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Statistical decision theory



Decision making

Framework for understanding many of the procedures we consider.

• Suppose we have an input vector x and a corresponding target (output) value c

with joint probability distribution: p(x , c).

• Our goal is to predict the output label c given a new value for x .

• For now, we focus on classification so c is a categorical variable, but the same

reasoning applies to regression (continuous target).

The joint probability distribution p(x , c) provides a complete summary of uncertainties

associated with these random variables.
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Example: Cancer screening from chest X-ray

Based on the X-ray image, we would like determine if the patient has cancer or not.

• The input vector x is pixel intensities, and the output c represents the presence of

cancer, class C1, or absence of cancer, class C2.

• C1 cancer present

• C2 cancer absent

We can use an ”arbitrary” encoding for these classes C1 and C2, e.g. take: c = 0

correspond to class C1, and c = 1 corresponds to C2.
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Optimal decisions

Decision Problem

Suppose we estimated the joint distribution p(x , c) using some ML method. Decide

whether to give treatment to the patient or not.

• Given a new X-ray image, our goal is to decide which of the two classes that

image should be assigned to. We could compute conditional probabilities of the

two classes, given the input image, for k = 1, 2:

p(Ck |x) =
p(x |Ck)p(Ck)

p(x)
Bayes’ rule.

• Intuitively, pick class with higher posterior probability.

• We now formalize in what sense this choice is optimal.
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Misclassification rate

Decision rule: Divide the input space into regions R1,R2 (decision regions) such that

all points in Rk are assigned to class Ck , k = 1, 2.

Criterion to optimize: Make as few misclassifications as possible.

• Red + green regions: input belongs to class C2,
but is assigned to C1.

• Blue region: input belongs to class C1, but is
assigned to C2.

p(mistake) = p(x ∈ R1, C2) + p(x ∈ R2, C1) =

󰁝

R1

p(x , C2)dx +

󰁝

R2

p(x , C1)dx
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Misclassification rate

Compare the following two decision rules:

• Blue + green area is always included in the p(mistake).

• On the left there are points x ∈ R1 for which p(x , C2) > p(x , C1) (red part)

• Reduce the red area by moving the threshold x̂ to the left.
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Misclassification error

• Misclassification error:

p(mistake) =

󰁝

R1

p(x , C2)dx
󰁿 󰁾󰁽 󰂀

red+green

+

󰁝

R2

p(x , C1)dx
󰁿 󰁾󰁽 󰂀

blue

and the decision regions R1 and R2 are disjoint.

• Therefore, for a particular input x , if p(x , C1) > p(x , C2), then we assign x to class

C1. I.e. R1 = {x : p(x , C1) > p(x , C2)}.

Minimizing misclassification

Since p(x , Ck) = p(Ck |x)p(x), in order to minimize the probability of making

mistake, we assign each x to the class for which the posterior probability p(Ck |x) is
largest. This minimizes the misclassification rate.
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Expected loss

Simply minimizing the missclassification rate may not be desirable.

• We incorporate a loss function to measure the loss incurred by taking any of the

available decisions.

• Suppose that for x , the true class is Ck , but we assign x to class Cj and incur loss

of Lkj ((k , j)-th element of a loss matrix).

Consider medical diagnosis example: example of a loss matrix:

Thus the expected loss is given by

E[L] =
󰁛

k

󰁛

j

󰁝

Rj

Lkj p(x , Ck)dx
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New goal:Minimize expected loss

Therefore, we want to minimize

E[L] =
󰁛

k

󰁛

j

󰁝

Rj

Lkj p(x , Ck)dx

=
󰁛

j

󰁝

Rj

󰁛

k

Lkj p(x , Ck)dx .

Define gj(x) =
󰁓

k Lkj p(x , Ck). Notice that gj(x) ≥ 0 and

E[L] =
󰁛

j

󰁝

Rj

gj(x)dx

Thus, minimizing E[L] is equivalent to choosing

Rj = {x : gj(x) < gi (x) for all i ∕= j}.
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Simplifying further

We can also use the product rule p(x , C1) = p(C1|x)p(x) and reduce the problem to:

Discriminant rules:

Find regions Rj such that the following is minimized:

󰁛

k

Lkjp(Ck |x).

That is

Rj =
󰁱
x :

󰁛

k

Lkj p(Ck |x) <
󰁛

k

Lki p(Ck |x) for all i ∕= j
󰁲
.
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Reject option

For the regions where we are relatively uncertain about class membership, we do not

have to make a decision.

