
STA 414/2104:

Probabilistic Learning and Reasoning

Week 4: Message Passing / Monte Carlo Methods

Piotr Zwiernik

University of Toronto

Overview

1. TrueSkill latent variable models

2. Message passing

Sum-product algorithm

Loopy Belief Propagation

3. Monte Carlo Methods

Ancestral sampling

Basic Monte Carlo

Importance sampling

1

TrueSkill latent variable models

Latent variables

• What to do when a variable z is unobserved?

• If we never condition on z when in the inference problem, then we can just

integrate it out.

• However, in certain cases, we are interested in the latent variables

themselves, e.g. the clustering problems.

• More on latent variables when we cover Gaussian mixtures.

2

The TrueSkill latent variable model

• TrueSkill model is a player ranking system for competitive games.

• The goal is to infer the skill of players in a competitive game, based on

observing who beats who.

• In the TrueSkill model, each player has a fixed level of skill, denoted zi .

• We initially don’t know anything about anyone’s skill, but we assume

everyone’s skill is independent (e.g. an independent Gaussian prior).

• We never get to observe the players’ skills directly, which makes this a latent

variable model.

3

TrueSkill model

• We observe the outcome of a series of matches between different players.

• For each game, the probability that player i beats player j is given by

p(i beats j) = σ(zi − zj)

where sigma is the logistic function: σ(y) = 1
1+exp(−y)

.
0.00

0.25

0.50

0.75

1.00

−10 −5 0 5 10
y

• We can write the entire joint likelihood of a set of players and games as:

p(z1, z2, . . . zN , game 1, game 2, .. game T)

=

󰀥
N󰁜

i=1

p(zi)

󰀦󰀥
󰁜

games

p(i beats j|zi , zj)
󰀦

4

Posterior

• Given the outcome of some matches, the players’ skills are no longer

independent, even if they’ve never played each other.

• Computing the posterior over even two players’ skills requires integrating

over all the other players’ skills:

p(z1, z2|game 1, game 2, ... game T)

=

󰁝
· · ·

󰁝
p(z1, z2, z3 . . . zN |x)dz3 . . . dzN

• Message passing can be used to compute posteriors!

• More on this model in Assignment 2.

5

Message passing

Variable Elimination Order and Trees

Last week: we can do exact inference by variable elimination: i.e. to compute

p(xF |xE), we can marginalize p(xF , xR |xE) over every variable in xR .

• The computational cost depends on the graph, and the elimination ordering.

• Determining the optimal elimination ordering is hard.

• The resulting marginalization might be still be unreasonably costly.

• For trees any elimination ordering that goes from the leaves inwards towards

any root will be optimal.

6

Inference in Trees (graphs with no cycles)

• A graph is G = (V , E) where V is the set of vertices

(nodes) and E the set of edges; V = {1, . . . , n}.

• For i , j ∈ V , we have (i , j) ∈ E if there is an edge

between the nodes i and j .

• For a node in graph i ∈ V , N(i) denotes the neighbors of

i , i.e. N(i) = {j : (i , j) ∈ E}.

• The nodes in xE are shaded.

The joint distribution in the corresponding MRF is

p(x1, x2, . . . , xn) =
1

Z

󰁜

i∈V

ψ(xi)
󰁜

(i ,j)∈E

ψij(xi , xj).

7

Example: Inference in Trees

• The joint distribution is p(x) = 1
Z

󰁔
i∈V ψ(xi)

󰁔
(i ,j)∈E ψij(xi , xj).

• Want to compute p(x3|xE), xE = (x̄2, x̄4, x̄5), xR = x1.

• We have p(x3|xE) ∝ p(x3, xE).

(meaning that p(x3|xE) = p(x3,xE)󰁓
x′
3
p(x ′3,xE)

, ZE =
󰁓

x ′3
p(x ′3, xE))

p(x3|xE) =
1

ZE

󰁛

x1

ψ1(x1)ψ2(x̄2)ψ3(x3)ψ4(x̄4)ψ5(x̄5)ψ12(x1, x̄2)ψ13(x1, x3)ψ34(x3, x̄4)ψ35(x3, x̄5).

