
Week 3: Tutorial
The intuition for how the Hammersley-Clifford theorem
works
The goal of this short section is to give an intuition behind the Hammersley-Clifford theorem by
explicitly showing that it holds for a particular example. Consider a simple chain X − Y − Z.
The corresponding graphical model is given by all distributions that factorize

(∗) f(x, y, z) = α(x, y)β(y, z).

We want to show that this is equivalent to X⊥Z|Y  as long as α(x, y) > 0 and β(y, z) > 0 for all
x, y, z.

We will use the characterization that X⊥Z|Y  if and only if f(x|y, z) = f(x|y) does not depend on
z.

We first show that the conditional independence X⊥Z|Y  implies the particular factorization in
(∗). Note that

f(x, y, z) = f(y, z)f(x|y, z) = f(x|y)f(y, z).

So the factorization in (∗) works with α(x, y) = f(x|y) and β(y, z) = f(y, z).

Now we will show that the factorization in (∗) implies conditional independence. Indeed, note
that (∗) implies that

f(y, z) = (∑
x

α(x, y))β(y, z).

and so

f(x|y, z) =
α(x, y)β(y, z)

(∑x α(x, y))β(y, z)
=

α(x, y)

∑x α(x, y)

which does not depend on z proving the conditional independence.

Gaussian log-likelihood
Suppose we observe some i.i.d. data x1:n = {x1, … , xn} from the m-variate Gaussian
distribution Nm(μ, Σ). The density is

f(x;μ, Σ) =
1

(2π)m/2
(det Σ)−1/2 exp{− 1

2
(x − μ)⊤Σ−1(x − μ)}.



It is convenient to equivalently express this density in terms of K = Σ−1:

f(x;μ,K) =
1

(2π)m/2
(det(K))1/2 exp{− 1

2
(x − μ)⊤K(x − μ)},

after taking logarithms it becomes

log f(x;μ,K) = −
m

2
log(2π) +

1

2
log detK −

1

2
(x − μ)⊤K(x − μ).

Up to the obvious constants that do not depend on μ and K, the log-likelihood is

ℓn(μ,K) =
n

∑
i=1

log f(xi;μ,K) = (const) +
n

2
log det(K) −

1

2

n

∑
i=1

(xi − μ)⊤K(xi − μ).

Irrespective of the value of K, the optimal μ̂ satisfies

μ̂ = x̄n =
1

n

n

∑
i=1

xi

This is because the gradient of ∇μℓn is

∇μℓn(μ,K) = −
1

2

n

∑
i=1

(2Kμ − 2Kxi) = −nKμ + K
n

∑
i=1

xi = nK(x̄n − μ).

Since K is invertible, this can be zero if and only if μ = x̄n.
We can thus consider the profile likelihood

ℓn(x̄n,K) = (const) +
n

2
log det(K) −

1

2

n

∑
i=1

(xi − x̄n)⊤K(xi − x̄n).

Note that

where Sn is the sample covariance matrix. Note that x̄n and Sn form the sufficient statistics for
the Gaussian model. With this new notation

ℓn(x̄n,K) = (const) +
n

2
(log det(K) − tr(KSn)).

Some useful facts:

n

∑
i=1

(xi − x̄n)⊤K(xi − x̄n) =
n

∑
i=1

tr((xi − x̄n)⊤K(xi − x̄n))

=
n

∑
i=1

tr(K(xi − x̄n)(xi − x̄n)⊤)

= n tr (K {
1

n

n

∑
i=1

(xi − x̄n)(xi − x̄n)⊤})

= n tr(KSn),



MRFs as exponential families
Consider a simple undirected graph X1 − X2 − X3 where each variable is binary. Consider the
following graphical model

p(x1,x2,x3|θ) =
1

Z(θ)
ψ1,2(x1,x2|θ1,2)ψ2,3(x2,x3|θ2,3)

or equivalently

p(x1,x2,x3|θ) = exp{ logψ1,2(x1,x2|θ1,2) + logψ2,3(x2,x3|θ2,3) − logZ(θ)}

The vector (x1,x2) takes four values (0, 0), (0, 1), (1, 0), (1, 1). Take

θ1,2 := ∈ R
4.

and let ψ1,2(x1,x2) be the function that satisfies

ϕ1,2(0, 0) = , ϕ1,2(0, 1) = , ϕ1,2(1, 0) = , ϕ1,2(1, 1) = .

