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Probabilistic PCA



Overview

PCA = Principal Component Analysis

PPCA = Probabilistic Principal Component Analysis

• PCA is motivated geometrically.

• PPCA is a probabilistic model for continuous latent variables.

• Both try to perform linear dimensionality reduction in the data.

• They are closely related, which gives a probabilistic interpretation of the PCA.

◮ We will show that PCA is obtained as the MLE in a degenerate PPCA model.
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Low dimensional representation

• In practice, even though data is very high dimensional, its important features can be accurately

captured in a low dimensional subspace.

• Find a low dimensional representation of your data.

◮ Computational benefits
◮ Interpretability, visualization
◮ Generalization
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Nice example

Source: Novembre et al, Genes mirror geography within Europe, Nature, 2009.
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Recall: Principal Component Analysis (PCA)

• Data set {x(i)}Ni=1 in RD .

• Each input vector x(i) ∈ RD is approximated as x+Uz(i),

x(i) ≈ x̃(i) = x+Uz(i)

where x = 1
n

󰁓
i x

(i) is the data mean, U ∈ RD×K (K << D) is the orthogonal basis for

the principal subspace (U⊤U = IK ), and z(i) ∈ RK is the code vector

z(i) = U⊤(x(i) − x)

• U is chosen to minimize the reconstruction error

U∗ = argmin
U

N󰁛

i=1

󰀐󰀐󰀐x(i) −
󰀓
x+UU⊤(x(i) − x)󰁿 󰁾󰁽 󰂀

x̃(i)

󰀔󰀐󰀐󰀐
2
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We are looking for directions

• For example, in a 2-dimensional problem, we are looking for the direction u1 along which

the data is well represented:
◮ e.g. direction of higher variance
◮ e.g. direction of minimum reconstruction error
◮ Recall: they are the same!
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Probabilistic PCA

Consider the following latent variable model.

• Similar to the Gaussian mixture model but with Gaussian latents:

z ∼ NK (0, IK )

x | z ∼ ND(Wz+ µ,σ2ID)

• This is similar to naive Bayes graphical model, because p(x | z) factorizes with respect to

the dimensions of x.

• What sort of data does this model produce?

Matrix-vector multiplication: Wz is a linear combination of the columns of W with coefficients

z = (z1, . . . , zK ).
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Probabilistic PCA

• Wz is a random linear combination of the columns of W

• To get the random variable x, we sample a standard normal z and then add a small

amount of isotropic noise to Wz+ µ. (we had: x | z ∼ ND(Wz+ µ,σ2ID)).

z

p(z)

bz

x2

x1

µ

p(x|bz)

} bz|w|

w
x2

x1

µ

p(x)

The column span of W refers to the principal subspace in PCA.
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Probabilistic PCA : The Likelihood function

• To perform maximum likelihood in this model, we need to maximize the following:

max
W,µ,σ2

log p(x |W,µ,σ2) = max
W,µ,σ2

log

󰁝
p(x | z,W,µ,σ2)p(z) dz

• This is easier than for the Gaussian mixture model because x is Gaussian.

• Stochastic representation: x = Wz+ µ+ 󰂃, 󰂃 ∼ ND(0,σ2ID), 󰂃⊥z.

• This is an affine function of Gaussian variables and so p(x |W,µ,σ2) is Gaussian.

• To find the distribution of x, we only need to compute E[x] and Cov[x].
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Probabilistic PCA : Maximum Likelihood

E[x] = E[Wz+ µ+ 󰂃] = µ

Cov[x] = E[(Wz+ 󰂃)(Wz+ 󰂃)⊤] = E[Wzz⊤W⊤] + Cov[󰂃]

= WE[zz⊤]W⊤ + Cov[󰂃] = WW⊤ + σ2ID

Recall: A square matrix R is orthogonal if RR⊤ = I (equiv. R⊤R = I).

This model is not identifiable because WW⊤ = (WR)(WR)⊤.

Parameters (W,µ,σ2) give the same likelihood as (WR,µ,σ2) for every orthogonal R.

As we show later, this is not a serious issue in this case.
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Probabilistic PCA : Maximum Likelihood

Recall: x ∼ ND(µ,WW⊤ + σ2ID). Denote where C = WW⊤ + σ2ID .

