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Variational inference



Recap: Posterior Inference for Latent Variable Models

We encountered a few latent variable models (e.g. the TrueSkill model).

These models have a factorization p(x , z) = p(z)p(x |z) where:

• x are the observations or data,

• z are the unobserved (latent) variables

• p(z) is usually called the prior

• p(x |z) is usually called the likelihood

• The conditional distribution of the unobserved variables given the observed variables (aka

the posterior) is

p(z |x) = p(x , z)

p(x)
=

p(x , z)
p(x , z)dz

• We assume p(x) =

p(x , z)dz is hard to compute

2



Recall: Variational methods

Variational inference works as follows:

• Choose a tractable parametric distribution qφ(z) with parameters φ. This distribution will

be used to approximate p(z |x).
◮ For example, qφ(z) = N (z |µ,Σ) where φ = (µ,Σ).

• Encode some notion of ”distance” between p(z |x) and qφ(z) that can be efficiently

estimated. Usually we will use the KL divergence.

• Minimize this distance.
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Recall: KL divergence and I-projection

Measure the difference between q and p using the Kullback-Leibler divergence

KL(qφ(z)p(z |x)) =


qφ(z) log

qφ(z)

p(z |x)dz = E
z∼qφ

log
qφ(z)

p(z |x)

Recall: Properties of the KL Divergence

• KL(qφp) ≥ 0

• KL(qφp) = 0 ⇔ qφ = p

• KL(qφp) ∕= KL(pqφ)
• KL divergence is not a metric, since it is not symmetric
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ELBO and its properties



ELBO: Evidence Lower Bound

• Evaluating KL(qφ(z)p(z |x)) is intractable because of the integral over z and the term

p(z |x), which is intractable to normalize.

• We can still “optimize” this KL without knowing the normalization constant p(x).

• We solve a surrogate optimization problem: maximize the evidence lower bound

(ELBO); to be introduced in a second.

• Maximizing the ELBO is equivalent to minimizing

KL(qφ(z)p(z |x)).
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ELBO: Evidence Lower Bound

Maximizing the ELBO is the same as minimizing KL(qφ(z)p(z |x)).

KL(qφ(z)p(z |x)) = E
z∼qφ

log
qφ(z)

p(z |x)

= E
z∼qφ


log


qφ(z) ·

p(x)

p(z , x)



= E
z∼qφ


log

qφ(z)

p(z , x)


+ E

z∼qφ
log p(x)

:= −L(φ) + log p(x)

Where L(φ) is the ELBO:

L(φ) = E
z∼qφ


log p(z , x)− log qφ(z)
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ELBO: Evidence Lower Bound

Recall: KL(qφ(z)p(z |x)) = −L(φ) + log p(x).

• Rearranging, we get

L(φ) +KL(qφ(z)p(z |x)) = log p(x)

• Because KL(qφ(z)p(z |x)) ≥ 0,

L(φ) ≤ log p(x)

• maximizing the ELBO ⇒ minimizing KL(qφ(z)p(z |x)).

• Note: L(φ) = E
z∼qφ


log p(z , x)


+ E

z∼qφ


− log qφ(z)


, so

ELBO = expected log-join+entropy

• Sometimes we write L(φ|x) or L(θ,φ|x) if p(z , x) depends on a parameter θ.
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Estimating gradients of the

ELBO



Maximizing ELBO

Recall: ∇L(φ) gives the direction of the steepest ascent of L(φ).

Gradient descent (GD) methods: φt+1 = φt + st∇L(φt).

• We have that L(φ) = E
z∼qφ


log p(x , z)− log qφ(z)


.

• We need ∇φL(φ) or its unbiased estimate (stochastic GD).

Approximating the gradient of some E(f (Y ,φ)):

• If the distribution of Y independent of φ then

∇φE(f (Y ,φ)) = E(∇φf (Y ,φ)).

• We then have ∇φE(f (Y ,φ)) ≈ 1
m

m
i=1 ∇φf (yi ,φ).

• Problem: In our case the distribution of z depends on φ.
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The reparameterization trick

Problem:

∇φ E
z∼qφ


log p(x , z)− log qφ(z)


∕= E

z∼qφ


∇φ (log p(x , z)− log qφ(z))


.

