
Week 2 Tutorial: Examples of Directed Graphical
Models
Goal of this tutorial:

Examples = on Bayes Ball (PRML 8.2.2)
Recall the Bayes ball algorithm for verifying A ⊥ B | C:
(a) the arrows on the path meet either head-to-tail or tail-to-tail at the node, and the
node is in the set C, or
(b) the arrows meet head-to-head at the node, and neither the node, nor any of its
descendants, is in the set C.

If you find Bayes Ball confusing, try to use moralization instead.

Naive Bayes Model

1. (Re)familiarize you with representing probability distribution as directed-graphical models
(DGM).

2. Go through examples of DGMs: definition, learning, and inference.

1. What is the joint distribution factorization implied by the graph above (ignore the observed
node for now)?

2. Is a independent from b when:
a) conditioned on c ?
b) conditioned on f?

https://web.mit.edu/jmn/www/6.034/d-separation.pdf


Consider the inference problem of text classification into spam/not spam:
Let R.V. C denote whether a text is (C = 1) or isn't spam (C = 0).

Problem Setting

We'll use a "bag of words" representation for text:
Suppose we have dictionary of D words D = {W1, . . . ,WD} as an indexable set, a text x is a
set of words in the dictionary, i.e. x = {W ∈ D},x ⊆ D, which can be equivalently be
represented as a set of indices x′ = {i : Wi ∈ x}.
Fancy way of saying "apperance of word matters, repetition and order doesn't matter".

Example: D = {hello, world, test, is, this, a}, D = 6

Let X = (X1, … ,XD), Xi ∈ {0, 1} be a binary random vector denoting the appearance of i'th
word in the text. (e.g. X(hello world) = (1, 1, 0, 0, 0, 0)).

Our goal is to compute the posterior p(C|X). Similar to lectures, we'll use p to mean probability
mass function when its argument is discrete, and density function when its argument is
continuous.

A general model

Using bayes theorem, we can write the posterior as:

p(C|X) =
p(C, X)

p(X)
.

Since the denominator p(X) does not depend on specific outcome of C, we have
p(C|X) ∝ p(C, X).
In general, we can further factorize p(C, X) into its components with baye's rule:

p(C, X) = p(C)p(X|C) = p(C)p(X1|C)p(X2|X1,C). . . p(Xd|X1, . . .Xd−1,C)

= p(C)p(X1|C)Πd
i=2p(Xi|X1, . . . ,Xi−1,C).

How would this factorization appear as a DGM? Since we have ordered the terms above such
that each term is only conditioned on variables that have appeareed to its left, we can draw the
graphical model accordingly:

"hello world" 
x
= {hello, world}

x′

= {1, 2}

"this is a test" 
x
= {test, is, this, a}

x′

= {3, 4, 5, 6}

"hello hello hello world" 
x′

= {1, 2} = "hello world" = "world hello".

“../img/general_fac.png” could not be found.



Few observations:

Reducing complexity with Naive Bayes model

Learning 2d+1 − 1 parameters is very expensive (computationally and learning-theoretically).
Goal: Reduce parameter through simplifying the graphical model.
Method: Remove all edges between (Xi,Xj), only keep edges originating from C.

What factorization does this model imply?

p(X,C) = p(C)Πd
i=1p(Xi|C)

i.e. p(Xi|X1, . . .Xi−1,C) = p(Xi|C): Xi is independent from Xj for all j ≠ i given C. We can
manipulate the joint distribution through manipulating the DGM!
Number of parameters: 1 + 2d; complexity scale linearly instead of exponentially.

Learning the Naive Bayes model with MLE

Parameterize the model as follow: p(C = 1) = π, p(Xj = 1|C) = θj,c.
Suppose we have N  texts xi ∈ {0, 1}D with labels ci, and wish to learn the parameters. We will
use maximum likelihood estimation as done in CSC311.

This graph has d + 1 nodes (X1 to Xd, and C).

The degree of each node is the same and equal to d - thus, this graph is fully connected!
Every node is a neighbour of every other node.
For node Xi, # of input edges = i.
Size of conditional probability table of each node = 2# input edges+1, which requires
2# input edges parameters.