The log-likelihood of the data under this model is given by

−ND

2
log(2π)− N

2
log det(C)− 1

2

N󰁛

i=1

(x(i) − µ)⊤C−1(x(i) − µ).

Tipping and Bishop (Probabilistic PCA, 1999)

Here the MLE (󰁥µ,󰁦W, 󰁥σ2) is given in a closed-form!
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The maximum likelihood estimates

The maximum likelihood estimator is:

󰁥µ =
1

N

N󰁛

i=1

x(i)

󰁥σ2 =
1

D − K

D󰁛

i=K+1

λi

󰁦W = 󰁥U(󰁥L− 󰁥σ2IK )
1
2R

• λ1 ≥ λ2 ≥ · · · ≥ λD are the eigenvalues of 󰁥Σ.

• The columns of 󰁥U ∈ RD×K are the K unit eigenvectors of the empirical covariance matrix
󰁥Σ that have the largest eigenvalues,

• 󰁥L = diag(λ1, . . . ,λK ) is the diagonal matrix whose elements are the corresponding

eigenvalues, and R is any orthogonal matrix.
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Probabilistic PCA : Maximum Likelihood

To see how this model behaves when it is fit to data, lets consider the MLE density.

• Recall that the marginal distribution on x in our fitted model is a Gaussian with mean

󰁥µ = x

and covariance
󰁥C = 󰁦W󰁦W⊤ + 󰁥σ2I = 󰁥U(󰁥L− 󰁥σ2I)󰁥U⊤ + 󰁥σ2I

• The covariance gives us a nice intuition about the model.
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Probabilistic PCA : Maximum Likelihood

• Center the data and check the variance along one of the unit eigenvectors ui , which are

the vectors forming the columns of 󰁥U:

Cov(u⊤i (x− x)) = u⊤i Cov[x]ui = u⊤i 󰁥U(󰁥L− 󰁥σ2I)󰁥U⊤ui + 󰁥σ2

= λi − 󰁥σ2 + 󰁥σ2 = λi

• Now, center the data and check the variance along any unit vector orthogonal to the

subspace spanned by 󰁥U:

Cov(u⊤i (x− x)) = u⊤i 󰁥U(󰁥L− 󰁥σ2I)󰁥U⊤ui + 󰁥σ2 = 󰁥σ2

• The model captures the variance along the principle axes and approximates it in all

remaining directions with a single variance. R does not play any role here.
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How does it relate to PCA?

• The posterior mean is given by (see the tutorial)

E[z | x] =
󰀃
W⊤W + σ2I

󰀄−1
W⊤(x− µ)

• Posterior variance:

Cov[z|x] = σ2(W⊤W + σ2I)−1

• In the limit σ2 → 0, we get

E[z | x] σ2→0→
󰀃
W⊤W

󰀄−1
W⊤(x− µ)

• Plugging in the MLEs, this limit recovers the standard PCA.
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Why Probabilistic PCA (PPCA)?

• Fitting a full-covariance Gaussian model of data requires D(D + 1)/2 + D parameters.

With PPCA we model only the K most significant correlations and this only requires

O(KD) parameters.

• Bayesian PCA gives us a Bayesian method for determining the low dimensional principal

subspace (common pattern: deterministic → probabilistic → Bayesian).

• Existence of likelihood functions allows direct comparison with other probabilistic models.

• Instead of solving directly, we can also use EM. The EM can be scaled to very large high-

dimensional datasets.
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Summary: Some Gaussian models

• Gaussian mixture model.

◮ Gaussian latent variable model p(x) =
󰁓

z p(x, z) used for clustering.

• Probabilistic PCA.

◮ Gaussian latent variable model p(x) =
󰁕
z
p(x, z) used for dimensionality reduction.

• Bayesian linear regression (next hour).

◮ Gaussian discriminative model p(y | x) used for regression with a Bayesian analysis for the

weights.
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Overview of the next hour

• Continuing in our theme of probabilistic models for continuous variables.

• We give a probabilistic interpretation of linear regression.

• Chapter 3.3 in Bishop’s book.
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Bayesian linear regression



Completing the Square for Gaussians

Useful technique to find moments of Gaussian random variables.

• It is a multivariate generalization of completing the square.

