
STA 414/2104:

Statistical Methods in Machine Learning II

Week 5: Markov Chain Monte Carlo (MCMC)

Piotr Zwiernik

University of Toronto

Overview

We continue with sampling algorithms.

• Markov chains

• Markov chain Monte Carlo

◮ Metropolis-Hastings
◮ Gibbs sampling
◮ Hamiltonian Monte-Carlo

Announcements:

• Assignment 2 to be released today.

1

Markov Chains

Sequential data

So far, we considered methods in which the generated samples are i.i.d:

• We generated T samples

x1:T = {x1, ..., xT}.

• But each sample was independent from each other

xt ∼ p(x) i.i.d.

• This lecture, we will generate samples that are dependent.

2

Sequential data

This also comes up when modelling the data. We generally assume data was i.i.d, however this

may be a poor assumption:

• Sequential data are common:

◮ time-series modelling (e.g. stock prices, speech, video analysis)
◮ ordered data (e.g. textual data, gene sequences)

• Recall the general joint factorization via the chain rule

p(x1:T) =
T󰁜

t=1

p(xt |xt−1, ..., x1) where p(x1|x0) = p(x1).

• This quickly becomes intractable for high-dimensional data. Each factor requires

exponentially many parameters to specify.

3

Markov chains

• We make the simplifying first-order Markov chain assumption:

p(xt |x1:t−1) = p(xt |xt−1)

• This assumption greatly simplifies the factors in the joint distribution

p(x1:T) =
T󰁜

t=1

p(xt |xt−1)

4

Stationary Markov chains

Further assumptions may be useful:

• Stationary (homogeneous) Markov chain: the distribution generating the data does

not change through time

p(xt+1 = y |xt = x) = p(xt+2 = y |xt+1 = x) for all t.

• Non-stationary Markov chain: the transition probabilities p(xt+1 = y |xt = x) depend on

the time t.

Here we only consider stationary Markov chains.

5

Higher-order Markov chains

In some cases, the first-order assumption may be restrictive (such as when modeling natural

language, where long-term dependencies occur often). We can generalize to high-order

dependence trivially

• Second order:

p(xt |x1:t−1) = p(xt |xt−1, xt−2)

• m-th-order

p(xt |x1:t−1) = p(xt |xt−1:t−m) 6

Transition matrix

• When xt is discrete (e.g. xt ∈ {1, ...,K}), the conditional distribution p(xt |xt−1) can be

written as a K × K matrix.

• We call this the transition (or stochastic) matrix A:

Aij = p(xt = j |xt−1 = i), A ∈ RK×K .

• Note that
p(xt = j) =

󰁛

i

p(xt = j |xt−1 = i)p(xt−1 = i),

=
󰁛

i

Aijp(xt−1 = i).

• Each row of the matrix sums to one,
󰁓

j Aij = 1.

7

State transition diagram

• Aij = p(xt = j |xt−1 = i) is the probability of going from state i to state j .

◮ We can visualize Markov chains via a directed graph, where

nodes represent states and arrows represent legal transitions,

i.e., non-zero elements of A.

• This is a state transition diagram.

• The weights associated with the arcs are the probabilities.

• The transition matrix for the 2-state chain shown above is given by

A =

󰀥
1− α α

β 1− β

󰀦

8

Chapman-Kolmogorov equations

• The n-step transition matrix A(n) is defined as

Aij(n) = p(xt+n = j |xt = i)

which is the probability of getting from i to j in exactly n steps.

• Notice that A(1) = A.

• Chapman-Kolmogorov equations state that

Aij(m + n) =
K󰁛

k=1

Aik(m)Akj(n) equivalently A(m + n) = A(m)A(n)

the probability of getting from i to j in m+ n steps is just the probability of getting from i

to k in m steps, and then from k to j in n steps, summed up over all k .

• So A(n) = A · A(n − 1) = A · A · A(n − 2) = · · · = An.

9

Application: Markov Language Models

• We use Markov chains as language models, which are distributions over sequences of

words.

• State space is all words and xt denotes the t-th word in a sentence.

• We may use a first-order Markov model.
◮ To estimate A and π, note that the probability of any particular

sentence of length T is:

p(x1:T |θ) =π(x1)A(x1, x2) · · ·A(xT−1, xT)

=
K󰁜

j=1

π
1[x1=j]
j

T󰁜

t=2

K󰁜

j=1

K󰁜

k=1

A
1[xt=k,xt−1=j]

jk

where π(x1) is the probability of the sentence starting with word x1.