In some situations there is a trick:

Suppose that z ∼ qφ has the same distribution as T (,φ), where  is a random variable

whose distribution p0 does not depend on φ. In this case, to sample z ∼ qφ by:

• sampling a random variable  ∼ p0,

• deterministically computing z = T (,φ).

For example, if z ∼ N(µ,σ2) then z = µ+ σ, where  ∼ N(0, 1).

• sample  ∼ N(0, 1),

• φ = (µ,σ2), T (,φ) = µ+ σ.

9



The reparameterization trick

If z = T (,φ), we can write

E
z∼qφ


log p(x , z)− log qφ(z)


= E

∼p0


log p(x ,T (,φ))− log qφ(T (,φ))



This lets us use simple Monte Carlo: z = T (φ, )

∇φL(φ) = ∇φEz∼qφ(z)


log p(x , z)− log qφ(z)



= ∇φE∼p0()


log p(x ,T (φ, ))− log qφ(T (φ, ))



= E∼p0()∇φ

log p(x ,T (φ, ))− log qφ(T (φ, ))


.

so generating a sample 1, . . . , m from p0, we get

∇φL(φ) ≈ 1

m

m

i=1

∇φ

log p(x ,T (φ, i ))− log qφ(T (φ, i ))


.
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Example: Bayesian Neural Networks

The distribution p(z |x) may be very complicated:

• z are weights of neural network

• x are all observed outputs: y1, y2, ... Assume inputs xi are fixed.

• p(z) prior on weights, usually standard normal (hard to set)

• p(x |z) =


i p(yi |xi , z)
◮ for regression: p(yi |xi , z) = N (nnet(xi , z),σ

2)
◮ for classification: p(yi |xi , z) = Categorical(yi |softargmax(nnet(xi , z)))

• p(z |x, y) is a collection of plausible sets of parameters that all fit the data.

Note: The number of inputs/outputs may be too large for our gradient computations.
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Parameter estimation

Goal: Estimate parameters θ in a latent variable model

p(x1:N , z1:N |θ) =
N

n=1

p(zn|θ)p(xn|zn, θ).

We have log p(xn|θ) = log


p(xn|zn, θ)p(zn|θ)dzn

, which is intractable.

Using the fact that L(θ,φn|xn) ≤ log p(xn|θ), we can optimize θ by maximizing

L(θ,φ1:N |x1:N) :=
N

n=1

L(θ,φn|xn) ≤
N

n=1

log p(xn|θ).

Variational EM (high level idea): Alternate between optimizing with respect to φ1:N and θ.
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SVI: Stochastic Variational Inference

Recall: L(θ,φ1:N |x1:N) =
N

n=1 L(θ,φn|xn).

• Instead of computing the full gradient with respect to θ (which is in general not possible),

we compute a simple Monte Carlo estimate of it.

• For example, at each step we can draw a random minibatch of B = |B| examples from the

dataset, and then make an approximation

L(θ,φ1:N |x1:N) ≈ N

B



xn∈B
L(θ,φn|xn).

(this is then optimized with respect to θ)
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MCMC: Pros & Cons

Pros of MCMC:

• Accurate results (at least asymptotically)

• Flexibility

• No approximation

• Handles multimodal distributions

Cons of MCMC:

• High computational cost

• Requires tuning of hyperparameters

• Convergence issues

• Inefficient in sampling complex dependencies
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SVI: Pros & Cons

Pros of SVI:

• Faster convergence

• Scalability

• Ease of use

Cons of SVI:

• Approximate results

• Limited flexibility

• Mode seeking

• Sensitive to choice of hyperparameters
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Summary of the first hour

We covered the basics of gradient-based stochastic variational inference.

More specifically:

• ELBO

• Reparametrization trick

• Stochastic VI
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Overview of the second hour

• Gaussian mixture models

• EM-algorithm

• Clustering
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Gaussian Mixture Models



Mixture of Gaussians

We combine simple models into a complex model by taking a mixture of K multivariate

Gaussian densities of the form:

p(x) =
K

k=1

πkNm(x |µk ,Σk),

where πk ≥ 0,
K

k=1 πk = 1, and Nm(x |µk ,Σk) is the m-dim Gaussian density.

• Each Gaussian component has its own mean vector µk and covariance matrix Σk .