Total # of parameters: 1 +∑d
i=1 2i = 1 + (2d+1 − 2) = 2d+1 − 1 parameters, which is equal

to the number of parameters needed to specify the joint tensor over d + 1 binary random
variables - this factorization is indeed general

“../img/naive_bayes.png” could not be found.



1. Factorize the log likelihood function:

2. Derive the first term:

3. Factorize and derive the second term:

4. Set derivative to zero and solve:



Markov chains
In lecture, you have seen a first order Markov chain. The "order" of Markov chain refers to the
number of previous states that the current state could depend on.

p(X1:T ) = p(X1)p(X2|X1)p(X3|X2). . . = p(X1)ΠT
t=2p(Xt|Xt−1)

Second order Markov chain:

The earlier images depicts a first-order Markov chain, this is a second-order Markov chain.

Hidden Markov Models (HMMs)
Hidden Markov Model (HMM) is a statistical Markov model in which the system being modeled
is assumed to be a Markov process with unobserved (i.e. hidden) states. It is a very popular
type of latent variable model

where

https://en.wikipedia.org/wiki/Hidden_Markov_model
https://en.wikipedia.org/wiki/Markov_process


the joint probability represented by the graph factorizes according to

p(X1:T ,Z1:T ) = p(Z1:T )p(X1:T |Z1:T ) = p(Z1)
T

∏
t=2

p(Zt|Zt−1)
T

∏
t=1

p(Xt|Zt)

Medical diagnosis
In the models above, we designed generic DGMs based on (usually wrong, but useful)
assumptions. Next, we will see examples where the models are designed based on domain
knowledge (PPML 10.2.3).

Quick Medical Reference has a bipartite structure, with diseases as hidden nodes, and
symptom and other observables as visible nodes. All nodes are binary

Let h = {hs}
570
s=0 denote the hidden nodes, and v = {vt}

4075
t=0  denote the visible variables. Their

joint distribution is can be factorized as:

Zt are hidden states taking on one of K discrete values

Xt are observed variables taking on values in any space



The conditional probability of the symptoms p(vt|hpa(t)) follow a noisy OR model - if any parent
of vt is positive, then vt is also likely to be positive.
More precisely:

Where θst = p(vt = 0|hs = 1,h/s = 0). One way to visualize this is to take a coin flip with head
probability of θst for each disease that is positive, and if all of the coins are heads, then the
symptom will be negative. If any coin flipped tails, then the symptom will be positive.
A "dummy" node h0 is added to represent all "unknown diseases" and is always set to 1. This
allows the model to give non-zero probability to patients who have symptoms but no included
diseases.

The Alarm Network, with 37 random variables relating to vital signs, conditions, and
symptoms, was designed to monitor ICU patients. Each random variable is discrete, with up to
4 states. Since the graph is sparsely connected, the total number of parameters in the graph is
only 504 (much less than 2^37-1). It is small enough to allow inference of marginal distributions
of unobserved nodes when conditioned on sufficient observed nodes.
*You wil see algorithms that perform this inference later in the course.



The connections in this graph are made based on domain knowledge - causal relations that are
known in medicine. For instance, Hypovolemia is a low level of extracellular fluid. The
extracellular fluid is fluid thats drained from the blood into body tissue in the capillaries. They
traverse the lymphatic system, which carries these fluid back into the blood stream through the
superior vena cava. Reduction in this fluid volume can reduce volume of blood reaching the
heart, which decreases stroke volume. The stroke volume, multiplied with the heart rate,
determines cardia output, which in turn determines blood pressure.

Optional reading
I got a bunch of questions about the proof of correctness of the Bayes Ball and the moralization
algorithm. For the proof that the moralization algorithm works, check Proposition 5.13 in this
book

Cowell, R. G., Dawid, P., Lauritzen, S. L., & Spiegelhalter, D. J. (2007). Probabilistic networks
and expert systems: Exact computational methods for Bayesian networks. Springer Science &
Business Media.

For the Bayes Ball algorithm you can refer to the original paper

https://arxiv.org/pdf/1301.7412.pdf

