STA 414/2104:
Probabilistic Learning and Reasoning

Week 4: Message Passing / Monte Carlo Methods

Piotr Zwiernik

University of Toronto

1. TrueSkill latent variable models
2. Message passing
Sum-product algorithm
Loopy Belief Propagation
3. Monte Carlo Methods
Ancestral sampling
Basic Monte Carlo

Importance sampling

TrueSkill latent variable models

Latent variables

e What to do when a variable z is unobserved?

e If we never condition on z when in the inference problem, then we can just
integrate it out.

e However, in certain cases, we are interested in the latent variables
themselves, e.g. the clustering problems.

e More on latent variables when we cover Gaussian mixtures.

The TrueSkill latent variable model

e TrueSkill model is a player ranking system for competitive games.

e The goal is to infer the skill of players in a competitive game, based on
observing who beats who.

e In the TrueSkill model, each player has a fixed level of skill, denoted z;.

e We initially don’t know anything about anyone’s skill, but we assume
everyone's skill is independent (e.g. an independent Gaussian prior).

e We never get to observe the players’ skills directly, which makes this a latent

variable model.

TrueSkill model

e We observe the outcome of a series of matches between different players.
e For each game, the probability that player i/ beats player j is given by

p(i beats j) = o(z; — z)

1

where sigma is the logistic function: o(y) = TTewl()"

e We can write the entire joint likelihood of a set of players and games as:

p(z1, 2, . ..2zy,game 1, game 2, .. game T)

— [H p(Z,)] [H P(l beatS_]‘Z,,Zj)]

games

Posterior

e Given the outcome of some matches, the players’ skills are no longer
independent, even if they've never played each other.

e Computing the posterior over even two players’ skills requires integrating
over all the other players’ skills:

p(z1, z2|game 1, game 2, ... game T)

/ / p(z1,22,25...2n|x)dzs . .

e Message passing can be used to compute posteriors!

e More on this model in Assignment 2.

Message passing

Variable Elimination Order and Trees

Last week: we can do exact inference by variable elimination: i.e. to compute
p(xe|xe), we can marginalize p(xg, xg|Xxg) over every variable in xg.
e The computational cost depends on the graph, and the elimination ordering.
e Determining the optimal elimination ordering is hard.
e The resulting marginalization might be still be unreasonably costly.

e For trees any elimination ordering that goes from the leaves inwards towards
any root will be optimal.

Inference in Trees (graphs with no cycles)

e A graphis G = (V,&) where V is the set of vertices
(nodes) and & the set of edges; V = {1,...,n}.

e Fori,j €V, we have (i,j) € £ if there is an edge
between the nodes / and j.

e For a node in graph i € V, N(i) denotes the neighbors of
iie. N(i)={j:(i,)) €&}

e The nodes in xg are shaded.

X4 X5

The joint distribution in the corresponding MRF is

p(x1, %2, ..., Xn) = %H@b(x,-) IT ©itx.x).

iey (ij)e€

Example: Inference in Trees

e The joint distribution is p(x) = £ [T;cy, ¥(x) i jyee Yii(xi,)
e Want to compute p(xs|xg), xg = (X2, Xs, X5), Xgr = X1.

o We have p(xs|xg) o p(xs, xg).

(meaning that p(xs|xg) = PCELS, ZE = 30, p(x4, xe))

<4 p(x3,xE)

p(xslxe) = %Z7/)1(X1)1/12(>_<2)7/)3(X3)1/14(>_<4)7/)5(>_<5)1/112(X1,>_<2)1/113(X17X3)1/134(X37>_<4)1/135(X37>?5)~

X1

We write the variable elimination algorithm revealing additional structure.

