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Introduction

These lecture notes are intended to offer complement to the first part
of STA3000. In designing this course we aimed at giving a modern
treatment of mathematical statistics. Thus, we discuss important
topics in theoretical statistics, like exponential families, statistical
decision theory, or empirical processes and develop basic intuition
behind what is multivariate statistics and what are its basic problems
and techniques.

These goals heavily affected the exposition. Our approach is to
use the multivariate notation whenever possible, to emphasize con-
nections to convex analysis, and to present some results in the high-
dimensional statistics. We will try to show that important of convex
analysis for statistical theory goes much beyond convex optimiza-
tion used for the maximum likelihood estimation or its regularized
versions.

The whole material is divided into twelve 3-hour lectures. The
notes contain more detailed material than presented in the lecture.
Preparing these lecture notes we benefited from several excellent
textbooks or lecture notes:

1. Robert W. Keener, Theoretical statistics.

2. Lehmann, Romano, Testing Statistical Hypotheses.

3. Sundberg, Statistical Modelling by Exponential Families.

4. Wainwright, High-dimensional statistics.

5. Martin, Lecture Notes on Advanced Statistical Theory.

6. Rigolett, High-dimensional Statistics.

7. van der Vaart, Asymptotic Statistics

Special thanks go to Morris Greenberg, Ichiro Hashimoto, Vishakh
Patel, Emily Somerset, Qiang Sun, Leonard Wang, and Zhenghang
Xu for helping me to improve the notes.
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Part I

Topics in Statistical
Inference





1
Exponential families (2 weeks)

Exponential families were discussed briefly in the first semester. The
goal of this section is to provide a more detailed treatment of multi-
variate exponential families in connection with convexity, sufficiency,
and hypothesis testing. This chapter is mostly based on two books on
exponential families by Lawrence D. Brown1 and by Rolf Sundberg

1 Lawrence D. Brown. Fundamentals
of statistical exponential families with
applications in statistical decision theory,
volume 9 of Institute of Mathematical
Statistics Lecture Notes—Monograph
Series. Institute of Mathematical
Statistics, Hayward, CA, 1986

2, and on the lecture notes „Topics in Information Geometry” of our

2 Rolf Sundberg. Statistical modelling
by exponential families, volume 12 of
Institute of Mathematical Statistics Text-
books. Cambridge University Press,
Cambridge, 2019

colleague Ting-Kam Leonard Wong.

1.1 Definition and examples

Basic definition and univariate examples appeared in the first part of
the lecture. We focus on developing uniform notation in the multi-
variate case. Consider a random vector X = (X1, . . . , Xm) with values
in the state space X ⊆ Rm equipped with a σ-finite measure µ.3 3 Typically the measure µ is either the

counting measure or the Lebesgue
measure.Definition 1.1.1. A parametric statistical model for X is an exponential

family with canonical parameter vector θ = (θ1, . . . , θd) and canonical
statistics t(x) = (t1(x), . . . , td(x)), if it admits a density f with respect to
µ and f has the form

f (x; θ) = h(x) exp
{〈

θ, t(x)
〉
− A(θ)

}
. (1.1)

Formally, we define X as the smallest closed set satisfying Pθ(X ∈
X ) = 1. This definition does not depend on the choice of θ because
all Pθ have the same support.

Remark 1.1.2. For notational purposes it is often easier to subsume h(x)
into the underlying measure and use the formulation

f (x; θ) = exp
{〈

θ, t(x)
〉
− A(θ)

}
. (1.2)

Another useful reformulation is when h(x) in (1.1) is itself a density. In this
case A(0) = 0.
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Example 1.1.3 (Bernoulli variable and logistic regression). If X ∼
Bern(p) with p ∈ (0, 1) we can write its distribution in the exponential
form. For x ∈ {0, 1} we have

f (x; p) = px(1− p)1−x = exp
{

x log
(

p
1− p

)
+ log(1− p)

}
.