• The parameters πk are called the mixing coefficients.

Example:

• K = 3 (three Gaussian components)

• m = 1 (univariate Gaussians)
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The crabs from Naples bay

In 1892, scientists collected data on populations of the crab

and observed that the ratio of forehead width to the body

length actually showed a highly skewed distribution.

Source: On Certain Correlated Variations in Carcinus maenas

(1893) W. F. Weldon.

They wondered whether this distribution could be the result of the population being a mix of

two different normal distributions (two sub-species).

In 1894, Karl Pearson proposed a method to fit this model (read here), whose modern version

is the “method of moments”. The method involved solving a higher order polynomial.
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Mixture of Gaussians
• Illustration of a mixture of 3 Gaussians in a 2-dimensional space: 

(a) Contours of constant density of each of the mixture components, along 
with the mixing coefficients
(b) Contours of marginal probability density  

(c) A surface plot of the distribution p(x). 
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Mixture of Gaussians as a latent variable model

Recall: p(x) =
K

k=1 πkNm(x |µk ,Σk).

• Consider a latent variable z with K states z ∈ {1, . . . ,K}.
• The distribution of z given by the mixing coefficients:

p(z = k) = πk .

• Specify the conditional as p(x |z = k) = Nm(x |µk ,Σk) with joint:

p(x , z = k) = p(z = k)p(x |z = k) = πkNm(x |µk ,Σk).

• Then the marginal p(x) satisfies

p(x) =
K

k=1

p(x , z = k) =
K

k=1

πkNm(x |µk ,Σk).
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Mixture of Gaussians: inference

• If we have several observations x1, . . . , xN , for every observed data point xn there is a

corresponding latent zn.

• Consider the conditional p(z |x)

p(z = k |x) =
p(z = k)p(x |z = k)

K
j=1 p(z = j)p(x |z = j)

=
πkNm(x |µk ,Σk)K
j=1 πjNm(x |µj ,Σj)

• We view πk as prior probability that z = k , and p(z = k |x) is the corresponding posterior

once we have observed the data.
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Example
• 500 points drawn from a mixture of 3 Gaussians. 

Samples from the joint 
distribution p(x,z).

Samples from the marginal 
distribution p(x).

Same samples where colors 
represent the value of 
responsibilities.  
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The Likelihood function

Parameters: π = (π1, . . . ,πK ), µ = (µ1, . . . , µK ), Σ = (Σ1, . . . ,ΣK ).

Recall: p(x |π,µ,Σ) =
K

k=1 πkNm(x |µk ,Σk)

• Represent the dataset {x1, . . . , xN} as X ∈ RN×m.

• The latent variable is represented by a vector z ∈ RN .

• The log-likelihood takes the form

log p(X |π,µ,Σ) =
N

n=1

log


K

k=1

πkNm(xn|µk ,Σk)
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Maximum Likelihood (µ)

Recall: log p(X |π,µ,Σ) =
N

n=1 log
K

k=1 πkNm(xn|µk ,Σk)

.

• Differentiating wrt µk and setting to zero gives:

0 =
N

n=1

πkN(xn|µk ,Σk)
j πjN(xn|µj ,Σj)

Σ−1
k (xn − µk) =

N

n=1

p(zn = k |xn)Σ−1
k (xn − µk)

= Σ−1
k


N

n=1

p(zn = k |xn)xn − µk

N

n=1

p(zn = k |xn)

.

• Equivalently (as Σk is positive definite)

µk =


n

p(z = k |xn)
Nk

xn, Nk =


n

p(z = k |xn).

• Simple interpretation: the MLE given by the weighted mean of the data weighted by the

posterior p(z = k |xn).
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Maximum Likelihood (Σ,π)

Recall: log p(X |π,µ,Σ) =
N

n=1 log
K

k=1 πkNm(xn|µk ,Σk)

.

• Differentiating wrt Σk and setting to zero gives:

Σk =


n

p(z = k |xn)
Nk

(xn − µk)(xn − µk)
⊤.

• Again data points weighted by posterior probabilities.

• Finally, for the weights πk the MLE is

πk =
NkK
j=1 Nj

=
Nk

N
, Nk =



n

p(z = k |xn).
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Motivating the EM algorithm

• The MLE does not have a closed form solution.

