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Maximum likelihood estimation for Markov chains

e We use MLE to estimate A from data D {xM), ..., xM},
e Likelihood of any particular sentence x() of Iength T;
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e Log-likelihood of D (all sentences treated as independent)
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where we define the counts
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Gibbs example 2: Restricted Boltzmann machine

Model for (X1, ..., Xk, H1,...,H;) € {=1,1}**! (c.f. Tutorial 3)

k /
p(X17 e Xy h, o h/) o exp{z aiXi + ZB,‘h,’ + ZZJ,‘]X,’/U}.

i=1 j=1
We can easily generate new samples from the learned
distribution.
I k
p(x|h) =[] p(xilh), p(hlx) =[] p(hilh)
i=1 j=1
L b '
p(x = 1]h) = Hj:l Yij(xi, hy)

= o(2(ai + 3 Jihs
jl‘:l VJU(—lahj)‘*‘H}:l 1/"/]'(11’7]) oo j; i)

ITi i, )
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with o(y) = 1/(1 + e™) called the sigmoid function.

k
p(hj = 1|x) = =o(2(8; + Z Jiixi))
=1



