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Today’s lecture

Summary of the content:

• Markov Random Fields (MRFs).

• Exact inference on graphical models

• Variable elimination

Some announcements:

• Assignment 1 is released this week.

• TA office hours next week.
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Markov Random Fields (MRFs)



Are DAGMs always useful?

• Each node is conditionally independent of its

non-descendants given its parents

{Xi ⊥ non-desc(Xi ) | parents(Xi )} ∀i .

• For some problems, it is not clear how to choose the

edge directions in DAGMs.

Markov blanket (mb): the set of nodes that makes Xi conditionally independent of all the

other nodes.

In our example: mb(X8) = {X3,X4,X7,X9,X12,X13}.

One would expect X4 and X12 not to be in the Markov blanket mb(X8), especially given X2

and X14 are not.
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Markov Random Fields

• Undirected graphical models (aka Markov random fields (MRFs)) are models with

dependencies described by an undirected graph.

• The nodes in the graph represent random variables. However, in contrast to DAGMs,

edges represent probabilistic interactions between neighbors.
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Cliques

Clique: a subset of nodes such that every two vertices in the subset are connected by an edge.

Maximal clique: a clique that cannot be extended by including one more adjacent vertex.
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Distributions Induced by MRFs

Let X = (X1, ...,Xm) be the set of all random variables in our graph G .

Let C be the set of all maximal cliques of G .

The distribution p of X factorizes with respect to G if

p(x) ∝
󰁜

C∈C
ψC (xC )

for some nonnegative potential functions ψC , where xC = (xi )i∈C .

The MRF on G represents the distributions that factorize with respect to G .

The factored structure of the distribution makes it possible to more efficiently do the

sums/integrals and is a form of dimension reduction.
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Hammersley-Clifford Theorem

If p(x) > 0 for all x , the following statements are equivalent:

• p factorizes according to G , that is,

p(x) ∝
󰁜

C∈C
ψC (xC )

for some nonnegative potential functions ψC .

• Global Markov Properties: XA⊥XB |XS if the sets A and B are separated by S in G

(every path from A to B crosses S).

In particular,

• If i , j are not connected by an edge then Xi⊥Xj |Xrest.

• The Markov blanket of Xi is given by its neighbors in G .
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Example:

• How many maximal cliques are there?

• What is the underlying factorization?

• What are the induced conditional independence statements?
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Example:

Lets see how to factorize the undirected graph of our running example:

p(x) ∝ ψ1,2,3(x1, x2, x3)ψ2,3,5(x2, x3, x5)ψ2,4,5(x2, x4, x5)

× ψ3,5,6(x3, x5, x6)ψ4,5,6,7(x4, x5, x6, x7)
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Example:

e.g. (X1,X2) ⊥ (X6,X7)
󰀏󰀏 (X3,X4,X5)

X1 ⊥ X5 | (X2,X3)
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Image MRF
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Not all MRFs can be represented as DAGMs

Take the following MRF for example (a) and our attempts at encoding this as a DAGM (b, c).

• Two conditional independencies in (a):
◮ 1. A⊥C |D,B 2. B⊥D|A,C

• In (b), we have the first independence, but not the second.

• In (c), we have the first independence, but not the second. Also, B and D are marginally

independent.
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Not all DAGMs can be represented as MRFs

Not all DAGMs can be represented as MRFs.

E.g. explaining away:

An undirected model is unable to capture the marginal independence, X⊥Y that holds at the

same time as X ∕⊥Y |Z .
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MRFs as Exponential Families

• Consider a parametric family of factorized distributions

p(x |θ) =
1

Z (θ)

󰁜

C∈C
ψC (xC |θC ), θ = (θC )C∈C .

• We can write this in an exponential form:

p(x |θ) = exp
󰁱󰁛

C∈C
logψC (xC |θC )− logZ (θ)󰁿 󰁾󰁽 󰂀

=A(θ)

󰁲

• Suppose the potentials have a log-linear form

logψC (xC |θC ) = θ⊤C φC (xC )

we get the exponential family

p(x |θ) = exp
󰁱󰁛

C∈C
θ⊤C φC (xC )− logZ (θ)󰁿 󰁾󰁽 󰂀

=A(θ)

󰁲
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MRFs as Exponential Families

Question: When logψC (xC |θC ) = θ⊤C φC (xC )?

Finite discrete case:

• If X is finite discrete then xC takes a finite number of values and so logψC takes a finite

number of values.