The estimating equations have a natural form → Tutorial

10

Stationary distribution of a (homogeneous) Markov chain

• We are often interested in the long term distribution over states, which is known as the

stationary distribution of the chain.

• Let A be the transition matrix and let πt(j) = p(xt = j) be the probability of being in

state j at time t.

• The initial distribution is given by π0 ∈ RK and

π1(j) =
K󰁛

i=1

p(x1 = j |x0 = i)π0(i) =
K󰁛

i=1

Aijπ0(i) =
K󰁛

i=1

(A⊤)jiπ0(i).

• Using the vector notation π1 = A⊤π0 and more generally

πt = A⊤πt−1 = A⊤A⊤πt−2 = · · · = (A⊤)tπ0.

• Do this infinitely many steps, the distribution of xt may converge

π = A⊤π.

Then we have reached the stationary distribution of the Markov chain.

11

Stationary distribution

A bit of linear algebra:

• Stationary distribution of a Markov chain can be found by solving the eigenvector equation

A⊤v = v and set π ∝ v .

v is the eigenvector of A⊤ with eigenvalue 1.

• Need to normalize!

• Since A1 = 1 (row sums are 1), 1 is an eigenvalue of A with eigenvector 1. A and A⊤

have the same eigenvalues (characteristic polynomials equal). It follows that 1 is also the

eigenvalue of A⊤.

• The stationary distribution may not be unique.

12

Detailed balance equations

Markov Chain is called:

• irreducible if we can get from any state to any other state.

• regular if An has positive entries for some n.

• time reversible if there exists a distribution π such that

πiAij = πjAji for all i , j .

This is called the detailed balance equations.

13

Detailed balance equations

Detailed balance equations (DB): πiAij = πjAji for all i , j .

Theorem

If a Markov chain with transition matrix A satisfies detailed balance with respect to

distribution π, then π is a stationary distribution.

Proof: Show that A⊤π = π or, in other words, that

K󰁛

i=1

πiAij = πj for all j .

Indeed, for every j = 1, . . . ,K , we have

K󰁛

i=1

πiAij
(DB)
=

K󰁛

i=1

πjAji = πj

K󰁛

i=1

Aji = πj .

14

Metropolis-Hastings (first encounter with MCMC)

Importance and rejection sampling work only if the proposal density q(x) is similar to p(x). In

high dimensions, it is hard to find one such q.

• The Metropolis-Hastings algorithm instead makes use of a

proposal density q which depends on the current state x (t).

• The density q(x |x (t)) might be a simple distribution such

as a Gaussian centered on the current x (t), but can be any

density from which we can draw samples.

• In contrast to importance and rejection sampling, it is not

necessary that q(x |x (t)) looks similar to p(x).

15

Markov Chain Monte Carlo (MCMC)

• In contrast to rejection sampling, where the accepted points {x (t)}
are independent, MCMC methods generate a dependent sequence.

• Each sample x (t) has a probability distribution that depends on

the previous value, x (t−1).

• MCMC methods need to be run for a time in order to generate

samples that are from the target distribution p.

We can still do Monte Carlo estimaton for large enough T to estimate the mean of a test

function φ:

Ex∼p[f (x)] ≈
1

T

T󰁛

t=1

f (x (t)).

(good idea to discard a bunch of initial samples)

16

Metropolis-Hastings algorithm

As before, assume we can evaluate p̃(x) for any x . Our procedure:

• A tentative new state x ′ is generated from the proposal density q(x ′|x (t)). We accept the

new state with probability

A(x ′|x (t)) = min

󰀝
1,

p̃(x ′)q(x (t)|x ′)
p̃(x (t))q(x ′|x (t))

󰀞

◮ If accepted, set x (t+1) = x ′. Otherwise, set x (t+1) = x (t).

• Metropolis: Simpler version when q(x ′|x) = q(x |x ′) for all x , x ′.

• Theorem: This procedure defines a Markov chain with stationary distribution π(x) equal

to the target distribution p(x).

17

Proof of the theorem

Recall A(x ′|x) = min
󰁱
1, p̃(x′)q(x|x′)

p̃(x)q(x′|x)

󰁲
= min

󰁱
1, p(x′)q(x|x′)

p(x)q(x′|x)

󰁲
.

The resulting Markov chain has the following transition probabilities:

r(x ′|x) =

󰀫
q(x ′|x)A(x ′|x) if x ′ ∕= x

q(x |x) +
󰁓

x′ ∕=x q(x
′|x)(1− A(x ′|x)) if x ′ = x

.

