1(x, x
′) + k2(x, x

′)

k(x, x′) = k1(x, x
′) · k2(x, x′)

k(x, x′) = x⊤Ax′ (A PSD)

k(x, x′) = exp(k1(x, x
′))

k(x, x′) = q(k1(x, x
′))

where q polynomial with ≥ 0 coefficients.

12

Radial basis functions

To get a better feeling for the kernel method consider the case where kernel is defined by a

radial basis function.

• Radial basis functions depend only on the distance from µj , i.e.

ψj(x) = h(x− µj).

• Sigmoidal basis functions: h is sigmoid.

• Gaussian basis functions: h is normal pdf

13

Example: Radial basis functions

• We define two Gaussian basis functions with centers shown by the green crosses, and with

contours shown by the green circles.

• Linear decision boundary (right) corresponds to the nonlinear decision boundary in the

input space (left, black curve).
14

Summary of the first hour

• This lecture covered the basics of kernel-based methods.

• Kernels can be used directly for regression and classification.

• These are useful functions that capture a measure of proximity between inputs, and

express predictions based on this measure.

• In the tutorial we will try to get some more intuition and discuss explicit examples.

• Next hour we will continue with kernel methods and introduce Gaussian processes.

15

Bayesian Linear Regression

Recap: Linear Regression

• Given a training set of inputs and targets {(x(i), y (i))}Ni=1

• Linear model:

y = w⊤ψ(x) +

where ψ(x) is the feature map.

• Vectorized, we have the design matrix X in input space and

Ψ =

− ψ(x(1)) −
− ψ(x(2)) −

...

− ψ(x(N)) −

∈ RN×M

and predictions ŷ = (ŷ(x(1)), . . . , ŷ(x(N)))

ŷ = Ψw.

16

Recap: Bayesian Linear Regression

• We gave linear regression a probabilistic interpretation by assuming a Gaussian noise

model:

y | x ∼ N (ŷ(x), σ2), ŷ(x) = w⊤ψ(x)

17

Recap: Bayesian Linear Regression

• We gave linear regression a probabilistic interpretation by assuming a Gaussian noise

model:

y | x ∼ N (ŷ(x), σ2), ŷ(x) = w⊤ψ(x)

• and a Gaussian prior

w ∼ N (0,
1

α
IM)

The prior induces a probability distribution over ŷ

ŷ = Ψw ∼ N (0, 1
αΨΨ⊤)

Indeed: E(Ψw) = ΨE(w) = 0 and var(Ψw) = E(Ψww⊤Ψ⊤) = ΨE(ww⊤)Ψ⊤ = 1
α
ΨΨ⊤.

17

Distribution over prediction function

• In practice, we evaluate the prediction function ŷ(x) at specific points, for example at the

training data points x(i) for i = 1, ...,N.

• So we are interested in the joint distribution of the function values

ŷ(x(1)), . . . , ŷ(x(N))

which we denote by the vector ŷ = (ŷ(x(1)), . . . , ŷ(x(N))).

18

Distribution over prediction function

• In practice, we evaluate the prediction function ŷ(x) at specific points, for example at the

training data points x(i) for i = 1, ...,N.

• So we are interested in the joint distribution of the function values

ŷ(x(1)), . . . , ŷ(x(N))

which we denote by the vector ŷ = (ŷ(x(1)), . . . , ŷ(x(N))).

• We showed that

ŷ ∼ N (0,K) K =
1

α
ΨΨ⊤

where K is the (scaled) Gram matrix

Kij =
1

α
k(x(i), x(j)) =

1

α
ψ(x(i))⊤ψ(x(j))

18

Gaussian processes

Gaussian process

Definition:

A Gaussian process is a probability distribution over functions ŷ(x) such that for any N ≥ 1

and any set of N points x(1), x(2), . . . , x(N) in RD , the vector (ŷ(x(1)), . . . , ŷ(x(N))) is jointly

Gaussian.

• The joint distribution is specified completely by the second-order statistics, i.e. the mean

and the covariance functions.

• In most applications, the mean function of ŷ(x) can be set to zero and then the Gaussian

process is completely specified by the covariance function

E[ŷ(x)ŷ(x′)] =
1

α
k(x, x′)

19

Gaussian process (GP)

• Directly define the kernel of a Gaussian process, not worrying about the feature map.

Samples from GP for a Gaussian kernel (left) and an exponential kernel (right).

(How do you think these plots are generated?)

20

Gaussian processes for regression: what we learn from the data

• We have the linear model

y | x ∼ N (ŷ(x), σ2) ŷ(x) = w⊤ψ(x)

• Given N independent observations, we have

y | ŷ ∼ N (ŷ, σ2IN), ŷ ∼ N (0,K), K =
1

α
ΨΨ⊤.

• Therefore the marginal of y is given by

y ∼ N (0,C) C = K + σ2IN

where the corresponding kernel is

c(x(i), x(j)) =
1

α
k(x(i), x(j)) + σ2δ(x(i), x(j))

δ(x, x′) = 1 if x = x′ and δ(x, x′) = 0 otherwise.

