
Week 4: Inference on graphs continued

Sum-product on trees
Consider the basic example considered in the lecture.

To have concrete numbers, suppose all variables are binary {0, 1} and take ψi(xi) ≡ 1 with

ψ12 = [], ψ13 = [], ψ34 = [], ψ35 = [].

We have

p(x1, x2, x3, x4, x5) =
1

Z

5

∏
i=1

ψi(xi)ψ12(x1, x2)ψ13(x1, x3)ψ34(x3, x4)ψ35(x3, x5).

Let's fix the values of three variables: x̄2 = 1, x̄4 = 1, x̄5 = 0 and we get

p(x1, 1, x3, 1, 0) =
1

Z
ψ12(x1, 1)ψ13(x1, x3)ψ34(x3, 1)ψ35(x3, 0).

This gives

From this, we easily get the conditional distribution

Suppose that we are interedted in the marginal distributions of x1 and of x3. We compute the
message passing formulas as in the lecture. Because x2, x4, x5 are fixed, we get

1 2

2 1

2 1

1 2

1 1

2 2

1 2

1 2

p(0, 1, 0, 1, 0) =
1

Z
2 ⋅ 2 ⋅ 1 ⋅ 1 =

4

Z

p(0, 1, 1, 1, 0) =
1

Z
2 ⋅ 1 ⋅ 2 ⋅ 1 =

4

Z

p(1, 1, 0, 1, 0) =
1

Z
1 ⋅ 1 ⋅ 1 ⋅ 1 =

1

Z

p(1, 1, 1, 1, 0) =
1

Z
1 ⋅ 2 ⋅ 2 ⋅ 1 =

4

Z

p(x1, x3|x2 = 1, x4 = 1, x5 = 0) =
p(x1, 1, x3, 1, 0)

∑1
x′

1,x′
3=0 p(x′

1, 1, x′
3, 1, 0)

=
1
Z

ψ12(x1, 1)ψ13(x1, x3)ψ34(x3, 1)ψ35(x3, 0)
1
Z

(4 + 4 + 1 + 4)

=
ψ12(x1, 1)ψ13(x1, x3)ψ34(x3, 1)ψ35(x3, 0)

13

=
1

13
[].

4 4

1 4

[]

Since x3 is not observed we have

m3→1(x1) =∑
x3

ψ3(x3)ψ13(x1, x3)m4→3(x3)m5→3(x3) = [].

From this we get

b(x1) = p(x1|x̄2 = 1, x̄4 = 1, x̄5 = 0) ∝ ψ1(x1)m2→1(x1)m3→1(x1) = []

and so p(x1 = 1|x̄2 = 1, x̄4 = 1, x̄5 = 0) = 5
13

.
To compute b(x3) = p(x3|x̄2 = 1, x̄4 = 1, x̄5 = 0) we need to compute the message m1→3

m1→3(x3) =∑
x1

ψ1(x1)ψ13(x1, x3)m2→1(x1) = []

This gives

b(x3) ∝ ψ3(x1)m1→3(x3)m4→3(x3)m5→3(x3) = []

giving that p(x3 = 1|x̄2 = 1, x̄4 = 1, x̄5 = 0) = 8
13 .

By the way, this simple Python code computes the joint distribution for any choice of potential
functions. With this you can directly check all our calculations. It first computes the
unnormalized quantities. For example, with the data above, we get

m2→1(x1) = ψ2(1)ψ12(x1, 1) = []

m4→3(x3) = ψ4(1)ψ34(x3, 1) = []

m5→3(x3) = ψ5(0)ψ35(x3, 0) = []

2

1

1

2
1

1

4

5

8

5

5

4

5

8

import numpy as np

def joint_distribution(psi_nodes, psi_edges):
 # Initialize joint distribution
 joint_dist = np.zeros((2, 2, 2, 2, 2))

 # Iterate over all possible combinations of binary variables
 for x1 in [0, 1]:
 for x2 in [0, 1]:
 for x3 in [0, 1]:
 for x4 in [0, 1]:
 for x5 in [0, 1]:
 # Calculate joint distribution

To compute the normalizing constant and the corresponding distribution we run the following
code.

From this we get that for this choice of potential functions Z = 162. We can also confirm directly
all the previous calculations. For example, to check that p(x3 = 1|x̄2 = 1, x̄4 = 1, x̄5 = 0) = 8

13 ,

 joint_dist[x1, x2, x3, x4, x5] = (
 psi_nodes[0][x1] * psi_nodes[1][x2] *
psi_nodes[2][x3] * psi_nodes[3][x4] * psi_nodes[4][x5] *
 psi_edges[0][x1, x2] * psi_edges[1][x1, x3] *
psi_edges[2][x3, x4] * psi_edges[3][x3, x5]
)

 return joint_dist

Define node potentials
psi_nodes = [
 {0: 0.6, 1: 0.4}, # psi_1(x1)
 {0: 0.7, 1: 0.3}, # psi_2(x2)
 {0: 0.5, 1: 0.5}, # psi_3(x3)
 {0: 0.8, 1: 0.2}, # psi_4(x4)
 {0: 0.9, 1: 0.1} # psi_5(x5)
]