With these definitions logψ1,2(x1,x2|θ1,2) = θ⊤
1,2ϕ1,2(x1,x2). We define θ2,3 and ϕ2,3(x2,x3) in a

similar way obtaining that

p(x1,x2,x3|θ) = exp{θ⊤
1,2ϕ1,2(x1,x2) + θ⊤

2,3ϕ2,3(x2,x3) − logZ(θ)},

which forms an exponential family with sufficient statistics

ϕ1,2(x1,x2) = , ϕ2,3(x2,x3) =

and with Z(θ) = 1.

log det(K) is a strictly concave function of K.

tr(KSn) is linear in K.
The gradients are ∇K log det(K) = K−1 = Σ and ∇Ktr(KSn) = Sn.

The MLE is Σ̂ = Sn (this is where the gradient vanishes).

⎡⎢⎣logψ1,2(0, 0)

logψ1,2(0, 1)

logψ1,2(1, 0)

logψ1,2(1, 1)

⎤⎥⎦⎡⎢⎣1

0

0

0

⎤⎥⎦ ⎡⎢⎣0

1

0

0

⎤⎥⎦ ⎡⎢⎣0

0

1

0

⎤⎥⎦ ⎡⎢⎣0

0

0

1

⎤⎥⎦⎡⎢⎣(1 − x1)(1 − x2)

(1 − x1)x2

x1(1 − x2)

x1x2

⎤⎥⎦ ⎡⎢⎣(1 − x2)(1 − x3)

(1 − x2)x3

x2(1 − x3)

x2x3

⎤⎥⎦



As a side comment we note that this exponential family is not minimal in the sense that the
values of ϕ1,2(x1,x2) and ϕ2,3(x2,x3) lie in a hyperplane in the sense that

ϕ1,2(x1,x2)⊤ = 1 for all (x1,x2) ∈ {0, 1}2.

Non-minimal exponential families do not satisfy the gradient equation ∇A(θ) = EθT (X) --
indeed, here A(θ) = 0. An easy solution is to get rid of the first coordinate in ϕ1,2(x1,x2) and
replace it with the corresponding functions of the remaining entries of ϕ1,2(x1,x2). This defines
new natural parameters

θ̄1,2 = , θ̄2,3 =

and new sufficient statistics

ϕ̄1,2(x1,x2) = , ϕ̄2,3(x2,x3) =

Moreover,

A(θ̄) = logψ1,2(0, 0)ψ2,3(0, 0),

which should be now be explicitly expressed in terms of θ̄1,2 and θ̄2,3.

Simple variable elimination example
Consider the following DAG

⎡⎢⎣1

1

1

1

⎤⎥⎦⎡⎢⎣logψ1,2(0, 1) − logψ1,2(0, 0)

logψ1,2(1, 0) − logψ1,2(0, 0)

logψ1,2(1, 1) − logψ1,2(0, 0)

⎤⎥⎦ ⎡⎢⎣logψ2,3(0, 1) − logψ2,3(0, 0)

logψ2,3(1, 0) − logψ2,3(0, 0)

logψ2,3(1, 1) − logψ2,3(0, 0)

⎤⎥⎦⎡⎢⎣(1 − x1)x2

x1(1 − x2)

x1x2

⎤⎥⎦ ⎡⎢⎣(1 − x2)x3

x2(1 − x3)

x2x3

⎤⎥⎦



Suppose that we observe the variable X6 = x̄6. What is p(X1|x̄6)?