• The density of x ∼ N (µ,Σ) satifies:

log p(x) = − 1
2 (x− µ)⊤Σ−1(x− µ) + const

= − 1
2x

⊤Σ−1x+ x⊤Σ−1µ+ const

• Thus, if we know w is Gaussian with unknown mean µ and covariance Σ, and we also

know that

log p(w) = − 1
2w

⊤Aw +w⊤b+ const,

then Σ = A−1, Σ−1µ = b and so

w ∼ N (A−1b,A−1).
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Bayesian Linear Regression

• We take the Bayesian approach to linear regression.

◮ This is in contrast with the standard regression.
◮ By inferring a posterior distribution over the parameters, the model can know what it

doesn’t know.

• How can uncertainty in the predictions help us?

◮ Smooth out the predictions by averaging over lots of plausible explanations
◮ Assign confidences to predictions
◮ Make more robust decisions
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Recap: Linear Regression

• Given a training set of inputs and targets {(x(i), y (i))}Ni=1

• Linear model:

y = w⊤ψ(x) + 󰂃

• Vectorized, we have the design matrix X in input space and

Ψ =

󰀵

󰀹󰀹󰀹󰀹󰀷

− ψ(x(1)) −
− ψ(x(2)) −

...

− ψ(x(N)) −

󰀶

󰀺󰀺󰀺󰀺󰀸
, y =

󰀵

󰀹󰀹󰀹󰀹󰀷

y (1)

y (2)

...

y (N)

󰀶

󰀺󰀺󰀺󰀺󰀸

and predictions

ŷ = Ψw
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Recap: Ridge Regression

• Penalized sum of squares (ridge regression), λ ≥ 0:

minimize
1

2
󰀂y −Ψw󰀂2 + λ

2
󰀂w󰀂2

• The gradient: (Ψ⊤Ψ+ λI)w −Ψ⊤y.

• Solution 1: solve analytically by setting the gradient to 0

w = (Ψ⊤Ψ+ λI)−1Ψ⊤y

• Solution 2: solve approximately using gradient descent

w ← (1− αλ)w − αΨ⊤(Ψw − y)

deterministic → probabilistic → Bayesian

We first recall the standard probabilistic reformulation of this model. Then make this Baysian.
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Linear Regression as Maximum Likelihood

• We can give linear regression a probabilistic interpretation by assuming a Gaussian noise

model:

y | x ∼ N (w⊤ψ(x), σ2)

• Linear regression is just maximum log-likelihood under this model:

N󰁛

i=1

log p(y (i) | x(i);w, b) =
N󰁛

i=1

logN (y (i);w⊤ψ(x(i)),σ2)

=
N󰁛

i=1

log

󰀗
1√
2πσ

exp

󰀕
− (y (i) −w⊤ψ(x(i)))2

2σ2

󰀖󰀘

= const− 1

2σ2

N󰁛

i=1

(y (i) −w⊤ψ(x(i)))2

= const− 1

2σ2
󰀂y −Ψw󰀂2
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Regularized Linear Regression as MAP Estimation

• View an L2 regularizer as MAP inference with a Gaussian prior (p(w|D) ∝ p(w)p(D|w)).

argmax
w

log p(w | D) = argmax
w

[log p(w) + log p(D |w)]

• We just derived the likelihood term log p(D |w):

log p(D |w) = const− 1

2σ2
󰀂y −Ψw󰀂2

• Assume a Gaussian prior, w ∼ N (m,S):

log p(w) = log

󰀗
1

(2π)D/2|S|1/2
exp

󰀃
− 1

2 (w −m)⊤S−1(w −m)
󰀄󰀘

= − 1
2 (w −m)⊤S−1(w −m) + const

• Commonly, m = 0 and S = ηI, so

log p(w) = − 1

2η
󰀂w󰀂2 + const.

This is just L2 regularization! 24



Full Bayesian Inference

• Full Bayesian inference makes predictions by averaging over all likely explanations under

the posterior distribution.