When the conditional class probabilities fall below θ, we refuse to make a decision.
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Loss functions for regression

• Consider an input/target setup (x , t) where the target (output) is continuous

t ∈ R, and the joint density is p(x , t).

• We aim to find a regression function y(x) ≈ t which maps inputs to the outputs.

• Consider the squared loss function L between y(x) and t to assess the quality of

our estimate L(y(x), t) = (y(x)− t)2.

Goal:

What is the best function y(x) that minimizes the expected loss?

E[L] =
󰁝 󰁝

L(y(x), t)p(x , t)dxdt.
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Minimizing expected loss: Best regression function

We add and subtract E[t|x ] and write

E[L] =
󰁝 󰁝

(y(x)− t)2p(x , t)dxdt

=

󰁝 󰁝
(y(x)− E[t|x ] + E[t|x ]− t)2p(x , t)dxdt

=

󰁝 󰁝
(y(x)− E[t|x ])2p(x , t)dxdt +

󰁝 󰁝
(E[t|x ]− t)2p(x , t)dxdt

+ 2

󰁝 󰁝
(y(x)− E[t|x ])(E[t|x ]− t)p(x , t)dxdt

The last term is zero since󰁝 󰁝
(y(x)− E[t|x ])(E[t|x ]− t)p(x , t)dxdt

=

󰁝 󰁝
(y(x)− E[t|x ])(E[t|x ]− t)p(t|x)p(x)dxdt

=

󰁝
(y(x)− E[t|x ])

󰁱󰁝
(E[t|x ]− t)p(t|x)dt

󰁿 󰁾󰁽 󰂀
=0

󰁲
p(x)dx = 0
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Best regression function

• We showed that the expected loss is given by the sum of two non-negative terms

E[L] =
󰁝 󰁝

(y(x)− E[t|x ])2p(x , t)dxdt +
󰁝 󰁝

(E[t|x ]− t)2p(x , t)dxdt.

• The second term does not depend on y(x) thus choosing the best regression

function y(x) is equivalent to minimizing the first term on the right hand side.

• This term is always non-negative and exactly zero if

y(x) = E[t|x ].

• The second term is the expectation of the conditional variance of t|x . It
represents the intrinsic variability of the target data and can be regarded as noise.
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Summary: Decision making

• Depending on the application, one needs to choose an appropriate loss function.

• Loss function can significantly change the optimal decision rule.

• One can always use the reject option and not make a decision.

• In case of regression, the optimal map between x and t corresponds to the

conditional expectation E[t|x ].

• We focuse on classification/regression but similar framework can be used to

evaluate any statistical procedure (e.g. estimation).
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Directed graphical models



Next:

• Graphical models notation

• Conditional independence on directed acyclic graphs (DAGs)

• Bayes Ball
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Joint distributions

• The joint distribution of N random variables (x1, x2, ..., xN) is a very general way

to encode knowledge about a system.

• Assume xi ∈ {0, 1} are binary, then it requires 2N − 1 parameters to specify the

joint distribution

p(x1, x2, ..., xN).

• This can be also written as

p(x1, x2, . . . , xN) =
N󰁜

j=1

p(xj |x1, x2, . . . , xj−1)

for any ordering of the variables, where p(x1|x0) = p(x1).

Powerful modelling principle

Exploit dependencies among variables and reduce the number of parameters! 17



Conditional Independence

• Assume there are N random variables x1, x2, ..., xN .

• For set A ⊂ {1, 2, ...,N}, we denote by xA = {xi : i ∈ A}.
• For disjoint A,B ,C , if random variables xA, xB are conditionally independent

given xC , we write

xA⊥xB | xC

• The following conditions are equivalent

◮ xA ⊥ xB |xC
◮ p(xA, xB |xC ) = p(xA|xC )p(xB |xC )
◮ p(xA|xB , xC ) = p(xA|xC )
◮ p(xB |xA, xC ) = p(xB |xC )

18



Directed Acyclic Graphical Models (Bayes’ Nets)

• A directed acyclic graphical model (DAG) encodes a

particular form of factorization of the joint distribution.

• Variables are represented by nodes, and edges represent

direct dependence.

DAG induces the following factorization of the joint distribution:

p(x1, . . . , xN) =
N󰁜

i=1

p(xi |x1, . . . , xi−1) =
N󰁜

i=1

p(xi |parents(xi ))

where parents(xi ) is the set of nodes with edges pointing to xi .
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Example: Joint factorization induced by a DAG

Recall: In a DAGs p(x1, x2, . . . , xN) =
󰁔N

i=1 p(xi |parents(xi )).