The corresponding DAG model implies the factorization:

p(x1, … ,x6) = p(x1)p(x2|x1)p(x3|x1)p(x4|x2)p(x5|x3)p(x6|x2,x5)

We have

xF = {x1}, xE = {x6},  xR = {x2,x3,x4,x5}

To compute p(x1, x̄6), we use variable elimination in the order 2, 3, 4, 5

Note that p(x̄6|x2,x3) does not need to participate in ∑x4
.

p(xF |xE) =
∑xR

p(xF ,xE,xR)

∑xF ,xR
p(xF ,xE,xR)

⇒ p(x1|x̄6) =
p(x1, x̄6)

p(x̄6)
=

p(x1, x̄6)

∑y1
p(y1, x̄6)

p(x1, x̄6) = p(x1)∑
x2

∑
x3

∑
x4

∑
x5

p(x2|x1)p(x3|x1)p(x4|x2)p(x5|x3)p(x̄6|x2,x5)

= p(x1)∑
x2

p(x2|x1)∑
x3

p(x3|x1)∑
x4

p(x4|x2)∑
x5

p(x5|x3)p(x̄6|x2,x5)

= p(x1)∑
x2

p(x2|x1)∑
x3

p(x3|x1)∑
x4

p(x4|x2)p(x̄6|x2,x3)

= p(x1)∑
x2

p(x2|x1)∑
x3

p(x3|x1)p(x̄6|x2,x3)∑
x4

p(x4|x2)

= p(x1)∑
x2

p(x2|x1)∑
x3

p(x3|x1)p(x̄6|x2,x3)

= p(x1)∑
x2

p(x2|x1)p(x̄6|x1,x2)

= p(x1)p(x̄6|x1)



Finally,

p(x1|x̄6) =
p(x1)p(x̄6|x1)

∑y1
p(y1)p(x̄6|y1)

.

Restricted Boltzmann machines
A restricted Boltzmann machine (RBM) is a simple generative stochastic artificial neural
network model. In the language of todays lecture, it is obtained from a special form of the Ising
model with variables (X1, … ,Xk,H1, … ,Hl) ∈ {−1, 1}k+1. The underlying graph is the bipartite
graph with all pairs Hi − Xj connected but with no other edges. Write x = (x1, … ,xk),
h = (h1, … ,hl). The Ising model is then given by all distributions

p(x, h) ∝ exp{
k

∑
i=1

αixi +
l

∑
j=1

βjhj +
k

∑
i=1

l

∑
j=1

Jijxihj},

which we can write it in terms of factors

ψXi,Hj
(xi,hj) = exp{

1

l
αixi +

1

k
βjhj + Jijxihj}

so that

p(x, h) =
1

Z

k

∏
i=1

l

∏
j=1

ψXi,Hj
(xi,hj).

(Indeed, ∑k
i=1 ∑

l
j=1( 1

l
αixi + 1

k
βjhj + Jijxihj) = ∑k

i=1 αixi + ∑l
j=1 βjhj + ∑k

i=1 ∑
l
j=1 Jijxihj)

The normalizing constant Z = Z(α,β,J) satisfies

Z = ∑
x∈{−1,1}k

∑
h∈{−1,1}l

k

∏
i=1

l

∏
j=1

ψXi,Hj
(xi,hj).

Note that computing Z may be computationally expensive but we will see that many quantities
can be computed without knowing Z. We will need to exploit the structure of the problem.

The corresponding RBM is given as the family of marginal distributions

p(x) = ∑
h∈{−1,1}l

p(x, h).

Denote

τj(x,hj) =
k

∏
i=1

ψXi,Hj
(xi,hj) = exp { 1

l

k

∑
i=1

αixi + βjhj +
k

∑
i=1

Jijxihj},

which gives



p(x, h) =
1

Z

l

∏
j=1

τj(x,hj),

and note that

We can now easily compute the conditional p(h|x) and this computation does not even require
any knowledge of the normalizing constant Z. For example,

We now argue that the bracketed terms above are equal to the conditional probabilities p(hj|x).
Indeed, for example, for j = 1 we get

p(h1|x) = ∑
h2,…,hl∈{−1,1}

p(h|x) = ∑
h2,…,hl∈{−1,1}

l

∏
j=1

(
τj(x,hj)

τj(x, −1) + τj(x, 1)
) =

τ1(x,h1)

τ1(x, −1) + τ1(x, 1)
.