We write the variable elimination algorithm revealing additional structure.

8

Inference in Trees

p(x3|xE) =
1

ZE

󰁛

x1

ψ1(x1)ψ2(x̄2)ψ3(x3)ψ4(x̄4)ψ5(x̄5)ψ12(x1, x̄2)ψ13(x1, x3)ψ34(x3, x̄4)ψ35(x3, x̄5)

=
1

ZE
ψ4(x̄4)ψ34(x3, x̄4)󰁿 󰁾󰁽 󰂀

m43(x3)

ψ5(x̄5)ψ35(x3, x̄5)󰁿 󰁾󰁽 󰂀
m53(x3)

ψ3(x3)
󰁛

x1

ψ1(x1)ψ13(x1, x3)ψ2(x̄2)ψ12(x1, x̄2)󰁿 󰁾󰁽 󰂀
m21(x1)

=
1

ZE
m43(x3)m53(x3)ψ3(x3)

󰁛

x1

ψ1(x1)ψ13(x1, x3)m21(x1)

󰁿 󰁾󰁽 󰂀
m13(x3)

=
1

ZE
ψ3(x3)m43(x3)m53(x3)m13(x3) =

ψ3(x3)m43(x3)m53(x3)m13(x3)󰁓
x′3

ψ3(x ′3)m43(x ′3)m53(x ′3)m13(x ′3) 9

Sum-product algorithm

Perform variable elimination from leaves to root. Belief propagation is a

message-passing between neighboring vertices of the graph.

• If xj unobserved, the message sent from variable j to i ∈ N(j) is

mj→i(xi) =
󰁛

xj

ψj(xj)ψij(xi , xj)
󰁜

k∈N(j)\i

mk→j(xj)

• If xj is observed, the message is

mj→i(xi) = ψj(x̄j)ψij(xi , x̄j)
󰁜

k∈N(j)\i

mk→j(x̄j)

• Once the message passing stage is complete, we can compute our beliefs as

b(xi) = p(xi |xE) ∝ ψi(xi)
󰁜

j∈N(i)

mj→i(xi).

10

Message Passing on Trees

The message sent from variable j to i ∈ N(j) is

mj→i(xi) =
󰁛

xj

ψj(xj)ψij(xi , xj)
󰁜

k∈N(j)\i

mk→j(xj)

Each message mj→i(xi) is a vector with one value for each state of xi .
11

Belief Propagation on Trees

Belief Propagation Algorithm on Trees

Step 1 Choose root r arbitrarily

Step 2 Pass messages from leafs to r

Step 3 Pass messages from r to leafs

Step 4 Compute beliefs (marginals)

b(xi) = p(xi |xE) ∝ ψi(xi)
󰁜

j∈N(i)

mj→i(xi), ∀i

󰀬
These two passes are sufficient on trees!

One can compute them in two steps:

• Compute unnormalized beliefs b̃(xi) = ψi(xi)
󰁔

j∈N(i) mj→i(xi)

• Normalize them b(xi) = b̃(xi)/
󰁓

x ′i
b̃(x ′i).

12

∀(i , j) compute mi→j(xj) and mj→i (xi).

Inference in Trees: Compute p(x3|x̄2, x̄4, x̄5) and p(x1|x̄2, x̄4, x̄5)

mj→i (xi) =
󰁛

xj

ψj(xj)ψij(xi , xj)
󰁜

k∈N(j)\i
mk→j(xj)

b(xi) ∝ ψi (xi)
󰁜

j∈N(i)

mj→i (xi).

• m5→3(x3) = ψ5(x̄5)ψ35(x3, x̄5)

• m2→1(x1) = ψ2(x̄2)ψ12(x1, x̄2)

• m4→3(x3) = ψ4(x̄4)ψ34(x3, x̄4)

• m1→3(x3) =
󰁓

x1
ψ1(x1)ψ13(x1, x3)m2→1(x1)

• m3→1(x1) =
󰁓

x3
ψ3(x3)ψ13(x1, x3)m4→3(x3)m5→3(x3)

• b(x1) ∝ ψ1(x1)m2→1(x1)m3→1(x1)

• b(x3) ∝ ψ3(x3)m1→3(x3)m4→3(x3)m5→3(x3) 13

x2, x4, x5 are observed

Loopy Belief Propagation

• What if the graph (MRF) is not a tree? (e.g. TrueSkill model)

• Keep passing messages until convergence.