Inference in Trees

p(x3|xg)

X3

m13(x3) X, 5 X 153(\3)

X1
m21(X1) A

X4
M43(x3)

X5

X4 X5 X2

% D () (R2) 3 (x3)a (Ra) s (%) 1 (x1, %2)tb13 (X1, X3) 34 (X3, Ra)35 (x3, %)

X1

% a(%a)1h3a(x3, Xa) s (%6)35 (x3, %5) 3(x3) D 1 (xa)¢h3(x1, x3) (%) thra(xa, %2)
R ——

X1

my3(x3) ms3(x3) mo1(x1)
1
—£ Ma3(x3) ms3(x3)¢h3(xs) D " hi(a)is(xa, x3)mar (x1)
x|
my3(x3)
1 _ ¥3(x3)maz(x3) ms3(x3)miz(x3)

ﬁw3(x3)m43(x3)m53(x3)mB(X3) N Zxé 3(x§) maz (x}) ms3(x)m13(x5) 9

Sum-product algorithm

Perform variable elimination from leaves to root. Belief propagation is a
message-passing between neighboring vertices of the graph.

e If x; unobserved, the message sent from variable j to i € N(j) is
mji(x;) Z¢J x;)¥ii(Xi» X;) H mk—U X;)
keN@)\
o If x; is observed, the message is
mj—i(xi) = (%)X, %) H My (%
keN()\i
e Once the message passing stage is complete, we can compute our beliefs as

b(x) = p(xilxe) o< ¢i(x) [mi(x)-

JEN(I) 10

Message Passing on Trees

The message sent from variable j to i € N(j) is

mj—>/ X/ E % Xj ¢U XHXJ H mk—>J XJ

keN@)\

4 to root

(e

my; (_\’j)/‘ ‘\m,j (_\'j)

Each message m;_,;(x;) is a vector with one value for each state of x;.
J 11

Belief Propagation on Trees

Belief Propagation Algorithm on Trees

Step 1 Choose root r arbitrarily

These two passes are sufficient on trees!

Step 2 Pass messages from leafs to r
Step 3 Pass messages from r to leafs

V(i,j) compute m;_,;(x;) and mj_;i(x;).
Step 4 Compute beliefs (marginals) =i\ j—

b(xi) = p(xilxe) o< ¢i06) [T mjmi(x), Vi
JEN(I)

One can compute them in two steps:

o Compute unnormalized beliefs b(x;) = 1i(x;) [Tiengy mi—i(xi)
e Normalize them b(x;) = b(x;)/ 3=, b(x}).

! 12

Inference in Trees: Compute p(x3|x2, X4, X5) and p(x1|x2, Xa, Xs)

X3
1m13(x3) A, RN 53(X3)

ma3(x3)

mji(x;) ZwJ X5)i (i X;) H Mi—j(%))

Xj keNG)\i

b(x;) o< i(x;) H mj_i(xi).
JeN(i)

o ms_3(x3) = ¥5(X5)135(x3, X5)
o my1(x1) = a(%e)¥12(x1, %) X2, X3, X5 are observed
o my3(x3) = a(Xa)3a(x3, %)
o m3(x3) = > ¥i(xa)vis(x, x3)masa(x1)
o m(xi) = ZX3 V3(x3)1h13(x1, x3)Ma—s3(x3) ms,3(x3)
o b(x1) o< 1 ()M (xa)mssa(x)
o b(x3) ox h3(x3)mi3(x3)Ma—s3(x3)Ms3(x3) 13

Loopy Belief Propagation

e What if the graph (MRF) is not a tree? (e.g. TrueSkill model)
e Keep passing messages until convergence.
e This is called Loopy Belief Propagation.

e This is like when someone starts a rumour and then hears the same rumour
from someone else, making them more certain it's true.

e We won't get the exact marginals, but an approximation.

e But turns out it is still very useful!

Although these ideas are general, we focus on the pairwise graphical models.

14

Loopy Belief Propagation

e Initialize all messages uniformly:

mioig) = (k... 1/k)
where k is the number of states x; can take.
e Keep running BP updates until it “converges”:

mj*)l X/ Z% Xj % XnXJ H mk*{] XJ
keN()\i
and (sometimes) normallzed for stability.
e It will generally not converge, but often works fine.

e Compute beliefs b(x;) oc ¥;(x;) [;e n(iy mi—i(xi)-
With no theoretical guarantees, this algorithm is still very useful in practice.

15

Max-product algorithm

e MAP inference: Suppose that instead of marginalizing out xg we are
interested in the most likely configuration X = arg max p(x).

e For MAP inference, we maximize over x; instead of summing over them.
This is called max-product BP with updates

mii(x) = maxy()es(xi6) [T miesi()
’ keN(G)\i

e After BP algorithm converges, the beliefs are max-marginals

b(X,) - maxp(XHX\l) X ¢ X: H mJ—)I(XI)
\ JEN()

o MAP inference: take %; := arg max,, b(x;) for all i ¢ E.
16

e Loopy Belief Propagation is very useful in practice, without much theoretical
guarantee (other than trees).
» |t multiplies the same potentials multiple times. It is often over-confident.