21

Gaussian processes for regression: predictive distributions

• Denote now yN = (y (1), y (2), ..., y (N)).

• We have the marginal of yN given by

yN ∼ N (0,CN) CN = KN + σ2IN .

• This reflects the two Gaussian sources of randomness.

Goal: We want to predict for a new output y (N+1) given a new input x(N+1).

• We need

p(y (N+1) | yN)

• Note that x(1), . . . , x(N), x(N+1) are treated as constants.

22

Gaussian processes for regression: predictive distributions

• We have

yN+1 ∼ N (0,CN+1) CN+1 = KN+1 + σ2IN+1

where

CN+1 =

CN k

k⊤ c

.

◮ Here, c = 1
α
k(x(N+1), x(N+1)) + σ2

◮ k is a vector with entries ki =
1
α
k(x(i), x(N+1))

23

Gaussian processes for regression: predictive distributions

• We have

yN+1 ∼ N (0,CN+1) CN+1 = KN+1 + σ2IN+1

where

CN+1 =

CN k

k⊤ c

.

◮ Here, c = 1
α
k(x(N+1), x(N+1)) + σ2

◮ k is a vector with entries ki =
1
α
k(x(i), x(N+1))

• Since the vector yN+1 is Gaussian, we easily find y (N+1) | yN .

23

Property of Multivariate Gaussian Distribution

Recall:

• If we have x ∼ N (µ,Σ) with

x =

x1
x2

µ =

µ1

µ2

Σ =

Σ11 Σ12

Σ21 Σ22

• Then,

x2 | (x1 = a) ∼ N (m,C)

with

m = µ2 +Σ21Σ
−1
11 (a − µ1), C = Σ22 −Σ21Σ

−1
11 Σ12.

24

Gaussian processes for regression

Recall:

yN+1 ∼ N(0,CN+1), CN+1 =

CN k

k⊤ c

.

• Since yN+1 is multivariate Gaussian, y (N+1) | yN is also Gaussian with mean and variance

mean = k⊤C−1
N yN variance = c − k⊤C−1

N k

• These are the key results that define Gaussian process regression.

• The vector k is a function of the new test input x(N+1).

• The predictive distribution is a Gaussian whose mean and variance both depend on

x(1), . . . , x(N), x(N+1).

25

GPs for regression

• The green curve is the true sinusoidal function from which the data points, shown in blue,

are obtained.

• The red line shows the mean of the Gaussian process predictive distribution.

• The shaded region corresponds to plus and minus two standard deviations.

26

GPs for classification

• Consider a classification problem with target variables y ∈ {0, 1}
• We define a Gaussian process over a function a(x) and then transform the function using

sigmoid ŷ(x) = σ(a(x)).

• We obtain a non-Gaussian stochastic process over functions ŷ(x) ∈ (0, 1).

27

GPs for classification

• Consider a classification problem with target variables y ∈ {0, 1}
• We define a Gaussian process over a function a(x) and then transform the function using

sigmoid ŷ(x) = σ(a(x)).

• We obtain a non-Gaussian stochastic process over functions ŷ(x) ∈ (0, 1).

Left: a(x) Right: ŷ(x)

27

GPs for classification

• The probability distribution over target is then given by

p(y |a) = σ(a)y (1− σ(a))1−y , y ∈ {0, 1}.

• We need to compute

p(y (N+1) | yN)
and notice that a(x) is a Gaussian process but ŷ(x) is not.

• We have aN+1 ∼ N (0,CN+1), where

CN+1(x
(i), x(j)) =

1

α
k(x(i), x(j)) + νδij .

• But aN is not observed, so we write

p(y (N+1) | yN) =

p(y (N+1) | aN+1)p(aN+1 | yN)daN+1

• This is intractable. We need MCMC based methods, or numerical integration to

approximate this integral.

28

GPs for classification: Illustration

• Illustration of GPs for classification:

• Left: optimal decision boundary from the true distribution in green, and the decision

boundary from the Gaussian process classifier in black.

• Right: predicted posterior for the blue and red classes together with the Gaussian process

decision boundary.

29

Learning the hyperparameters

• We didn’t do any learning other than choosing a kernel!

• Rather than fixing the covariance function 1
αk(x, x

′), we may prefer to use a parametric

family of functions and then infer the parameter values from the data.

30

Learning the hyperparameters

• We didn’t do any learning other than choosing a kernel!

• Rather than fixing the covariance function 1
αk(x, x

′), we may prefer to use a parametric

family of functions and then infer the parameter values from the data.

• Denoting the hyperparameters with θ, one can easily write down the likelihood of the

Gaussian process model.

log p(y | θ) = −1

2
log |CN |−

1

2
y⊤C−1

N y − N

2
log(2π)

• The next step is standard: gradient based optimization, grid search etc.

30

Summary of the second hour

• Gaussian processes are flexible tools that can be used in regression and classification tasks.

• One can simply choose a kernel and find the predictive density!

• They can be used together with modern tools, creating powerful learning methods.

31