• The estimates depend on the posterior probabilities p(z = k |xn), which themselves depend

on those parameters.

• Indeed, recall that

p(z = k |xn) =
πkNm(xn|µk ,Σk)K
j=1 πjNm(xn|µj ,Σj)

.

• Iterative solution (EM algorithm):

◮ Initialize the parameters to some values.

E-step Update the posteriors p(z = k|xn).
M-step Update model parameters π,µ,Σ.

◮ Repeat.
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EM algorithm for Gaussian mixtures

• Initialize π,µ,Σ.

• E-step: for each k , n compute the posterior probabilities

p(z = k |xn) =
πkNm(xn|µk ,Σk)K
j=1 πjNm(xn|µj ,Σj)

.

• M-step: Re-estimate model parameters

µnew
k =

N

n=1

p(z = k |xn)
Nk

xn, Nk =
N

n=1

p(z = k |xn),

Σnew
k =

N

n=1

p(z = k |xn)
Nk

(xn − µnew
k )(xn − µnew

k )⊤,

πnew
k =

Nk

N
.

• Evaluate the log-likelihood and check for convergence.
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Illustration of the EM algorithm:

Mixture of Gaussians: Example
• Illustration of the EM algorithm (much slower convergence compared to K-
means) 
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The General EM algorithm

Consider a general setting with latent variables.

• Observed dataset X ∈ RN×D , latent variables Z ∈ RN×K .

Maximize the log-likelihood log p(X |θ) = log (


Z p(X ,Z |θ)).

• Initialize parameters θold.

• E-step: use θold to compute the posterior p(Z |X , θold).

• M-step: θnew = argmaxθ Q(θ, θold), where

Q(θ, θold) =


Z

p(Z |X , θold) log p(X ,Z |θ) = E

log p(X ,Z |θ)

X , θold


which is tractable in many applications.

• Replace θold ← θnew. Repeat until convergence.
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Example: Gaussian mixture

• If z was observed, the MLE would be trivial

log p(X ,Z |θ) =
N

n=1

log p(xn, zn|θ) =
N

n=1

K

k=1

11(zn=k) log (πkN(xn|µk ,Σk)) .

For the E-step: p(Z |X , θ) =
N

n=1 p(zn|X , θ) we have

p(zn = k |X , θ) = p(zn = k |xn, θ) =
πkNm(xn|µk ,Σk)K
j=1 πjNm(xn|µj ,Σj)

.

For the M-step: E(11(zn = k)|X , θold) = p(zn = k|X , θold) and so

E

log p(X ,Z |θ)

X , θold


=
N

n=1

K

k=1

p(zn = k|X , θold) log (πkN(xn|µk ,Σk)) .

Maximizing gives the formulas on Slide 28.
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Relationship to K-Means (STA 314?)

• Consider a Gaussian mixture, s.t. Σk = I for all k = 1, . . . ,K .

• We have

p(x |µk ,Σk) =
1

(2π)m/2
exp


− 1

2
x − µk2


.

• Consider the EM algorithm in this special case, θ = (π,µ).

• The posterior probabilities take the form

p(zn = k |X , θ) =
πk exp(−xn − µk2/2)K
j=1 πj exp(−xn − µj2/2)

.

• If  → 0, the term with smallest xn − µj tends to zero most slowly.

• Thus p(zn = k |X , θ) → rnk =


1 if k = argminj xn − µj
0 otherwise
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Relationship to K-Means

Recall: E

log p(X, Z|θ)

X, θold


=
N

n=1
K

k=1 p(zn = k|X, θold) log

πkN(xn|µk , Σk )


.

As  → 0, we have

p(zn = k |X , θ) → rnk =


1 if k = argminj xn − µj
0 otherwise

which gives

E

log p(X ,Z |θ)

X , θold


→ −1

2

N

n=1

K

k=1

rnkxn − µk2 + const.

• In the limit, maximizing the expected log-likelihood is equivalent to minimizing the

distortion measure in the K-means algorithm.

• The EM-algorithm is slower but more flexible and accurate.
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Summary

• EM algorithm is a classical method in statistics.

• It can be used in the presence of latent variables.

• When applied to Gaussian mixtures, compared to k-means, it captures the covariance

structure of the data.
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