• Take θC as all these possible values, and let φC (xC ) is a vector 1 on the entry correspond

to xC and zeros otherwise.

• Then logψC (xC |θC ) = θ⊤C φC (xC ) as required.

Multivariate Gaussian case will be covered later in the lecture.

We can find the expectation of the C -th feature:

∂ logZ (θ)

∂θC
= E[φC (XC )].
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Representing potentials

If the variables are finite discrete, we can represent the potential functions as tables of

(non-negative) numbers.

e.f. consider a 4-cycle and binary random variables

p(x1, x2, x3, x4) =
1

Z
ψ1,2(x1, x2)ψ2,3(x2, x3)ψ3,4(x3, x4)ψ1,4(x1, x4)

4 3

21 ψ1,2(x1, x2) ψ2,3(x2, x3) ψ3,4(x3, x4) ψ1,4(x1, x4)

x1 x2 x2 x3 x3 x4 x1 x4
0 0 30 0 0 100 0 0 1 0 0 100

0 1 5 0 1 1 0 1 100 0 1 1

1 0 1 1 0 1 1 0 100 1 0 1

1 1 10 1 1 100 1 1 1 1 1 100

These potentials are not probabilities. Even after normalization they will not, in general,

correspond to marginal distributions.

15



Example: Ising model

• The Ising model is an MRF that was historically used to

model magnets.

• The nodes variables are spins, i.e., we use xs ∈ {−1,+1}.

• Define the pairwise clique potentials as

ψst(xs , xt) = eJstxsxt .

where Jst is the coupling strength between nodes s and t.

• ψst(−1,−1) = ψst(1, 1) = eJst ; ψst(−1, 1) = ψst(1,−1) = e−Jst

• If two nodes are not connected set Jst = 0.
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Ising model

• We might want to add node potentials as well

ψs(xs) = ebsxs

• The overall distribution becomes

p(x) ∝
󰁜

s∼t

ψst(xs , xs)
󰁜

s

ψs(xs) = exp
󰁱󰁛

s∼t

Jstxsxt +
󰁛

s

bsxs
󰁲
.

• Conditional log-odds ratio: log p(−1,−1,xrest)p(1,1,xrest)
p(−1,1,xrest)p(1,−1,xrest)

= 4Jst .

• If Jst > 0 the model promotes same spins on neighboring spins.

• Hammersley-Clifford theorem: Jij = 0 then Xi⊥Xj |Xrest.
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Multivariate Gaussian distribution

Univariate Gaussian: f (x ;µ,σ2) = 1√
2πσ

exp(− 1
2σ2 (x − µ)2).

Multivariate normal distribution, X = (X1, . . . ,Xm): µ ∈ Rm and Σ symmetric positive

definite m ×m matrix. Write X ∼ Nm(µ,Σ) if the density of the vector X is

f (x ;µ,Σ) = 1
(2π)m/2 (detΣ)

−1/2 exp
󰀃
− 1

2 (x − µ)TΣ−1(x − µ)
󰀄
.

Positive definite: ∀u ∕= 0 u⊤Σu > 0.

Moments:

• mean vector: EX = µ,

• covariance: var(X ) = Σ.
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Recall: Marginal and conditional distributions

Split X into two blocks X = (XA,XB). Denote

µ = (µA, µB) and Σ =

󰀥
ΣAA ΣAB

ΣBA ΣBB

󰀦
.

Marginal distribution

XA ∼ N(µA,ΣAA)

Conditional distribution

XA|XB = xB ∼ N
󰀃
µA + ΣABΣ

−1
BB(xB − µB),ΣAA − ΣABΣ

−1
BBΣBA

󰀄

• Note that the conditional covariance is constant.
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Some other properties

Linear transformations:

A ∈ Rm×p for m ≤ p and X ∼ Np(µ,Σ) then AX ∼ Nm(Aµ,AΣA
T ).

Conditional independence:

• Xi⊥Xj if and only if Σij = 0.

• Xi⊥Xj |XC if and only if Σij − Σi,CΣ
−1
C ,CΣC ,j = 0

• Let R = V \ {i , j}. The following are equivalent:

◮ Xi⊥Xj |XR

◮ Σij − Σi,RΣ
−1
R,RΣR,j = 0

◮ (Σ−1)ij = 0
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Gaussian Graphical models

Denote K = Σ−1 then

f (x ;µ,Σ) ∝
󰁜

s

e−
1
2Kss (xs−µs )

2 󰁜

s<t

e−Kst(xs−µs )(xt−µt).