Show (DB) r(x ′|x)p(x) = r(x |x ′)p(x ′). If x ∕= x ′

r(x ′|x)p(x) = p(x)q(x ′|x)min

󰀝
1,

p(x ′)q(x |x ′)
p(x)q(x ′|x)

󰀞
= min

󰁱
p(x ′)q(x |x ′), p(x)q(x ′|x)

󰁲

r(x |x ′)p(x ′) = p(x ′)q(x |x ′)min

󰀝
1,

p(x)q(x ′|x)
p(x ′)q(x |x ′)

󰀞
= min

󰁱
p(x ′)q(x |x ′), p(x)q(x ′|x)

󰁲

Thus p is a stationary distribution of this Markov chain.

18

Overview for the remaining hour

• Gibbs sampling

• Hamiltonian Monte Carlo

• MCMC diagnostics

19

Gibbs Sampling Procedure

Suppose the vector x has been divided into d components

x = (x1, ..., xd).

Start with any x (0) = (x
(0)
1 , . . . , x

(0)
d). In the t-th iteration:

• For j = 1, . . . , d :

◮ Sample x
(t)
j from the conditional distribution given other components:

x
(t)
j ∼ p(xj |x (t−1)

−j)

Where x
(t−1)
−j represents all the components of x except for xj at their current values:

x
(t−1)
−j = (x

(t)
1 , x

(t)
2 , ..., x

(t)
j−1, x

(t−1)
j+1 , ..., x

(t−1)
d)

• No accept/reject, only accept.

20

Example: Bivariate Gaussian

Consider a (simple) problem of sampling from the bivariate Gaussian

X =

󰀥
X1

X2

󰀦
∼ N2(µ,Σ), µ =

󰀥
µ1

µ2

󰀦
, Σ =

󰀥
1 ρ

ρ 1

󰀦
.

We have

X1|X2 = x2 ∼ N(µ1 + ρ(x2 − µ2), 1− ρ2)

X2|X1 = x1 ∼ N(µ2 + ρ(x1 − µ1), 1− ρ2)

Given X (0) = (0, 0) we proceed iteratively for t ≥ 1:

X
(t)
1 ∼ N(µ1 + ρ(x

(t−1)
2 − µ2), 1− ρ2)

X
(t)
2 ∼ N(µ2 + ρ(x

(t)
1 − µ1), 1− ρ2)

21

Example: Bivariate Gaussian

1

(The real power of Gibbs approach comes in situations when the distribution is hard but

full-conditionals are simple, e.g. Ising)

1From ”Bayesian Data Analysis Third edition” by Gelman, Carlin, Stern, Dunson, Vehtari, Rubin

22

Hamiltonian Monte Carlo

• This is essentially a Metropolis-Hastings algorithm with a specialized proposal mechanism.

• Algorithm uses a physical analogy to make proposals.

• Given the position x , the potential energy is E (x)

• Construct a distribution

p(x) ∝ e−E(x), with E (x) = − log(p̃(x))

where p̃(x) is the unnormalized density we can evaluate.

23

Hamiltonian Monte Carlo

• Introduce momentum v carrying the kinetic energy

K (v) = 1
2󰀂v󰀂

2 = 1
2v

⊤v .

• Total energy or Hamiltonian:

H(x , v) = E (x) + K (v).

• Energy is preserved:

◮ Frictionless ball rolling (x , v) → (x ′, v ′)
◮ H(x , v) = H(x ′, v ′).

• Ideal Hamiltonian dynamics are reversible: reverse v and the ball will return to its start

point! (x , v) → (x ′, v ′) but also (x ′,−v ′) → (x ,−v)

24

Hamiltonian Monte Carlo

• The joint distribution:
◮ p(x , v) ∝ e−E(x)e−K(v) = e−E(x)−K(v) = e−H(x,v)

◮ Momentum is Gaussian, and independent of the position (K(v) = 1
2
󰀂v󰀂2).

• MCMC procedure
◮ Sample the momentum from the standard Gaussian.
◮ Simulate Hamiltonian dynamics. In the end flip sign of the momentum.

◮ Hamiltonian dynamics is reversible.
◮ Energy is constant p(x , v) = p(x ′, v ′) = p(x ′,−v ′).