• This is called Loopy Belief Propagation.

• This is like when someone starts a rumour and then hears the same rumour

from someone else, making them more certain it’s true.

• We won’t get the exact marginals, but an approximation.

• But turns out it is still very useful!

Although these ideas are general, we focus on the pairwise graphical models.

14

Loopy Belief Propagation

• Initialize all messages uniformly:

mi→j(xj) = (1/k , . . . , 1/k)

where k is the number of states xj can take.

• Keep running BP updates until it “converges”:

mj→i(xi) =
󰁛

xj

ψj(xj)ψij(xi , xj)
󰁜

k∈N(j)\i

mk→j(xj)

and (sometimes) normalized for stability.

• It will generally not converge, but often works fine.

• Compute beliefs b(xi) ∝ ψi(xi)
󰁔

j∈N(i) mj→i(xi).

With no theoretical guarantees, this algorithm is still very useful in practice.

15

Max-product algorithm

• MAP inference: Suppose that instead of marginalizing out xR we are

interested in the most likely configuration x̂ = argmax p(x).

• For MAP inference, we maximize over xj instead of summing over them.

This is called max-product BP with updates

mj→i(xi) = max
xj

ψj(xj)ψij(xi , xj)
󰁜

k∈N(j)\i

mk→j(xj)

• After BP algorithm converges, the beliefs are max-marginals

b̂(xi) = max
x\i

p(xi , x\i) ∝ ψi(xi)
󰁜

j∈N(i)

mj→i(xi).

• MAP inference: take x̂i := argmaxxi b̂(xi) for all i /∈ E .

16

Summary

• Loopy Belief Propagation is very useful in practice, without much theoretical

guarantee (other than trees).

◮ It multiplies the same potentials multiple times. It is often over-confident.

◮ It can oscillate, but this is generally ok.

◮ Often works better if we normalize messages, and use momentum in the

updates.

• The algorithm we learned is called sum-product BP. If we are interested in

MAP inference, we can maximize over xj instead of summing over them.

This is called max-product BP.

17

Monte Carlo Methods

Overview

• Ancestral Sampling

• Simple Monte Carlo

• Importance Sampling

• Rejection Sampling

18

Sampling

• A sample from a distribution p(x) is a single realization x whose probability

distribution is p(x). Here, x can be high-dimensional.

• Assumption: The density from which we sample, p(x), can be evaluated to

within a multiplicative constant. That is, we have p̃(x) such that

p(x) =
p̃(x)

Z
.

• e.g. consider an Ising model with fixed values for its parameters

p(x) ∝ p̃(x) = exp

󰀫
󰁛

i

bixi +
󰁛

i<j

Jijxixj

󰀬

19

Warm up: Ancestral Sampling

• Given a DAGM, and the ability to sample from each of its factors given its

parents, we can sample from the joint distribution over all the nodes by

ancestral sampling.

• Start with nodes that have no parents. Sample them from the corresponding

marginal distributions.

• At each step, sample from any conditional distribution that you haven’t

visited yet, whose parents have all been sampled.

20

Ancestral Sampling Example

• The distribution graph factorizes according to the DAG

p(x1,...,5) =
5󰁜

i

p(xi |parents(xi))

=p(x1)p(x2|x1)p(x3|x1)p(x4|x2, x3)p(x5|x3)

• Start by sampling from p(x1).

• Then sample from p(x2|x1) and p(x3|x1).
• Then sample from p(x4|x2, x3).
• Finally, sample from p(x5|x3).

21

Main objectives of sampling

Use Monte Carlo methods to solve one or both of the following problems.

• Problem 1: Generate samples {x (i)}Rr=1 from p(x).

• Problem 2: To estimate expectations of functions, φ(x), under this

distribution p(x)

Φ = E
x∼p(x)

[φ(x)] =

󰁝
φ(x)p(x)dx

The function φ is called a test function.