In particular, we conclude that p(h|x) = ∏l
j=1 p(hj|x), which confirms what we know from the

Hammersley-Clifford theorem that all Hi's are mutually independent given the vector X. Further,
note that

with

p(x) =
1

Z
∑

h∈{−1,1}l

l

∏
j=1

τj(x,hj)

=
1

Z
∑

h1∈{−1,1}

τ1(x,h1) ∑
h2∈{−1,1}

τ2(x,h2) ⋯ ∑
hl∈{−1,1}

τl(x,hl)

=
1

Z

l

∏
j=1

(τj(x, −1) + τj(x, 1)).

⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠

p(h|x) =
p(x, h)

p(x)
=

1
Z ∏l

j=1 τj(x,hj)

1
Z ∏l

j=1(τj(x, −1) + τj(x, 1))

=
l

∏
j=1

(
τj(x,hj)

τj(x, −1) + τj(x, 1)
).

p(hj = 1|x) =
∏k

i=1 ψij(xi, 1)

∏k
i=1 ψij(xi, −1) + ∏k

i=1 ψij(xi, 1)

=
exp{ 1

l ∑
k
i=1 αixi + βj + ∑k

i=1 Jijxi}

exp{ 1
l ∑

k
i=1 αixi − βj − ∑k

i=1 Jijxi} + exp{ 1
l ∑

k
i=1 αixi + βj + ∑k

i=1 Jijxi}

=
exp{βj + ∑k

i=1 Jijxi}

exp{−βj − ∑k
i=1 Jijxi} + exp{βj + ∑k

i=1 Jijxi}

= σ(βj +
k

∑
i=1

Jijxi)



σ(y) =
ey

e−y + ey
=

1

1 + e−2y

called the sigmoid function. Thus, to determine the probability of Hj = 1 for each Hj we simply
first apply the linear function β + J⊤x to x (note that the j-th coordinate is precisely
βj + ∑k

i=1 Jijxj). Then we apply the activation function σ(⋅) coordinate-wise

= σ (β + J⊤
x).

(sounds familiar?)

MRF Factor product   
Given 3 disjoint sets of variables X,Y ,Z and factors ψX,Y (X,Y ), ψY ,Z(Y ,Z) the factor product
is defined as:

ψX,Y ,Z(X,Y ,Z) = ψX,Y (X,Y )ψY ,Z(Y ,Z)

Take the example below, where we show ψA,B(A,B), ψB,C(B,C) and finally,
ψA,B,C(A,B,C) = ψA,B(A,B)ψB,C(B,C). 

⎡⎢⎣p(h1 = 1|x)

p(h2 = 1|x)

⋯

p(hl = 1|x)

⎤⎥⎦



Recall our running example from lecture:

From the factor product, we can make queries about the marginal probabilities, e.g.

p(a0, b0, c0, d0) ∝ ψA,B,C,D(a0, b0, c0, d0)

∝ ψA,B(a0, b0)ψB,C(b0, c0)ψC,D(c0, d0)ψA,D(a0, d0)

∝ (30)(100)(1)(100) = 300000



And if we enumerate all marginal probabilities similarly in a table, we get

    To get the normalized marginal probability, divide by the partition function
Z(θ) = ∑x∏c∈C

ψc(xc|θc)

In order to compute the marginal probability of a single variable in our graph, e.g. p(b0),
marginalize over the other variables:

p(b0) =∑
a,c,d

p(a, b0, c, d)

∝∑
a,c,d

ψA,B,C,D(a, b0, c, d)

∝∑
a,c,d

ψA,B(a, b0)ψB,C(b0, c)ψC,D(c, d)ψA,D(a, d)



We can also make queries about the conditional probability. Conditioning on an assignment u to
a subset of variables U  can be done by

For example, conditioning on c1,

(Note that the original normalization term cancels out in the numerator and denominator.) 

Thus, we take only factors consistent with the assignment c1 and re-normalize with the marginal
probability of the variable being conditioned on.

