
STA 414/2104:

Statistical Methods in Machine Learning II

Week 6: HMMs and Variational Inference I

Piotr Zwiernik

University of Toronto



Table of contents

1. Hidden Markov Models (HMMs)

Basic Definitions

Forward / Backward Algorithm

Viterbi algorithm

2. Variational Inference I

Overview and motivation

I- and M- projection

Mean-field methods

1



Hidden Markov Models (HMMs)



Sequential data

We generally assume data was i.i.d, however this may be a poor assumption:

• Sequential data is common in time-series modelling (e.g. stock prices, speech, video

analysis) or ordered (e.g. textual data, gene sequences).

• Recall the general joint factorization via the chain rule

p(x1:T ) =
T

t=1

p(xt |xt−1, ..., x1) where p(x1|x0) = p(x1).

• But this quickly becomes intractable for high-dimensional data -each factor requires

exponentially many parameters to specify as a function of T.

• So we made the simplifying assumption that our data can be modeled as a first-order

Markov chain

p(xt |x1:(t−1)) = p(xt |xt−1)
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Sequential data

• In certain cases, Markov chain assumption is also restrictive.

• The state of our variables is fully observed. Hence, we introduce Hidden Markov Models
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Hidden Markov Models (HMMs)

• HMMs hide the temporal dependence by keeping it in the unobserved state.

• No assumptions on the temporal dependence of observations is made.

• For each observation xt , we associate a corresponding unobserved hidden/latent variable zt

• The joint distribution of the model becomes

p(x1:T , z1:T ) = p(z1)
T

t=2

p(zt |zt−1)
T

t=1

p(xt |zt)
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Hidden Markov Models (HMMs)

In HMMs the observations are not limited by a Markov assumption of any order.

Assuming we have a homogeneous model, we only have to know three sets of distributions

1. Initial distribution: π(i) = p(z1 = i). The probability of the first hidden variable being in

state i ; often denoted π ∈ RK .

2. Transition distribution: Aij = p(zt+1 = j |zt = i) i ∈ {1, ...,K}. The probability of

moving from hidden state i to hidden state j ; A ∈ RK×K .

3. Emission probability: p(xt = j |zt = i). The probability of an observed random variable

xt given the state of the hidden variable that ”emitted” it.

(Often think about xt as discrete but all that follows works in the continuous case)
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HMMs: Objectives

We consider the following objectives:

1. Compute the probability of a latent sequence given an observation sequence.

That is, we want to be able to compute p(z1:t |x1:t). This is achieved with the

Forward-Backward algorithm.

2. Infer the most likely sequence of hidden states.

That is, we want to be able to compute

z = argmax
z1:T

p(z1:T |x1:T ).

This is achieved using the Viterbi algorithm.
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Example: Ocasionally dishonest casino

Series of die rolls xt ∈ {1, . . . , 6}, zt ∈ {1, 2} (fair/loaded)

p(xt |zt = 1) = ( 16 ,
1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ), p(xt |zt = 1) = ( 1

10 ,
1
10 ,

1
10 ,

1
10 ,

1
10 ,

1
2 )

Possible realization:

hid: 1111111111222211111111111111111111112222222221222211111111111111111111

obs: 1355534526553366316351551526232112113462221263264265422344645323242361
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Forward algorithm

• The goal is to recursively compute the filtered marginals,

αt(j) = p(zt = j |x1:t).

• Assuming that we know the initial p(z1), transition p(zt |zt−1), and emission p(xt |zt)
probabilities for all 1 ≤ t ≤ T .