We have t(x) = x and the canonical parameter is the logit of p:

logit(p) := log
p

1− p
= θ.

We also have h(x) = 1 and A(θ) = log(1 + eθ). In logistic regression, we
model logit(p) as a linear function of regressors.

Example 1.1.4 (Univariate Gaussian). If X ∼ N(µ, σ2) then

f (x; µ, σ2) =
1√
2πσ

e−
(x−µ)2

2σ2 =
1√
2π

e
− x2

2σ2 +
xµ

σ2 +
1
2

(
log( 1

σ2 )−
µ2

σ2

)
,

which can be written as a two dimensional exponential family with

t(x) =
(

x,− x2

2

)
, θ =

(
µ

σ2 ,
1
σ2

)
.

Then

h(x) =
1√
2π

, A(θ) = −1
2

(
log(θ2)−

θ2
1

θ2

)
.

If X1, . . . , Xn ∼ N(µ, σ2) are i.i.d. then the joint distribution of this sample
X1:n = (X1, . . . , Xn) is also Gaussian with the same canonical parameters
and the density

f (x1:n; θ) =
1

(2π)n/2 e
− 1

2σ2 ∑i x2
i +

µ

σ2 ∑i xi+
n
2

(
log( 1

σ2 )−
µ2

σ2

)

and so it forms an exponential family with the same canonical parameter
and with the sufficient statistics

(
∑i xi,− 1

2 ∑i x2
i

)
. We know, of course,

that this distribution is the n-variate Gaussian with parameters µ1 and
σ2 In.

Consider the function

Z(θ) :=
∫
X

h(x) exp
{〈

θ, t(x)
〉}

µ(dx), (1.3)

where we put Z(θ) = +∞ if this integral is infinite. Because f is a
density function, it follows that

A(θ) = log Z(θ).
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The function A(θ) plays a special role in this theory and it has many
names: the log-partition function, Laplace transform, or the cumulant
function. We define the space of canonical parameters as

Θ = {θ ∈ Rd : Z(θ) < +∞}. (1.4)

It is implicit in (1.1) that θ ∈ Θ. An exponential family model is then
specified by possibly constraining to Θ0 ⊆ Θ. The dimension d of θ is
called the order of this exponential family.

Example 1.1.5. Consider the univariate Gaussian case in Example 1.1.4.
Since µ ∈ R, σ2 > 0, the space of canonical parameters is Θ = {(θ1, θ2) :
θ1 ∈ R, θ2 > 0}. Taking µ = 0 corresponds to fixing a linear subspace
Θ0 = {θ ∈ Θ : θ1 = 0}.

In our basic set-up both the parameters and the sufficient statistics
lie in Rd but exactly the same definition can be provided for a gen-
eral d-dimensional vector space with a given inner product. The most
relevant example is when the underlying vector space is the space Sm

of all symmetric m×m matrices. Here the standard inner product is
given by 〈A, B〉 = tr(AB). Denote by Sm

+ the set of positive definite Show that tr(AB) = ∑ij AijBij

matrices in Sm
+.

Example 1.1.6 (Centered multivariate Gaussian distribution). Con-
sider the m-variate Gaussian distribution with the zero mean vector and
covariance matrix Σ ∈ Sm

+. Let K = Σ−1. The density with respect to the
Lebesgue measure is

f (x; K) =
1

(2π)m/2

√
det(K) exp{− 1

2 xᵀKx}.

This is an exponential family with h(x) = 1
(2π)m/2 , A(K) = − 1

2 log det(K).

Denoting t(x) = − 1
2 xxᵀ ∈ Sm we get

− 1
2 xᵀKx = tr(Kt(x)) = 〈K, t(x)〉.

← Exercise 1.9.1
← Exercise 1.9.2Given a sample x1:n = (x1, . . . , xn) from a distribution with density

f (x; θ), the log-likelihood function is

`n(θ) :=
1
n

n

∑
i=1

log f (xi; θ).