Consider the following graph:

It induces the following factorization of the joint distribution:

p(x1, x2, ..., x6) = p(x1)p(x2|x1)p(x3|x1)p(x4|x2)p(x5|x3)p(x6|x2, x5)
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Conditional Probability Tables (CPT)

In our example, suppose each xi is a binary random variable. How many parameters

does it take to represent this joint distribution?

• For example, 2x2 CPT for the node x4

corresponds to p(x4|x2) requires 2
parameters.

• Each CPT with Ki parents requires

2Ki parameters. In total,󰁓
i 2

Ki ≤ N2maxKi parameters.

• If we allow all possible dependencies

(fully-connected DAG), we need

2N − 1 parameters.

This gives a big reduction in storage and computations; here 63 vs 13.
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Conditional Independence in DAGs

D-separation (directed-separation) is a notion of connectedness in DAGs in which two

sets of nodes may or may not be connected conditioned on a third set of nodes.

• Fix a DAG over N nodes 1, 2, . . . ,N.

• This DAG defined factorization of the joint distribution p(x1, . . . , xN).

• This factorization implies some conditional independence that can be deducted

from d-separation: if C d-separates A and B in the DAG then xA⊥xB |xC .

We still have not defined d-separation. . .

Important reduction

• We have xA⊥xB |xC if and only if xa⊥xb|xC for all a ∈ A, b ∈ B .

• Also C d-separates A and B if and only if it d-separates each a ∈ A and b ∈ B .
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Causal Chain

p(z |x , y) = p(x , y , z)

p(x , y)

=
p(x)p(y |x)p(z |y)

p(x)p(y |x)
= p(z |y) X and Z d-separated given Y .

image credit Abbeel & Klein
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Common Cause

Where we think of y as the ”common cause” of the two independent effects x and z .

Question: When we condition on y , are x and z independent?

Answer: From the graph, we get

p(x , z |y) = p(x , y , z)

p(y)
=

p(y)p(x |y)p(z |y)
p(y)

= p(x |y)p(z |y) yes!

Thus, Y d-seperates X and Z like in the previous case. 24



Explaining Away (Common Effect)

Question: When we condition on y , are x and z independent?

Answer: From the graph, we get

p(z |x , y) = p(x)p(z)p(y |x , z)
p(x)p(y |x)

=
p(z)p(y |x , z)

p(y |x) ∕= p(z |y)

images credit Abbeel & Klein
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Bayes Ball Algorithm

The Bayes Ball algorithm determes conditional independence in a DAG.

• To check if xA⊥xB |xC we need to check if every variable in A is d-seperated from

every variable in B conditioned on all variables in C .

In general, the algorithm works as follows:

1. Shade all nodes xC (these are observed)

2. Place ”balls” at each node in xA (or xB)
3. Let the ”balls” ”bounce” around according to some rules

◮ If any of the balls reach any of the nodes in xB from xA then xA ∕⊥xB |xC
◮ Otherwise xA⊥xB |xC

If any of the vertices in xA are connected by an edge to a vertex in xB , no conditional

independence possible.
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Bayes Ball: Rules for active/inactive triples

X Y Z

X

Y

Z

X Z

Y

(a)

(c)

(e)

 

amassa are

appossaddaffee

X Y Z

ZX

Y

X Z

Y

(b)

(d)

(f)

 

Move from X to Z (or Z to X ) crossing Y . . .

• Arrows: paths the balls can travel

• Arrows with bars: paths the balls cannot travel

• Notice balls can travel opposite to edge directions!

Boundary cases (Y is a leaf):

(a)

X Y

(b)

X Y

One motivating example:

X Z

Y

Y’
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Example I: Explaining Away

If y or any of its descendants is shaded, the ball passes through.
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Example II: Large DAG

In the following graph, is x1⊥x6|{x2, x3}?
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Example II: Solution

Yes, by the Bayes Ball algorithm.
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Example III:

In the following graph, is x2⊥x3|{x1, x6}?
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Example III:

No, by the Bayes Balls algorithm.
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Summary

• DAGs are great for encoding conditional independencies.

• They can reduce the number of parameters significantly.

• Conditional independence between two sets of variables on a DAG can be found

using the Bayes ball method.

• Next lecture: Markov Random Fields.
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