Important interpretation: Kij = 0 if and only if Xi⊥Xj |Xrest.

Show that this is an exponential family.
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Inference as Conditional Distribution

• We explore inference in probabilistic graphical models (PGMs).

− xE = The observed evidence

− xF = The unobserved variable we want to infer

− xR = x − {xF , xE} = Remaining variables, extraneous to query.

• Focus on computing the conditional probability distribution

p(xF |xE ) =
p(xF , xE )

p(xE )
=

p(xF , xE )󰁓
xF
p(xF , xE )

• for which, we marginalize out these extraneous variables, focussing on the joint

distribution over evidence and subject of inference:

p(xF , xE ) =
󰁛

xR

p(xF , xE , xR)
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Variable elimination

Order in which we marginalize affects the computational cost!

Our main tool is variable elimination:

• A simple and general exact inference algorithm in any probabilistic graphical model

(DAGMs or MRFs).

• Computational complexity depends on the graph structure.

• Dynamic programming avoids enumerating all variable assignments.
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Example: Simple chain

• Lets start with the example of a simple chain

A → B → C → D

where we want to compute p(D), with no evidence variables.

• We have

xF = {D}, xE = {}, xR = {A,B ,C}

• We saw last lecture that this graphical model describes the factorization of the joint

distribution as:

p(A,B ,C ,D) = p(A)p(B |A)p(C |B)p(D|C )

• Assume each variable can take on k different values.

25



Example: Simple chain

• The goal is to compute the marginal p(D):

p(D) =
󰁛

A,B,C

p(A,B ,C ,D)

• However, if we do this sum naively, cost is exponential O(kn=4) :

p(D) =
󰁛

A,B,C

p(A,B ,C ,D)

=
󰁛

C

󰁛

B

󰁛

A

p(A)p(B |A)p(C |B)p(D|C )

• Instead, choose an elimination ordering:

p(D) =
󰁛

C ,B,A

p(A,B ,C ,D)

=
󰁛

C

p(D|C )

󰀣
󰁛

B

p(C |B)
󰀓󰁛

A

p(A)p(B |A)
󰀔󰀤

.
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Example: Simple chain

• This reduces the complexity by first computing terms that appear across the other sums.

p(D) =
󰁛

C

p(D|C )
󰁛

B

p(C |B)
󰁛

A

p(A)p(B |A)

=
󰁛

C

p(D|C )
󰁛

B

p(C |B)p(B)

=
󰁛

C

p(D|C )p(C )

• e.g. for each value of B , we have to take the sum
󰁓

A p(A)p(B |A); k · k = k2 operations

• The cost of performing inference on the chain in this manner is O(nk2). In comparison,

generating the full joint distribution and marginalizing over it has complexity O(kn)!
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Best Elimination Ordering

• The complexity of variable elimination depends on the elimination ordering!

• Unfortunately, finding the best elimination ordering is NP-hard.

• The chain example may lead our intuition.

◮ Marginalizing over nodes with no children can be done first.
◮ You may want to start with nodes that come early in the induced ordering of the DAG.
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Intermediate Factors

The same algorithm both for DAGMs and MRFs:

• Introduce nonnegative factors ψ (like for MRFs).

• e.g. in a simple DAG model:

p(A,B ,C ) =
󰁛

X

p(X )p(A|X )p(B |A)p(C |B ,X )

=
󰁛

X

ψ1(X )ψ2(A,X )ψ3(A,B)ψ4(X ,B ,C )

= ψ3(A,B)
󰁛

X

ψ1(X )ψ2(A,X )ψ4(X ,B ,C )

= ψ3(A,B)τ(A,B ,C )

• Marginalizing over X we introduce a new factor, denoted by τ .
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Sum-Product Inference

• Abstractly, computing p(xF |xE ) is given by the sum-product algorithm:

p(xF |xE ) ∝ τ(xF , xE ) =
󰁛

xR

󰁜

C∈F
ψC (xC )

where F is a set of potentials or factors.

• For DAGMs, F is given by the the sets of the form

{i} ∪ parents(i) for all nodes i .

• For MRFs, F is given by the set of maximal cliques.
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Example

• This describes a factorization:

p(C ,D, I ,G , S , L,H, J) = p(C )p(D|C )p(I )

× p(G |D, I )p(L|G )p(S |I )p(J|S , L)p(H|J,G )

We have

F =
󰀋
{C}, {C ,D}, {I}, {G ,D, I}, {L,G}, {S , I}, {J, S , L}, {H, J,G )}

󰀌

We are interested in the probability of getting a job, p(J).