Note that we normalize the log-likelihood by n to get the interpreta-
tion as the expectation of log f (x; θ) under the sample distribution.

Proposition 1.1.7 (The log-likelihood function). If x1:n = (x1, . . . , xn) ← Exercise 1.9.3

is a sample from the exponential family (1.1) then, denoting

µn =
1
n

n

∑
i=1

t(xi),
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the log-likelihood takes the form

`n(θ) = 〈θ, µn〉 − A(θ) + (constant). (1.5)

In the statistical/ML practice we typically go the other way around.
We first define a suitable sufficient statistics that should contain all
the relevant information of the data. This choice defines then an ex-
ponential family.

Example 1.1.8 (Exponential random graph model). Each graph can
be associated to its adjacency matrix A ∈ {0, 1}n×n. This is a symmetric
matrix with zeros on the diagonal and so each graph is an element x ∈ X =

{0, 1}(n
2) with entries xij for 1 ≤ i < j ≤ n. For the simplest example,

consider t(x) = ∑i<j xij ∈ R, which is simply the number of edges of the
underlying graph. The corresponding exponential family has one parameter
θ and is of the form

f (x; θ) = exp

{
θ ∑

i<j
xij − A(θ)

}
∝ ∏

i<j
eθxij .

In other words, each edge xij is an independent Bernoulli variable with
the success probability p = eθ/(1 + eθ) and computing the normalizing
constant is easy. This is the famous Erdős-Renyi model. Other statistics of
the graph will give different exponential models.

Another model for binary variables that uses the graph structure is
the Ising model.

Example 1.1.9 (The Ising model). Let G be a graph over m nodes repre-
senting m binary random variables Xi ∈ {−1, 1} for i = 1, . . . , m. Consider
the model4 4 The statistical interpretation of this

modelling construction in terms of
conditional independence comes from
the Hammersley-Clifford theorem.

f (x; θ) ∝ exp{∑
ij∈G

θijxixj}.

Here computing the normalizing constant is generally hard. This and sim-
ilar examples motivated developing methods that do not rely on computing
this normalizing constant (e.g. variational inference).

← Exercise 1.9.4
← Exercise 1.9.5There are many models with a given sufficient statistics. What is

then special about the exponential families? To answer this question
we need to develop more theory and we will see that this is con-
nected to maximizing the entropy; c.f. Theorem 1.6.5.

1.2 Basic results

We assume throughout that there is no hyperplane H = {x :
〈α, t(x)〉 = c} such that Pθ(H) = 1. In other words, no entry For example 〈(1, 2), (x1, x2)〉 = x1 +

2x2 = 1 is a simple hyperplane in R2.of the vector t can be written as an affine combination of the re-
maining entries. Similarly, we assume that there is no hyperplane
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{θ : 〈θ, β〉 = c} containing Θ. An exponential family (1.1) with these
two properties is called minimal. A canonical example of a family
that is not minimal appears for discrete data.

Example 1.2.1 (Bernoulli variable). The Bernoulli distribution in Ex-
ample 1.1.3 could be alternatively written in form of a two-dimensional
exponential family

p(x) = exp{log(1− p)1(x = 0) + log(p)1(x = 1)} for x ∈ {0, 1}

with t(x) = (1(x = 0), 1(x = 1)), θ = (log(1− p), log(p)), A(θ) = 0.
Clearly, this representation is not minimal as 1(x = 0) + 1(x = 1) = 1.
An easy fix is to define the new (minimal) sufficient statistics x = 1(x = 1)
and rewrite the above using the fact that 1(x = 0) = 1− x. This gives the
representation in Example 1.1.3.

A slightly more complicated version of this example appears in
the vector case. But the idea is similar and the difficulty is purely
notational.