• Compute posterior using Bayes’ Rule: p(w | D) ∝ p(w)p(D |w)

• Make predictions using the posterior predictive distribution:

p(y | x,D) =

󰁝
p(w | D) p(y | x,w) dw

• Doing this lets us quantify our uncertainty.
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Bayesian Linear Regression

• Prior distribution: w ∼ N (0,S)

• Likelihood: y | x,w ∼ N (w⊤ψ(x), σ2)

• Assuming fixed/known S and σ2 is a big assumption. More on this later.
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Bayesian Linear Regression

• Bayesian linear regression considers various plausible explanations for how the data were

generated.

• It makes predictions using all possible regression weights, weighted by their posterior

probability.

• Here are samples from the prior p(w) and posteriors p(w | D)

27



Bayesian Linear Regression: Posterior

• Deriving the posterior distribution:

log p(w | D) = log p(w) + log p(D |w) + const

= − 1
2w

⊤S−1w − 1

2σ2
󰀂Ψw − y󰀂2 + const

= − 1
2w

⊤S−1w − 1

2σ2

󰀓
w⊤Ψ⊤Ψw − 2y⊤Ψw + y⊤y

󰀔
+ const

= − 1
2w

⊤
󰀓
σ−2Ψ⊤Ψ+ S−1

󰀔
w +

1

σ2
y⊤Ψw + const

= − 1
2w

⊤ 1

σ2

󰀓
Ψ⊤Ψ+ σ2S−1

󰀔
w +

1

σ2
y⊤Ψw + const (complete the square!)

Thus w | D ∼ N (µ,Σ) where

µ =
󰀓
Ψ⊤Ψ+ σ2S−1

󰀔−1

Ψ⊤y, Σ = σ2
󰀓
Ψ⊤Ψ+ σ2S−1

󰀔−1
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Bayesian Linear Regression: Posterior

• Gaussian prior leads to a Gaussian posterior, and so the Gaussian distribution is the

conjugate prior for linear regression model.

• Compare µ = (Ψ⊤Ψ+ σ2S−1)−1Ψ⊤y to the closed-form solution for linear regression:

w = (Ψ⊤Ψ+ λI)−1Ψ⊤y

This is the mean of the posterior for S = σ2

λ I.

• As λ → 0, the standard deviation of the prior goes to ∞, and the mean of the posterior

converges to the MLE (least squares solution).
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Bayesian Linear Regression

Illustration of sequential Bayesian learning for y = w0 + w1x , w0 = −0.3, w1 = 0.5.

Left column:

• Log-likelihood of a single data point (yi , xi ).

• Up to a constant, equal to − 1
2σ2 (yi −w0−w1xi )

2.

• yi − w0 − w1xi = 0 has many solutions.

(e.g. xi = 1, yi = 0 gives w0 + w1 = 0)

Middle column:

• Prior/posterior.

Right column:

• Lines: samples from the posterior.

• Dots: data points.
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Radial bases example

• One dimensional example: {(xi , yi )}Ni=1, y = w⊤ψ(x) + 󰂃.

• We use radial basis function (RBF) features

ψj(x) = exp

󰀕
− (x − µj)

2

2s2

󰀖
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Radial bases example

Functions sampled from the posterior:
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Posterior predictive distribution

• The posterior gives us distribution over the parameter space, but if we want to make

predictions, the natural choice is to use the posterior predictive distribution.

• Posterior predictive distribution:

p(y | x,D) =

󰁝
p(y | x,w)󰁿 󰁾󰁽 󰂀

N (y ;w⊤ψ(x),σ2)

p(w | D)󰁿 󰁾󰁽 󰂀
N (w ;µ,Σ)

dw

• Another interpretation: y = w⊤ψ(x) + ε, where ε ∼ N (0,σ2) is independent of

w | D ∼ N (µ,Σ).

• Again by the fact that affine transformations of Gaussian vectors are Gaussian, y is a

Gaussian distribution with parameters

µpred = µ⊤ψ(x)

σ2
pred = ψ(x)⊤Σψ(x) + σ2

• Hence, the posterior predictive distribution is N (y |µpred,σ
2
pred).
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Bayesian Linear Regression

We visualize confidence intervals based on the posterior predictive distribution at each point:

— Bishop, Pattern Recognition and Machine Learning
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Summary

• This lecture covered the basics of Bayesian regression.

What’s remaining:

• Week 11: Kernel methods, Gaussian processes.

• Week 12: Neural networks.

• Week 13: TBD: (Autoencoders, A/B Testing, Bandits).
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