» It can oscillate, but this is generally ok.
» Often works better if we normalize messages, and use momentum in the

updates.
e The algorithm we learned is called sum-product BP. If we are interested in
MAP inference, we can maximize over x; instead of summing over them.

This is called max-product BP.

17

Monte Carlo Methods

Ancestral Sampling

Simple Monte Carlo

Importance Sampling

Rejection Sampling

18

Sampling

e A sample from a distribution p(x) is a single realization x whose probability
distribution is p(x). Here, x can be high-dimensional.

e Assumption: The density from which we sample, p(x), can be evaluated to
within a multiplicative constant. That is, we have p(x) such that

:(C))
p(x) = 7

e e.g. consider an Ising model with fixed values for its parameters

p(x) < p(x) = exp{be,—FZJUx,xj}

1<J

19

Warm up: Ancestral Sampling

e Given a DAGM, and the ability to sample from each of its factors given its
parents, we can sample from the joint distribution over all the nodes by
ancestral sampling.

e Start with nodes that have no parents. Sample them from the corresponding
marginal distributions.

e At each step, sample from any conditional distribution that you haven't
visited yet, whose parents have all been sampled.

20

Ancestral Sampling Example

e The distribution graph factorizes according to the DAG

@ G plx...5) = [] p(xilparents(x))

o6 =p(xa)p(x2|x1) p(xs|x1) p(xalx2, 3) P(x5|X3)

Start by sampling from p(xy).
Then sample from p(xx|x1) and p(x3|x1).

Then sample from p(xa|x2, x3).

Finally, sample from p(xs|x3).

21

Main objectives of sampling

Use Monte Carlo methods to solve one or both of the following problems.

e Problem 1: Generate samples {x()}R_ from p(x).

e Problem 2: To estimate expectations of functions, ¢(x), under this
distribution p(x)

o= B [o(] = [6(x)p(x)dx

The function ¢ is called a test function.

22

Examples of test functions ¢(x):

e the mean of a function f(x) under p(x) by finding the expectation of the
function ¢1(x) = f(x).
e the variance of f under p(x) by finding the expectations of the functions

#1(x) = f(x) and ¢z(x) = f(x)?
P1(x) = f(x) = &1 =]E [¢1()]

x~p(x)

Pa(x) = f(X)2 = &y = E [¢2()l

xrop(x)

= var(f(x)) = &, — (¥;)?

23

Estimation problem

We start with the estimation problem using simple Monte Carlo:

e Simple Monte Carlo: Given {x("}R ~ p(x) we can estimate the
expectation E()[qﬁ(x)] using the estimator ®:
x~p(x

~

© = E [& 50 = &

x~p(x)

e The fact that ® is a consistent estimator of ® follows from the Law of Large
Numbers (LLN).

24

Basic properties of Monte Carlo estimation

e Unbiasedness: If the vectors {x("N}R | are generated independently from
p(x), then the expectation of ® is ®. Indeed,

25

Simple properties of Monte Carlo estimation

e Variance: As the number of samples of R increases, the variance of ¢ will
decrease with rate %

R R
var[&D] =var [% ; gb(x(’))] = %var [Z qb(x(r))}
1 & R 1
= Zvar[¢(x('))] = mvarlo(x)] = Svarlo(x)]
r=1
Accuracy of the Monte Carlo estimate depends on R and on the variance of ¢.

26

Normalizing constant

e Assume we know the density p(x) up to a multiplicative constant

~Ax)
p(x) = A

e There are two difficulties:

» We do not generally know the normalizing constant, Z. Computing

Z = /,5(x)dx

requires a high-dimensional integral or sum.
» Even if we did know Z, the problem of drawing samples from p(x) is still a
challenging one, especially in high-dimensional spaces.

27

Bad ldea: Lattice Discretization

Suppose we want to sample from p(x) for which p(x) is given in figure (a).

S T " r
P
25 /
F |
|

"1 s

1 25

e How to compute Z7

e We could discretize the variable x and sample from the discrete distribution.

e In figure (b) there are 50 uniformly spaced points in one dimension. If our
system had, D = 1000 dimensions say, then the corresponding number of
points would be 50° = 50190, Thus, the cost is exponential in dimension!