• How to simulate Hamiltonian dynamics? Take:

dx

dt
=

∂H

∂v
=

∂K

∂v
dv

dt
= − ∂H

∂x
= −∂E

∂x

(Indeed: dH
dt =

󰁓
i
∂E
∂xi

dxi
dt +

󰁓
i
∂K
∂vi

dvi
dt will be zero)

25

Leap-frog integrator

• A numerical approximation:

v(t + 󰂃
2) = v(t) +

󰂃

2

dv

dt
(t) = v(t)− 󰂃

2

∂E

∂x
(x(t))

x(t + 󰂃) = x(t) + 󰂃
dx

dt
(t) = x(t) + 󰂃

∂K

∂v
(v(t + 󰂃

2))

v(t + 󰂃) = v(t + 󰂃
2)−

󰂃

2

∂E

∂x
(x(t + 󰂃))

(Slightly more accurate than the standard Euler’s method)

• We do a fixed number of leap-frog steps.

• Dynamics are still deterministic (and reversible)

26

HMC algorithm

The HMC algorithm (run until it mixes):

• Current position: (x (t−1), v (t−1)))

• Sample momentum: v (t) ∼ N (0, I).

• Start at (x , v) = (x (t−1), v (t)) and run Leapfrog integrator for L steps and reach (x ′, v ′)

• Accept new state (x ′,−v ′) with probability:

min

󰀝
1,

exp(H(x (t−1), v (t−1)))

exp(H(x ′, v ′))

󰀞

• Low energy points are favored.

27

MCMC Inference

• Sample from unnormalized posterior.

• Estimate statistics from simulated values of x :

◮ mean
◮ median
◮ quantiles

• All of this however requires some care, as MCMC is not without problems.

28

MCMC diagnostics

• How do we know we have ran the algorithm long enough?

• What if we started very far from where our distribution is?

• Since there is correlation between each item of the chain (autocorrelation), what is the

”effective” number of samples?

29

Good Ideas for MCMC

Some obvious things to consider:

• Parallel computation is cheap - we can run multiple chains in parallel starting at different

points

• We should discard some initial samples - burn-in phase.

• We should examine how well the chain is ”mixed”.

(No need to memorize any of the formulas below)

30

R hat

• Start with m chains each of length n, X = [xij] ∈ Rn×m.

◮ this will be already after a fixed burn-in phase.

• The between sequence variance B is:

B =
n

m − 1

m󰁛

j=1

(x̄.j − x̄..)
2,

where:

x̄.j =
1

n

n󰁛

i=1

xij and x̄.. =
1

m

m󰁛

j=1

x̄.j =
1

mn

n󰁛

i=1

m󰁛

j=1

xij

(individual chain means, total mean)

31

R hat

• The within sequence variance W is:

W =
1

m

m󰁛

j=1

s2j

where:

s2j =
1

n − 1

n󰁛

i=1

(xij − x̄.j)
2

(here s2j estimates the variance in j-th sequence and W is the average variance)

• Idea: If one or more chain has not mixed well, the variance of all the chains combined

together should be higher than that of individual chains.

32

R hat

• Next we compute the average variance:

󰁦var+(x) = n − 1

n
W +

1

n
B

• Finally define R-hat coefficient:

R̂ =

󰁶
󰁦var+(x)
W

• If chains have not mixed well, R-hat is larger than 1.

• Split-󰁥R: Split each chain into the first and second halves. This can detect non-stationarity

within a single chain.

33

Effective Sample Size

• If x1, . . . , xn are i.i.d. with variance σ2 then var(x̄n) =
σ2

n .

• In general, without assuming independence

var(x̄) = 1
n2

n󰁛

i=1

n󰁛

j=1

cov(xi , xj) =
σ2

n2

n󰁛

i=1

n󰁛

j=1

corr(xi , xj)

so n2󰁓n
i=1

󰁓n
j=1 corr(xi ,xj)

measures “effective sample size”.

• We define the effective sample size to be:

neff =
mn

1 + 2
󰁓∞

t=1 ρt

where ρt = corr(x0, xt) are unknown, so we also estimate them.

34

Diagnostics Summary

• Once R̂ is near 1, and n̂eff is more than 10 per chain for all scalar estimands we collect

the mn simulations, (excluding the burn-in).

• We can then draw inference based on our samples. However:

◮ Even if the iterative simulations appear to have converged, passed all tests etc. It may still

be far from convergence!

• When we declare ”convergence” - we mean that all chains appear stationary and well

mixed.

• Non of the checks we learned today are hypothesis test. There are no p-values, and no

statistical significance.

35

