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Probabilistic PCA



Overview

PCA = Principal Component Analysis
PPCA = Probabilistic Principal Component Analysis

e PCA is motivated geometrically.
e PPCA is a probabilistic model for continuous latent variables.

e Both try to perform linear dimensionality reduction in the data.

e They are closely related, which gives a probabilistic interpretation of the PCA.
> We will show that PCA is obtained as the MLE in a degenerate PPCA model.



Low dimensional representation

e In practice, even though data is very high dimensional, its important features can be accurately
captured in a low dimensional subspace.
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e Find a low dimensional representation of your data.

» Computational benefits
> Interpretability, visualization
> Generalization



Nice example

Source: Novembre et al, Genes mirror geography within Europe, Nature, 2009.



Recall: Principal Component Analysis (PCA)

e Data set {x()1N  in RP.

e Each input vector x() € RP is approximated as x + Uz,
x) ~ %) = x+ Uz

where X = 1 5. x() is the data mean, U € RP*K (K << D) is the orthogonal basis for
the principal subspace (U U = Ik), and z() € R¥ is the code vector

) = UT(x") —x)

e U is chosen to minimize the reconstruction error

U = argmn >[5 - (x4 00T -5
i=1

%()



e are looking for directions
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e For example, in a 2-dimensional problem, we are looking for the direction u; along which
the data is well represented:

> e.g. direction of higher variance

> e.g. direction of minimum reconstruction error
> Recall: they are the samel



Probabilistic PCA

Consider the following latent variable model.
e Similar to the Gaussian mixture model but with Gaussian latents:

z NNK(O, IK)
x|z ~ Np(Wz + 1, 0°1p)

e This is similar to naive Bayes graphical model, because p(x | z) factorizes with respect to
the dimensions of x.

e What sort of data does this model produce?

Matrix-vector multiplication: Wz is a linear combination of the columns of W with coefficients

z=(z1,...,2K).



Probabilistic PCA

e W2z is a random linear combination of the columns of W
e To get the random variable x, we sample a standard normal z and then add a small
amount of isotropic noise to Wz + p. (we had: x|z ~ Np(Wz + p, 0%lp)).

L L

v

> >

z T1 T

The column span of W refers to the principal subspace in PCA.



Probabilistic PCA : The Likelihood function

To perform maximum likelihood in this model, we need to maximize the following:

max,log p(x| W, 1, 0%) = max log [ p(x|2.W. u.0%)p(z) dz
W, p,02 W, p,02

This is easier than for the Gaussian mixture model because x is Gaussian.

Stochastic representation: x =Wz +pu +¢, e~ Np(0,0%lp), elz.

This is an affine function of Gaussian variables and so p(x| W, u, 0?) is Gaussian.

e To find the distribution of x, we only need to compute E[x] and Cov|[x].



Probabilistic PCA : Maximum Likelihood

Ex] = EWz+p+e = p

Cov[x] = E[(Wz +€)(Wz+¢)"] = E[Wzz" W '] + Cov[e]
WE[zz"]W ' + Cov[(] = WWT +52lp

Recall: A square matrix R is orthogonal if RRT =1 (equiv. RTR =1).

This model is not identifiable because WW T = (WR)(WR) .

Parameters (W, u, o) give the same likelihood as (WR, p, 02) for every orthogonal R.
As we show later, this is not a serious issue in this case.
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Probabilistic PCA : Maximum Likelihood

Recall: x ~ ND(/,L,WWT + J2|D). Denote where C = WW T + ¢2lp.

The log-likelihood of the data under this model is given by

N
ND N 1 . .
= = _ = D — ) TeY(x) —
5 log(27) 5 log det(C) ) E (x p) C 7 (x ).

i=1

Tipping and Bishop (Probabilistic PCA, 1999)
Here the MLE (ﬁ,W,&2) is given in a closed-form!
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The maximum likelihood estimates

The maximum likelihood estimator is:

i %me

—~ ~

W = U(L-3%)R

e \; > )\ >--- > \p are the eigenvalues of T

e The columns of U € RP*K are the K unit eigenvectors of the empirical covariance matrix

~

Y that have the largest eigenvalues,

o L= diag(A1, ..., Ak) is the diagonal matrix whose elements are the corresponding

eigenvalues, and R is any orthogonal matrix.
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Probabilistic PCA : Maximum Likelihood

To see how this model behaves when it is fit to data, lets consider the MLE density.
e Recall that the marginal distribution on x in our fitted model is a Gaussian with mean
B=Xx

and covariance
C =WW'+35% = UL-3HUT +52

e The covariance gives us a nice intuition about the model.