We perform exact inference as follows.
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Example (F =
󰀋
{C}, {C ,D}, {I}, {G ,D, I}, {L,G}, {S, I}, {J, S, L}, {H, J,G)}

󰀌)

Elimination Ordering ≺ {C, D, I, H, G, S, L}

p(J) =
󰁛

L

󰁛

S

ψ(J, L, S)
󰁛

G

ψ(L, G)
󰁛

H

ψ(H, G, J)
󰁛

I

ψ(S, I )ψ(I )
󰁛

D

ψ(G, D, I )
󰁛

C

ψ(C)ψ(C, D)

󰁿 󰁾󰁽 󰂀
τ(D)

=
󰁛

L

󰁛

S

ψ(J, L, S)
󰁛

G

ψ(L, G)
󰁛

H

ψ(H, G, J)
󰁛

I

ψ(S, I )ψ(I )
󰁛

D

ψ(G, D, I )τ(D)

󰁿 󰁾󰁽 󰂀
τ(G,I )

=
󰁛

L

󰁛

S

ψ(J, L, S)
󰁛

G

ψ(L, G)
󰁛

H

ψ(H, G, J)
󰁛

I

ψ(S, I )ψ(I )τ(G, I )

󰁿 󰁾󰁽 󰂀
τ(S,G)

=
󰁛

L

󰁛

S

ψ(J, L, S)
󰁛

G

ψ(L, G)τ(S, G)
󰁛

H

ψ(H, G, J)

󰁿 󰁾󰁽 󰂀
τ(G,J)

=
󰁛

L

󰁛

S

ψ(J, L, S)
󰁛

G

ψ(L, G)τ(S, G)τ(G, J)

󰁿 󰁾󰁽 󰂀
τ(J,L,S)

=
󰁛

L

󰁛

S

ψ(J, L, S)τ(J, L, S)

󰁿 󰁾󰁽 󰂀
τ(J,L)

=
󰁛

L

τ(J, L)

󰁿 󰁾󰁽 󰂀
τ(J)

= τ(J) Do we need to normalize the final τ?
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Complexity of Variable Elimination Ordering

• We discussed previously that variable elimination ordering determines the computational

complexity. This is due to how many variables appear inside each sum.

• Different elimination orderings will involve different number of variables appearing inside

each sum.

• The complexity of the VE algorithm is

O(mkNmax)

where

◮ m is the number of initial factors.
◮ k is the number of states each random variable takes (assumed to be equal here).
◮ Ni is the number of random variables inside each sum

󰁓
i .

◮ Nmax = maxiNi is the number of variables inside the largest sum.
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Example

Elimination Ordering ≺ {C ,D, I ,H,G , S , L}

• Here are all the initial factors:

F =
󰀋
{C}, {C ,D}, {I}, {G ,D, I}, {L,G}, {S , I}, {J, S , L}, {H, J,G )}

󰀌

=⇒ m = |F| = 8.

• Here are the sums, and the number of variables that appear in them
󰁛

C

ψ(C)ψ(C ,D)

󰁿 󰁾󰁽 󰂀
NC=2

󰁛

D

ψ(G ,D, I )τ(D)

󰁿 󰁾󰁽 󰂀
ND=3

󰁛

I

ψ(S , I )ψ(I )τ(G , I )

󰁿 󰁾󰁽 󰂀
NI=3

󰁛

H

ψ(H,G , J)

󰁿 󰁾󰁽 󰂀
NH=3

󰁛

G

ψ(L,G)τ(S ,G)τ(G , J)

󰁿 󰁾󰁽 󰂀
NG=4

󰁛

S

ψ(J, L, S)τ(J, L, S)

󰁿 󰁾󰁽 󰂀
NS=3

󰁛

L

τ(J, L)

󰁿 󰁾󰁽 󰂀
NL=2

=⇒ the largest sum is NG = 4

• For simplicity, assume all variables take on k states. So the complexity of the variable elimination

under this ordering is O(8 · k4).
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Summary

Undirected graphical models:

• MRFs are useful if there is no topological ordering in the graph.

• Cliques are key to parametrizing distributions induced by MRFs.

• Ising model and Gaussian graphical models are important example.

Variable elimination:

• Variable elimination can be used for exact inference in PGMs.

• The ordering in variable elimination can significantly reduce the computational complexity.

• The overall complexity of the variable elimination algorithm can be computed.
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