22

Example

Examples of test functions φ(x):

• the mean of a function f (x) under p(x) by finding the expectation of the

function φ1(x) = f (x).

• the variance of f under p(x) by finding the expectations of the functions

φ1(x) = f (x) and φ2(x) = f (x)2

φ1(x) = f (x) ⇒ Φ1 = E
x∼p(x)

[φ1(x)]

φ2(x) = f (x)2 ⇒ Φ2 = E
x∼p(x)

[φ2(x)]

⇒ var(f (x)) = Φ2 − (Φ1)
2

23

Estimation problem

We start with the estimation problem using simple Monte Carlo:

• Simple Monte Carlo: Given {x (r)}Rr=1 ∼ p(x) we can estimate the

expectation E
x∼p(x)

[φ(x)] using the estimator Φ̂:

Φ := E
x∼p(x)

[φ(x)] ≈ 1

R

R󰁛

r=1

φ(x (r)) := Φ̂

• The fact that Φ̂ is a consistent estimator of Φ follows from the Law of Large

Numbers (LLN).

24

Basic properties of Monte Carlo estimation

• Unbiasedness: If the vectors {x (r)}Rr=1 are generated independently from

p(x), then the expectation of Φ̂ is Φ. Indeed,

E[Φ̂] = E
󰀗
1

R

R󰁛

r=1

φ(x (r))

󰀘
=

1

R

R󰁛

r=1

E
󰀅
φ(x (r))

󰀆

=
1

R

R󰁛

r=1

E
x∼p(x)

󰀅
φ(x)

󰀆
=

R

R
E

x∼p(x)

󰀅
φ(x)

󰀆

= Φ

25

Simple properties of Monte Carlo estimation

• Variance: As the number of samples of R increases, the variance of Φ̂ will

decrease with rate 1
R

var[Φ̂] =var

󰀗
1

R

R󰁛

r=1

φ(x (r))

󰀘
=

1

R2
var

󰀗 R󰁛

r=1

φ(x (r))

󰀘

=
1

R2

R󰁛

r=1

var

󰀗
φ(x (r))

󰀘
=

R

R2
var[φ(x)] =

1

R
var[φ(x)]

Accuracy of the Monte Carlo estimate depends on R and on the variance of φ.

26

Normalizing constant

• Assume we know the density p(x) up to a multiplicative constant

p(x) =
p̃(x)

Z

• There are two difficulties:
◮ We do not generally know the normalizing constant, Z . Computing

Z =

󰁝
p̃(x)dx

requires a high-dimensional integral or sum.

◮ Even if we did know Z , the problem of drawing samples from p(x) is still a

challenging one, especially in high-dimensional spaces.

27

Bad Idea: Lattice Discretization

Suppose we want to sample from p(x) for which p̃(x) is given in figure (a).

• How to compute Z?

• We could discretize the variable x and sample from the discrete distribution.

• In figure (b) there are 50 uniformly spaced points in one dimension. If our

system had, D = 1000 dimensions say, then the corresponding number of

points would be 50D = 501000. Thus, the cost is exponential in dimension! 28

Estimation tool: Importance Sampling

Importance sampling: to estimate the expectation of a function φ(x).

• The density from which we wish to draw samples can be evaluated up to

normalizing constant. As before, we have p(x) = p̃(x)/Z .

• There is a simpler density, q(x) from which it is easy to sample from and

easy to evaluate up to normalizing constant (i.e. q̃(x))

q(x) =
q̃(x)

Zq
29

Estimation tool: Importance Sampling

• In importance sampling, we generate R samples from q(x)

{x (r)}Rr=1 ∼ q(x)

• If these points were samples from p(x) then we could estimate Φ by

Φ = E
x∼p(x)

[φ(x)] ≈ 1

R

R󰁛

r=1

φ(x (r)) = Φ̂

That is, we could use a simple Monte Carlo estimator.

• But we sampled from q. We need to correct this!

• Values of x where q(x) is greater than p(x) will be over-represented in this

estimator, and points where q(x) is less than p(x) will be under-represented.

Thus, we introduce weights.