13



Probabilistic PCA : Maximum Likelihood

e Center the data and check the variance along one of the unit eigenvectors u;, which are
the vectors forming the columns of U:
Cov(u; (x — X)) = u, Cov[x|u; = u,TLAJ(E - 82|)LAJTu,- + 52

/\;—324—82 = A\

e Now, center the data and check the variance along any unit vector orthogonal to the
subspace spanned by U:

Cov(u (x—X%)) = u] U(L -0 T, +35° = 52
e The model captures the variance along the principle axes and approximates it in all

remaining directions with a single variance. R does not play any role here.
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How does it relate to PCA?

The posterior mean is given by (see the tutorial)

Elz|x] = (W'W + r72|)71 W' (x—p)

Posterior variance:

Cov[z|x] = o> (WTW + ¢21)!

In the limit 0® — 0, we get

Elz|x] =0 (WTW) W (x - p)

Plugging in the MLEs, this limit recovers the standard PCA.
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Why Probabilistic PCA (PPCA)?

e Fitting a full-covariance Gaussian model of data requires D(D + 1)/2 + D parameters.
With PPCA we model only the K most significant correlations and this only requires
O(KD) parameters.

e Bayesian PCA gives us a Bayesian method for determining the low dimensional principal
subspace (common pattern: deterministic — probabilistic — Bayesian).

e Existence of likelihood functions allows direct comparison with other probabilistic models.

e Instead of solving directly, we can also use EM. The EM can be scaled to very large high-
dimensional datasets.
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Summary: Some Gaussian models

e Gaussian mixture model.

> Gaussian latent variable model p(x) = >"_ p(x, z) used for clustering.
e Probabilistic PCA.

> Gaussian latent variable model p(x) = [, p(x, z) used for dimensionality reduction.
e Bayesian linear regression (next hour).

» Gaussian discriminative model p(y | x) used for regression with a Bayesian analysis for the
weights.
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Overview of the next hour

e Continuing in our theme of probabilistic models for continuous variables.
e We give a probabilistic interpretation of linear regression.

e Chapter 3.3 in Bishop's book.
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Bayesian linear regression




Completing the Square for Gaussians

Useful technique to find moments of Gaussian random variables.

e It is a multivariate generalization of completing the square.
e The density of x ~ N (u, X) satifies:

log p(x) = —1(x — ) Z 7 (x — p) + const

=—Ix"E 7 'x +x"Z 7'y + const

e Thus, if we know w is Gaussian with unknown mean p and covariance X, and we also
know that

log p(w) = —%WTAW +w b + const,
then T =A"1, ¥ 'y =b and so
w~ N(Ab,ATH).
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Bayesian Linear Regression

e We take the Bayesian approach to linear regression.
» This is in contrast with the standard regression.
» By inferring a posterior distribution over the parameters, the model can know what it
doesn’t know.
e How can uncertainty in the predictions help us?
» Smooth out the predictions by averaging over lots of plausible explanations
> Assign confidences to predictions
> Make more robust decisions

20



Recap: Linear Regression

e Given a training set of inputs and targets {(x(), y())}V
e Linear model:
y=wg(x)+e

e Vectorized, we have the design matrix X in input space and

— 1/,(X(l)) _ y
_ w(x(2)) _ y2
‘I’ = 5 y =
_ q/)(x(N)) — y(N)
and predictions
y=Ww
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Recap: Ridge Regression

e Penalized sum of squares (ridge regression), A > 0:
1 A
minimize §||y — Ww|? + §||WH2

e The gradient: (W W+ A)w —W'y.
e Solution 1: solve analytically by setting the gradient to 0
w=(Wiwi)luly
e Solution 2: solve approximately using gradient descent
w— (I1—alNw—aW¥' (Ww—y)

deterministic — probabilistic — Bayesian
We first recall the standard probabilistic reformulation of this model. Then make this Baysian.
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Linear Regression as Maximum Likelihood

e We can give linear regression a probabilistic interpretation by assuming a Gaussian noise
model:

y|x ~N(wTp(x), 02)

e Linear regression is just maximum log-likelihood under this model:

N N
> _logp(y! [xiw, b) = 3 log Ny w4(x), o%)
i=1 i=1
N
_ 1 (Y — wTep(x))?
= Z log { S exp (— 252 )}

L 2
= const — Tﬂ”y — Ww||
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Regularized Linear Regression as MAP Estimation

e View an L, regularizer as MAP inference with a Gaussian prior (p(w|D) x p(w)p(D|w)).
arg max log p(w | D) = argmax [log p(w) + log p(D | w)]

e We just derived the likelihood term log p(D | w):

1
log p(D |w) = const — — ||y — Ww||?
202

e Assume a Gaussian prior, w ~ N'(m,S):

log p(w) = exp (—i(w—m)"S™(w —m))

1
log (27)P/2|S[1/2
= —1(w—-m)"S™!(w—m) + const
e Commonly, m =0 and S =l, so
1
log p(w) = —%HWH2 + const.