• This is a step in the forward-backward algorithm.
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Forward algorithm has two steps

• Prediction step: compute the one-step-ahead predictive density:

p(zt = j |x1:(t−1)) =
K

i=1

p(zt−1 = i , zt = j |x1:(t−1))

=
K

i=1

p(zt = j |zt−1 = i , x1:(t−1))p(zt−1 = i |x1:(t−1))

=
K

i=1

p(zt = j |zt−1 = i)p(zt−1 = i |x1:(t−1)) =
K

i=1

Aijαt−1(i) = (A⊤αt−1)j

• Update step: Denoting λt(j) = p(xt |zt = j) (here xt is fixed and λt ∈ RK )

αt(j) = p(zt = j |x1:t) = p(zt = j |x1:(t−1), xt) ∝ p(zt = j , xt |x1:(t−1))

= p(xt |zt = j , x1:(t−1))p(zt = j |x1:(t−1))

= p(xt |zt = j)p(zt = j |x1:(t−1)) = λt(j)p(zt = j |x1:(t−1))

Using matrix notation: αt ∝ λt ⊙ (A⊤αt−1) [⊙ is the Hadamard (entrywise) product] 9



Forward-Backward algorithm

This task of hidden state inference breaks down into the following:

• Filtering: compute posterior over current hidden state, p(zt |x1:t).
• Prediction: compute posterior over future hidden state, p(zt+k |x1:t).
• Smoothing: compute posterior over past hidden state, p(zt |x1:T ) 1 ≤ t < T .

The probability of interest, p(zt |x1:T ) is computed using a forward and backward recursion

• Forward Recursion: αt(j) = p(zt = j |x1:t) [this was computed earlier]

• Backward Recursion: βt(j) := p(x(t+1):T |zt = j)

We assume that we know the initial π(j) = p(z1 = j), transition Aij = p(zt = j |zt−1 = i), and

emission λt(j) = p(xt |zt = j) probabilities for all t.
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Forward-Backward algorithm

We can break the chain into two parts, the past and the future, by conditioning on zt :

• We have

γt := p(zt |x1:T ) ∝ p(zt , x1:T ) = p(zt , x1:t , x(t+1):T )

= p(zt , x1:t)p(x(t+1):T |zt , x1:t) = p(zt , x1:t)p(x(t+1):T |zt)
∝ p(zt |x1:t)p(x(t+1):T |zt)
= (Forward Recursion)(Backward Recursion)

• Here we use the conditional independence x(t+1):T ⊥ x1:t |zt .
• We know how to perform forward recursion from the previous part.
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Backward recursion

In the backward pass,

βt(i) = p(x(t+1):T |zt = i) =
K

j=1

p(zt+1 = j , xt+1, x(t+2):T |zt = i)

=


j

p(x(t+2):T |zt+1 = j , zt = i , xt+1)p(xt+1|zt+1 = j , zt = i)p(zt+1 = j |zt = i)

=


j

p(x(t+2):T |zt+1 = j)p(xt+1|zt+1 = j)p(zt+1 = j |zt = i)

=


j

βt+1(j)λt+1(j)Aij

In vector notation βt = A(λt+1 ⊙ βt+1), where βT (i) = 1.

Forward-backward algorithm [γt(j) = p(zt = j |x1:T )]
Once we have the forward and the backward steps complete, we can compute γt ∝ αt ⊙ βt .
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Viterbi algorithm

• The Viterbi algorithm (Viterbi 1967) is used to compute the most probable sequence.

ẑ = argmax
z1:T

p(z1:T |x1:T )

• Since this is MAP inference, we might think of replacing sum-operators with

max-operators, just like we did in sum-product and max-product.

• Viterbi algorithm is a specialized version of max-product: the forward pass uses

max-product, and the backward pass uses a traceback procedure to recover the most

probable path.
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Viterbi algorithm

• Define δt via

δt(j) = max
z1,..,zt−1

p(z1:(t−1), zt = j , x1:t)

which is the probability of ending up in state j at time t, by taking the most probable path.

• We notice that

δt(j) = max
z1,..,zt−1

p(z1:(t−1), zt = j , x1:(t−1), xt)

= max
z1,..,zt−1

p(z1:(t−1), x1:(t−1))p(zt = j |zt−1)p(xt |zt = j)

=max
i

max
z1,..,zt−2

p(z1:(t−2), zt−1 = i , x1:(t−1))p(zt = j |zt−1 = i)p(xt |zt = j)

=max
i

δt−1(i)Aijλt(j)

• Keep track of the most likely previous state: θt(j) = argmaxi δt−1(i)Aijλt(j).
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Viterbi algorithm

• Initialize the algorithm with

δ1(j) = p(z1 = j , x1) = πjλ1(j).