30

• Introduce weights: w̃r =
p̃(x(r))

q̃(x(r))
= Zp

Zq

p(x(r))

q(x(r))
and notice that

1

R

R󰁛

r=1

w̃r ≈ E
x∼q(x)

󰁫 p̃(x)
q̃(x)

󰁬
=

Zp

Zq

󰁝
p(x)

q(x)
q(x)dx =

Zp

Zq

• Finally, we rewrite our estimator under q

Φ =

󰁝
φ(x)p(x)dx =

󰁝
φ(x)·p(x)

q(x)
·q(x)dx ≈ 1

R

R󰁛

r=1

φ(x (r))
p(x (r))

q(x (r))
= (∗)

• However, the estimator relies on p. It can only rely on p̃ and q̃.

(∗) = Zq

Zp

1

R

R󰁛

r=1

φ(x (r)) · p̃(x
(r))

q̃(x (r))
=

Zq

Zp

1

R

R󰁛

r=1

φ(x (r)) · w̃r

≈
1
R

󰁓R
r=1 φ(x

(r)) · w̃r

1
R

󰁓R
r=1 w̃r

=
R󰁛

r=1

φ(x (r)) · wr = Φ̂iw

where wr =
w̃r󰁓R
r=1 w̃r

and Φ̂iw is our importance weighted estimator. 31

Sampling tool: Rejection sampling

• We want expectations under p(x) = p̃(x)/Z .

• Assume that we have a simpler proposal density q(x) which we can evaluate

(within a multiplicative factor Zq, as before), and from which we can

generate samples, i.e. q̃(x) = Zq · q(x).
• Further assume that we know the value of a constant c such that

cq̃(x) > p̃(x) ∀x

32

Sampling tool: Rejection sampling

The procedure is as follows:

1. Generate two random numbers.

1.1 x is generated from q(x).

1.2 u is generated uniformly from the interval [0, cq̃(x)] (see figure (b) above:

book’s notation P∗ = p̃, Q∗ = q̃).

2. Accept or reject the sample x by comparing the value of u with p̃(x)

2.1 If u > p̃(x), then x is rejected

2.2 Otherwise x is accepted; x is added to our set of samples {x (r)}.
33

Why does rejection sampling work?

(i) x ∼ q(x), (ii) u|x ∼ Unif[0, cq̃(x)], (iii) accept x if u ≤ p̃(x).

• Note: P(u ≤ p̃(x)|x) = p̃(x)
cq̃(x)

(remember we assume p̃(x) < xq̃(x)).

• ∀A ⊆ X : Px∼p(x ∈ A) =
󰁕
A
p(x)dx =

󰁕
1{x∈A}p(x)dx = Ex∼p[1{x∈A}].

• Law of total expectation E[E[Z |H]] = EZ

This gives:

Px∼q

󰀃
x ∈ A|u ≤ p̃(x)

󰀄
=Px∼q(x ∈ A, u ≤ p̃(x))

󰀑
Ex∼q[P(u ≤ p̃(x)|x)]

=Ex∼q[1{x∈A}P(u ≤ p̃(x)|x)]
󰀑
Ex∼q[

p̃(x)

cq̃(x)
]

=Ex∼q[1{x∈A}
p̃(x)

cq̃(x)
]
󰀑 Zp

cZq
= Px∼p(x ∈ A)

Zp

cZq

󰀑 Zp

cZq

=Px∼p(x ∈ A) 34

Rejection sampling in many dimensions

• In high-dimensional problems, the requirement that cq̃(x) ≥ p̃(x) will force

c to be huge, so acceptances will be very rare.

• Finding such a value of c may be difficult too, since we don’t know where

the modes of p̃ are located nor how high they are.

• In general c grows exponentially with the dimensionality, so the acceptance

rate is expected to be exponentially small in dimension

acceptance rate =
area under p̃

area under cq̃
=

Zp

cZq

35

Summary

• Estimating expectations is an important problem, which is in general hard.

We learned 3 sampling-based tools for this task:

◮ Simple Monte Carlo

◮ Importance Sampling

◮ Rejection Sampling

• Next lecture, we will learn more refined techniques.

36