1 2t
EERERS
1 4t
1 05
Py —— 1Y
4 2

(ON

T -
P'(x)
.
[) 2

4

28

Estimation tool: Importance Sampling

Importance sampling: to estimate the expectation of a function ¢(x).

e The density from which we wish to draw samples can be evaluated up to
normalizing constant. As before, we have p(x) = p(x)/Z.

e There is a simpler density, g(x) from which it is easy to sample from and
easy to evaluate up to normalizing constant (i.e. §(x))

G(x)
q(x) = Tq

Estimation tool: Importance Sampling

In importance sampling, we generate R samples from g(x)
{X(r) Xy~ a(x)

If these points were samples from p(x) then we could estimate ® by

xr~~p(x)

© = E)] ~ gd o) = &

That is, we could use a simple Monte Carlo estimator.
But we sampled from g. We need to correct this!

Values of x where g(x) is greater than p(x) will be over-represented in this

estimator, and points where g(x) is less than p(x) will be under-represented.
Thus, we introduce weights.

30

(r

and notice that

. ~ o) r)
e Introduce we|ght5' w, = egi ; ?3 Zﬁﬁu

L P _ % _ %
Z x~q(x)|: / Zq

e Finally, we rewrite our estimator under q

x l %
= [otanade = [o002 abae = 53 oNEGS =

e However, the estimator relies on p. It can only rely on p and §.

Z,1 B(x() 7,1 &
= My ..A2 7 29~ (r)
1 Y. v R
R Zr:l ¢(X) Wy (r) A
~ - - ¢(X) Wy = (Diw
% 25:1 Wr ;
where w, = —*— and &J,-W is our importance weighted estimator.

r=1 Wr

Sampling tool: Rejection sampling

e We want expectations under p(x) = p(x)/Z.

e Assume that we have a simpler proposal density g(x) which we can evaluate
(within a multiplicative factor Z,, as before), and from which we can
generate samples, i.e. §(x) = Z, - q(x).

e Further assume that we know the value of a constant ¢ such that

cg(x) > p(x) Vx

(a) o~ (b)

’ S, eQ (x)
\

p P*(x) \\\

32

Sampling tool: Rejection sampling

(a) (b)

TN eQ ()
’ N
/ Pr(z)

The procedure is as follows:

1. Generate two random numbers.
1.1 x is generated from g(x).
1.2 u is generated uniformly from the interval [0, cg(x)] (see figure (b) above:
book's notation P* = 5, Q* = §).
2. Accept or reject the sample x by comparing the value of u with p(x)
2.1 If u> p(x), then x is rejected
2.2 Otherwise x is accepted; x is added to our set of samples {x(")}.
33

Why does rejection sampling work?

(i) x ~ q(x), (ii) u|x ~ Unif[0, cg(x)], (iii) accept x if u < p(x).

e Note: P(u < p(x)|x) = ﬁf(xx)) (remember we assume p(x) < xg(x)).

e VAC X: Pyop(x € A) = [, p(x)dx = [1eayp(x)dx = Ex p[lixeny]-
e Law of total expectation E[E[Z|H]] = EZ

This gives:
Pyq(x € Alu < B(x)) =Prng(x € A u < (x /Ex~q[IP’ u< p()Ix)]
~Esaflen o < BN Ea 5]
p(x) 2y 1 Zp
=Exqlixeay 251/ —= = Px~ A)—/—
xally EA}cq(x)]/ch plx €)ch/ch

=P, (x € A) 34

Rejection sampling in many dimensions

e In high-dimensional problems, the requirement that cg(x) > p(x) will force
c to be huge, so acceptances will be very rare.

e Finding such a value of ¢ may be difficult too, since we don't know where
the modes of p are located nor how high they are.

e In general ¢ grows exponentially with the dimensionality, so the acceptance
rate is expected to be exponentially small in dimension

area under p Z,
acceptance rate = ————— 1 = —
area under cG§ cZ,

35

e Estimating expectations is an important problem, which is in general hard.
We learned 3 sampling-based tools for this task:

» Simple Monte Carlo
» Importance Sampling
» Rejection Sampling

e Next lecture, we will learn more refined techniques.

36