• and terminate with

z∗T = argmax
i

δT (i)

• Then, we compute the most probable sequence of states using traceback:

z∗t = θt+1(z
∗
t+1)
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Summary: HMMs

• HMMs hide the temporal dependence by keeping it in the unobserved state.

• No assumptions on the temporal dependence of observations is made.

• Forward-backward algorithm can be used to find “beliefs”.

• Viterbi algorithm can be used to do MAP.
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Variational Inference I



Overview: Second hour

• Variational Inference

• M-projection

• I-projection

• Naive mean-field approach
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Posterior Inference for Latent Variable Models

Examples of latent variable models: the generative image model and the TrueSkill model.

These models have a factorization p(x , z) = p(z)p(x |z) where

• x are the observations or data,

• z are the unobserved (latent) variables.

• p(z) is usually called the prior

• p(x |z) is usually called the likelihood

• The conditional distribution of the unobserved variables given the observed variables (aka

the posterior) is

p(z |x) = p(x |z)p(z)
p(x)

=
p(x |z)p(z)
p(x , z)dz
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Prior:

Says we are very uncertain about both players’ skill.
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Likelihood:

This is the part of the model that gives meaning to the latent variables.
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Posterior:

The posterior is not Gaussian anymore.
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Posterior after A beats B 10 times:

Now the posterior is certain that A is better than B.

22



Posterior after both beat each other 10 times:

Now the posterior is certain that neither player is much better than the other, but is uncertain

how good they both are in an absolute sense.
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What is hard to compute about the posterior?

The integral p(x) =

p(x , z)dz is intractable when z is large.

These are operations that become expensive:

• Computing a posterior probability: p(z |x) = p(z)p(x|z)
p(x)

• Computing the evidence / marginal likelihood p(x) =

p(z , x)dz

◮ Useful for choosing between models, or fitting model parameters.

• Computing marginals of p(z1|x) =

p(z1, z2, . . . zD |x)dz2, dz3, . . . dzD

◮ E.g. finding the posterior over a single tennis player’s skill given all games.

• Sampling z ∼ p(z |x)
◮ e.g. summarizing which hypotheses are likely given the data, making predictions, and

decisions.
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Variational methods

Variational inference is closely related to the calculus of variations, developed in the 1700s by

Euler, Lagrange. It is an approximate inference method where we seek a tractable (e.g.,

factorized) approximation to the target intractable distribution.

To be more formal, variational inference works as follows:

• Choose a tractable distribution q(z) ∈ Q from a feasible set Q. This distribution will be

used to approximate p(z |x).
◮ For example, q(z) = N (z |µ,Σ). Try choose a Q that makes q(z) a good approximation of

the true posterior p(z |x).

• Encode some notion of ”difference” between p(z |x) and q that can be effciently

estimated. Usually we will use the KL divergence.

• Minimize this difference. Usually we will use an iterative optimization method.
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• Whatever feasible set we choose for Q, it’s usually not the case that there is any q ∈ Q

that exactly matches the true posterior.

• But computing the true posterior is intractable, so we have to take a shortcut somewhere.
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How to measure closeness: KL divergence

We will measure the difference between q and p using the Kullback-Leibler divergence

KL(q(z)p(z |x)) =


q(z) log

q(z)

p(z |x)dz = E
z∼q

log
q(z)

p(z |x)

Properties of the KL Divergence (see the tutorial):

• KL(qp) ≥ 0

• KL(qp) = 0 ⇔ q = p

• KL(qp) ∕= KL(pq)
• KL divergence is not a metric, since it is not symmetric.

Which direction of KL to use? KL(qp) vs KL(pq)
We could minimize KL(qp) or KL(pq). We will go with the tractable one.
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Information (I-)Projection:

I-projection: q∗ = argminq∈Q KL(qp) = Ex∼q(x) log
q(x)
p(x) :

• p ≈ q =⇒ KL(qp) small

• I-projection underestimates support, and does not yield the correct moments.