This is just L, regularization! 24



Full Bayesian Inference

Full Bayesian inference makes predictions by averaging over all likely explanations under
the posterior distribution.

Compute posterior using Bayes’ Rule: p(w | D) x p(w)p(D |w)

Make predictions using the posterior predictive distribution:

p(y|x,D) = /p(ww)p(y\x,w)dw

Doing this lets us quantify our uncertainty.
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Bayesian Linear Regression

e Prior distribution: w ~ N(0,S)
e Likelihood: y |x,w ~ N (w'(x), o?)

e Assuming fixed/known S and o2 is a big assumption. More on this later.
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Bayesian Linear Regression

e Bayesian linear regression considers various plausible explanations for how the data were
generated.

e |t makes predictions using all possible regression weights, weighted by their posterior
probability.

e Here are samples from the prior p(w) and posteriors p(w | D)

A A A

no observations one observation two observations
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Bayesian Linear Regression: Posterior

e Deriving the posterior distribution:
log p(w | D) = log p(w) + log p(D | w) + const

——wTS w— —||ll1w y||? + const
= lw'slw— % (wT\UTlIJw —2y " Ww + yTy> + const
— _%WT (a_2l|JT\IJ + S_l) w -+ %yTWw + const
— _%WT% (IIIT\IJ + 025_1) w + %y—r\l!w + const (complete the square!)
Thus w|D ~ N (p, X) where
u = (uﬁ\u —&-025_1)71 vy, T = o2 (uﬁw +025_1)71
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Bayesian Linear Regression: Posterior

e Gaussian prior leads to a Gaussian posterior, and so the Gaussian distribution is the
conjugate prior for linear regression model.

e Compare pu = (\IIT\U + 025*1)’1\I1Ty to the closed-form solution for linear regression:
w=(Wiwa)lu'ly
2

This is the mean of the posterior for S = -1

e As A — 0, the standard deviation of the prior goes to oo, and the mean of the posterior
converges to the MLE (least squares solution).
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Bayesian Linear Regression

[llustration of sequential Bayesian learning for y = wy + wix, wy =

Left column:

e Log-likelihood of a single data point (y;, x;).

e Up to a constant, equal to ffiz(y,- — Wy — wix;)2.

e y; — wy — wyx; = 0 has many solutions.
(e.g. x; =1, yi =0 gives wy + wy = 0)
Middle column:

e Prior/posterior.

Right column:
e Lines: samples from the posterior.

e Dots: data points.

likelihood

—0.3, wy = 0.5.
prior/posterior data space
1
wy y
0 0
-1 1
-1 0w ! 1 0z 1
1 1
wy L
0 0
-1 -1
-1 0w ! -1 0 oz 1
1 1
wy v
0 0 9
-1 -1
-1 0wy ! -1 [
1 1
0 y
0 0 0 g3
976
-1 -1
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Radial bases example

e One dimensional example: {(x;,yi)}¥,, v = wT4(x) + .
e We use radial basis function (RBF) features

500 = o (-0

1

0.75

0.5

0.25
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Radial bases example

Functions sampled from the posterior:
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Posterior predictive distribution

e The posterior gives us distribution over the parameter space, but if we want to make
predictions, the natural choice is to use the posterior predictive distribution.
e Posterior predictive distribution:

ply(xD) = [ ply|xw)  plw|D) dw
—_———  —
N(yiwTy(x),02) N(w;p,X)
e Another interpretation: y = w')(x) + €, where e ~ N(0,0?) is independent of
w|D ~N(p, I).
e Again by the fact that affine transformations of Gaussian vectors are Gaussian, y is a
Gaussian distribution with parameters
Hpred = HTTP(X)
Ohred = Y(x) Ttp(x) + 07

. . . . . . . 2
e Hence, the posterior predictive distribution is N'(y | fipred, 0% red)-
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Bayesian Linear Regression

We visualize confidence intervals based on the posterior predictive distribution at each point:

0 / 0
-1 =

-1

-1 = -1
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— Bishop, Pattern Recognition and Machine Learning



e This lecture covered the basics of Bayesian regression.
What's remaining:

e Week 11: Kernel methods, Gaussian processes.
e Week 12: Neural networks.
e Week 13: TBD: (Autoencoders, A/B Testing, Bandits).
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