Define edge potentials
psi_edges = [
 {(0, 0): 0.5, (0, 1): 0.5, (1, 0): 0.5, (1, 1): 0.5}, # psi_12(x1, x2)
 {(0, 0): 0.4, (0, 1): 0.6, (1, 0): 0.7, (1, 1): 0.3}, # psi_13(x1, x3)
 {(0, 0): 0.8, (0, 1): 0.2, (1, 0): 0.6, (1, 1): 0.4}, # psi_34(x3, x4)
 {(0, 0): 0.9, (0, 1): 0.1, (1, 0): 0.2, (1, 1): 0.8} # psi_35(x3, x5)
]

compute the unnormalized distribution
joint_dist_notnormalized = joint_distribution(psi_nodes, psi_edges)

#print the normalizing constant
Z=np.sum(joint_dist_notnormalized)
print(Z)

Print the joint distribution
print(np.divide(joint_dist_notnormalized,Z))

we run the following code

Image Denoising with BP
Ising model for images
A binary image is a n × n matrix where each entry is either +1 or -1, i.e. xs ∈ {−1, +1}. We
vectorize this matrix row by row and denote the image as x ∈ Rn2 .

For example, the Mona Lisa below is 128 x 128 image, vectorized to be x ∈ R16384.

Assume that one of your friends sent this image to you through a noisy channel. During
transmission, each of its pixels may be flipped with a small probability, say ϵ. This means that
with probability ϵ, there is error in the transmitted pixel.

The resulting noisy image can be denoised by using the Ising model. The following is based on
ϵ = 0.2.

pz1 = np.sum(joint_dist_notnormalized[:, 1, 1, 1, 0])
pz0 = np.sum(joint_dist_notnormalized[:, 1, 0, 1, 0])
print(np.divide(pz1,pz0+pz1))
print(8/13)

Each unobserved node in this Ising model (MRF) corresponds to the original uncorrupted
image. However, what you observed is the corrupted version y ∈ R

n2 with

Loopy BP for image denoising
To estimate the true image, aka image denoising, we want to approximate the posterior
distribution p(x|y), which is the distribution of the true image given that we observed the noisy
version. Our prior on the true image is based on the Ising model

p(x) ∝∏
s∼t

ψst(xs, xt)

where the pairwise clique potentials are given as

ψst(xs, xs) = ().

Here, J is the coupling strength between nodes s and t and the notation s ∼ t means there is
an edge between s and t, i.e., (s, t) ∈ E. We assume for simplicity that all these coupling
strengths are equal.

The posterior can be easily written as

P(ys|xs) = (1 − ϵ)
1+ysxs

2 ϵ
1−ysxs

2 for all s.

= exp{
1 + ysxs

2
log(1 − ϵ) +

1 − ysxs

2
log(ϵ)}

∝ exp{ysxs
1

2
log(

1 − ϵ

ϵ
)}

= exp{ysxsθ} where θ =
1

2
log(

1 − ϵ

ϵ
).

eJ e−J

e−J eJ

Now it is clear that the node potentials are given as (note that y is a fixed vector here)

ψs(xs) = exp{λysxs}.

Now that we know both the clique as well as the node potentials, the problem reduces to
running loopy BP on this problem. We recall the loopy BP updates

Loopy BP:

Here, each message mj→i(xi) is stored as a 2-dimensional vector, where its first coordinage
mj→i(+1) and its second coordinate mj→i(−1). Similarly, beliefs b(xi) are also 2-dimensional
vectors with first and second coordiants given by b(+1) and b(−1) respectively.

Even though loopy BP may not converge, even 10-20 iterations suffices to perform approximate
inference on the posterior. The beliefs that we compute correspond to the marginals p(xi|y),
thus using a naive decision rule

x̂i = arg max
xi

b(xi)

p(x|y) ∝ p(y, x)

= p(x)∏
s

p(ys|xs)

= exp{J∑
s∼t

xsxt + λ∑
s

ysxs}

=∏
s∼t

ψst(xs, xt)∏
s

ψs(xs)

1. Initialize all messages uniformly mi→j(xj) = 1/k where k is the number of states xj can
take (in our case k = 2).

2. Keep doing BP updates until it (nearly) converges:

mj→i(xi) =∑
xj

ψj(xj)ψij(xi, xj) ∏
k∈N(j)≠i

mk→j(xj)

and normalize messages for stability mj→i(xi) = mj→i(xi)/∑xi
mj→i(xi).

3. It will often not converge, but that's generally ok.
4. Compute beliefs after message passing is done.

b(xi) ∝ ψi(xi) ∏
j∈N (i)

mj→i(xi).

we can estimate the true image. The result is remarklable:

Momentum
It is often the case in any optimization algorithm that we don't want to go all-in on the current
iteration, and would like to be a bit conservative. This is achieved through the following method
that adds inertia to the BP updates.

The new messages are computed as before

m+
j→i(xi) =∑

xj

ψj(xj)ψij(xi, xj) ∏
k∈N(j)≠i

mk→j(xj)

but we update the old message with some momentum parameter γ ∈ [0, 1]

mj→i(xi) = γ m+
j→i(xi) + (1 − γ) mj→i(xi)

and normalize messages for stability mj→i(xi) = mj→i(xi)/∑xi
mj→i(xi).

This will make the algorithm more stable.