• KL(qp) penalizes q having mass where p has none (but not vice versa).

p(x) is mixture of two 2D Gaussians and Q is the set of all 2D Gaussian distributions (with

arbitrary covariance matrices)
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Moment (M-)projection

M-projection: q∗ = argminq∈Q KL(pq) = Ex∼p(x) log
p(x)
q(x) :

• p ≈ q =⇒ KL(pq) small

• KL(pq) penalizes q missing mass where p has some.

• M-projection yields a distribution q(x) with the correct mean and covariance.

p(x) is mixture of two 2D Gaussians and Q is the set of all 2D Gaussian distributions (with

arbitrary covariance matrices)
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Maximum entropy interpretation

A related quantity is the entropy H(p) = −Ex∼p(x) log p(x) measuring uncertainty in p.

Consider the optimization problem

maximize H(p)

subject to Ex∼p(x)[fi (x)] = ti for i = 1, .., k .

Theorem: Maximum entropy principle

Exponential family of distributions maximize the entropy H(p) over all distributions

satisfying: Ex∼p(x)[fi (x)] = ti for i = 1, .., k .

• In M-projection, if Q is set of exponential families, then the expected sufficient statistics

wrt q∗(x) is the same as that wrt p(x).

• M-projection require expectation wrt p, hence intractable.

• Most variational inference algorithms make use of the I-projection.
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Mean-field approach

• Say we have an arbitrary MRF:

p(x |θ) = exp


C∈C
φC (xC )− logZ (θ)



• We find an approximate distribution q(x) ∈ Q by performing I-projection to p(x).

KL(qp) = Ex∼q(x) log
q(x)

p(x |θ) = Ex∼q(x)


log q(x)−



C∈C
φC (xC ) + logZ (θ)



Thus argminq∈Q KL(qp) = argmaxq∈Q{


C∈C Eq[φC (xC )] + H(q)}
• For tractability, we need a nice set Q. If p ∈ Q, then q∗ = p. But this almost never

happens.
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Naive Mean-Field

• One way to proceed is the mean-field approach where we assume: q(x) =


i∈V qi (xi ).

(the set Q is composed of those distributions that factor out)

• Using this in the maximization problem, we can simplify things

q∗ =argmax
q∈Q



C∈C



xC

qC (xC )φC (xC ) + H(q)

We notice qC (xC ) =


i∈C qi (xi ) and also H(q) decomposes

H(q) = Eq[− log q(x)] = −


x

q(x) log q(x) = −


x

q(x)


i

log qi (xi )


=−


i



x


qi (xi ) log qi (xi )

 q(x)

qi (xi )
= −



i



xi


qi (xi ) log qi (xi )



x\i

q(x)

qi (xi )

=−


i



xi


qi (xi ) log qi (xi )


=



i

H(qi )

We can thus write everything as a function of qi for i ∈ V .
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Example: Pairwise MRF

• Thus the final optimization problem reduces to

q∗ = argmax
q



C∈C



xC

φC (xC )


i∈C

qi (xi ) +


i∈V

H(qi )

subject to qi (xi ) ≥ 0 and


xi

qi (xi ) = 1.

• Further simplify the setting and assume that we have a pairwise MRF. Then the

optimization problem becomes

q∗ =argmax
q



(i,j)∈E



xi ,xj

φij(xi , xj)qi (xi )qj(xj)−


i



xi

qi (xi ) log(qi (xi ))

subject to: qi (xi ) ≥ 0 and


xi

qi (xi ) = 1.
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Coordinate maximization

This problem is hard as it has many local maxima! But we can still try to optimize using block

coordinate ascent.

• Initialize {qi (xi )}i∈V uniformly

• Iterate over i ∈ V

◮ Greedily maximize the objective over qi (xi )
◮ This is equivalent to: qi (xi ) ∝ exp


j∈N(i)


xj
qj(xj)φij(xi , xj)



◮ which follows from: write the Lagrangian, take the derivative, set to zero, and solve

◮ Repeat until convergence.

This is guaranteed to converge but can converge to local optima.
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Summary

• Approximate the complex (intractable) distribution with a simpler (tractable) distribution

• I-projection & M-projection measure the distance to true posterior

• Mean field approximation is a way to simplify the set of distributions

• More variational inference after midterm (which is in 2 weeks).
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