Variable Eliminiation Examples
Example 1:

1. Eliminating all entries that are inconsistent with the assignment.

2. Re-normalizing the remaining entries so that they sum to 1.

p(a, b|c1) =
p(a, b, c1)

p(c1)

=
p(a, b, c1)

∑a,b p(a, b, c1)

=
ψA,B,C(a, b, c1)

∑a,b ψA,B,C(a, b, c1)

=
ψA,B(a, b)ψB,C(b, c1)

∑a,b ψA,B(a, b)ψB,C(b, c1)



Take the following factorization:

p(C,D,G,H, I,J,L,S) ∝ ϕ(C)ϕ(C,D)ϕ(J,L,S)ϕ(S, I)ϕ(I)ϕ(G,D, I)ϕ(L,G)ϕ(H,G,J)

Let's eliminate the variables according to the ordering ≺ {G, I,S,L,H,C,D}.

This is a variable elimination ordering over m = 8 (initial) factors each with k states.

The sum with the largest number of variables participating has Nmax = 6 so the complexity is 

O(8k6)

Note that this is an upper bound. 

Example 2: 

Let's instead try the Elimination Ordering ≺ {D,C,H,L,S, I,G},

p(J) =∑
D

∑
C

ϕ(C)ϕ(C,D)∑
H

∑
L

∑
S

ϕ(J,L,S)∑
I

ϕ(S, I)ϕ(I)∑
G

ϕ(G,D, I)ϕ(L,G)ϕ(H,G,J)

τ(D,I,L,H,J),NG=6

=∑
D

∑
C

ϕ(C)ϕ(C,D)∑
H

∑
L

∑
S

ϕ(J,L,S)∑
I

ϕ(S, I)ϕ(I)τ(D, I,L,H,J)

τ(D,L,H,J,S),NI=6

=∑
D

∑
C

ϕ(C)ϕ(C,D)∑
H

∑
L

∑
S

ϕ(J,L,S)τ(D,L,H,J,S)

τ(D,L,H,J),NS=5

=∑
D

∑
C

ϕ(C)ϕ(C,D)∑
H

∑
L

τ(D,L,H,J)

τ(D,H,J),NL=4

=∑
D

∑
C

ϕ(C)ϕ(C,D)∑
H

τ(D,H,J)

τ(D,J),NH=3

=∑
D

τ(D,J)∑
C

ϕ(C)ϕ(C,D)

τ(D),NC=2

=∑
D

τ(D,J)τ(D)

τ(J),ND=2

= τ(J)















∑∑ ∑ ∑ ∑ ∑ ∑



This is a variable elimination ordering over m = 8 initial factors each with k states.

The sum with the largest number of variables participating has Nmax = 4 so the complexity is 

O(8k4)

Optional Reading
Some questions were asked about whether some algorithm exists for finding the optimal
elimination orderings. Although this problem is NP-complete, there are heuristics that can be
used. Some discussion of these can be found in Murphy (section 20.3.2), and Daphne Koller's
MOOC on PGMs.

p(J) =∑
G

∑
I

ϕ(I)∑
S

ϕ(S, I)∑
L

ϕ(L,G)ϕ(J,L,S)∑
H

ϕ(H,G,J)∑
C

ϕ(C)∑
D

ϕ(G,D, I)ϕ(C,D)

τ(G,I,C),ND=4

=∑
G

∑
I

ϕ(I)∑
S

ϕ(S, I)∑
L

ϕ(L,G)ϕ(J,L,S)∑
H

ϕ(H,G,J)∑
C

ϕ(C)τ(G, I,C)

τ(G,I),NC=3

=∑
G

∑
I

ϕ(I)τ(G, I)∑
S

ϕ(S, I)∑
L

ϕ(L,G)ϕ(J,L,S)∑
H

ϕ(H,G,J)

τ(G,J),NH=3

=∑
G

τ(G,J)∑
I

ϕ(I)τ(G, I)∑
S

ϕ(S, I)∑
L

ϕ(L,G)ϕ(J,L,S)

τ(G,J,S),NL=4

=∑
G

τ(G,J)∑
I

ϕ(I)τ(G, I)∑
S

ϕ(S, I)τ(G,J,S)

τ(I,G,J),NS=4

=∑
G

τ(G,J)∑
I

ϕ(I)τ(G, I)τ(I,G,J)

τ(G,J),NI=3

=∑
G

τ(G,J)τ(G,J)

τ(J),NG=2

= τ(J)















https://www.coursera.org/lecture/probabilistic-graphical-models-2-inference/finding-elimination-orderings-ckOIz