Example 1.2.2 (Binary vectors). Consider a binary vector X = (X1, . . . , Xm)

with the probability distribution p(x) for x ∈ X = {0, 1}m. As in the
Bernoulli case, we can write

p(x) = exp{〈θ, t(x)〉} for x ∈ X ,

where θ, t(x) ∈ RX . By this, we mean that θ and t(x) are themselves
functions on X : θ(y) and t(x, y) for y ∈ X , such that θ(y) = log p(y),
and

t(x, y) = 1(x = y) =

1 if x = y,

0 otherwise.

The inner product in RX simply means

〈θ, t(x)〉 = ∑
y∈X

θ(y)t(x, y)

However ∑x∈X t(x) = 1 ∈ RX so this representation is not minimal.
We reduce the dimension by rewriting

t(0) = 1− ∑
x∈Xr{0}

t(x).

Show that this defines a minimal exponential family with Θ = RXr{0} and
canonical parameters θ(y) = log p(y)− log p(0) and

A(θ) = log

(
1 + ∑

x 6=0
e〈θ,t(x)〉0

)
,

where the inner product 〈·, ·〉0 is defined in the space RXr{0}, that is,

〈θ, t(x)〉0 = ∑
y 6=0

θ(y)t(x, y).
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Making sure that there is no hyperplane containing t(X ) can be
easily done by changing the sufficient statistics as in the examples
above5. By redefining Θ if necessary, we can also always without loss 5 If one coordinate of t(X ) can be

written as an affine combination of
the others, we simply replace this
coordinate with this combination
obtaining a sufficient statistics with one
dimension lower. This process can be
repeated.

assume that the canonical parameters are not contained in an affine
subspace.

← Exercise 1.9.6

Example 1.2.3 (Gaussian graphical models). Consider the centered
m-variate Gaussian model in Example 1.1.6 with the canonical parameter
K = Σ−1 ∈ Θ = Sm

+. Fix a graph G over m nodes and the subset

ΘG = {K ∈ Θ : Kij = 0 if ij /∈ G}.

This linear constrain defines an exponential family with sufficient statistic
(− 1

2 xixj)ij∈G. The corresponding model, is typically called the Gaussian ← Exercise 1.9.5

graphical model, which forms a popular dimension reduction technique. Its
relevance in practice comes from the fact that in the Gaussian distribution
Kij = 0 if and only Xi is independent of Xj given all the remaining variables
in the system.6 6 Caroline Uhler. Gaussian graphical

models. In Handbook of Graphical Models,
pages 217–238. CRC Press, 2018Remark 1.2.4. The rest of this section is not esssential if you skip Sec-

tion 1.4 and Section 1.5.

Definition 1.2.5. A minimal exponential family is called full if its parame-
ter space is maximal, that is, Θ0 equals the canonical space Θ.

Some relevant examples of a non-full exponential family are when
the parameter space Θ0 is a convex subset of Θ (convex exponential
families) or when it forms a lower dimensional manifold (curved
exponential families). Note however that if this manifold is a linear
subspace we again get a full exponential family after a reparametriza-
tion. ← Exercise 1.9.6

Recall from the first semester that a statistic t(x) is sufficient for
θ if the conditional distribution of x given t(x) does not depend
on θ. Sufficiency of t(x) in exponential families can by argued by
Proposition 1.2.7 below or directly by Fisher-Neyman Factoriza-
tion Theorem, which states that t(x) is sufficient for θ if and only if
p(x; θ) = h(x)gθ(t(x)) for some h, gθ. Typically the canonical statis-
tics is also minimal sufficient, that is, for any other sufficient statistic
t′(x),

t′(x) = t′(y) =⇒ t(x) = t(y).

Proposition 1.2.6 (Minimal sufficiency of t). In a full exponential family
the statistic t(x) is minimally sufficient for θ.

Proof. Consider any other sufficient statitsics t′. If t′(x) = t′(y) then
the factorization theorem shows that f (x,θ)

f (y;θ) is independent of θ. On
the other hand

f (x, θ)

f (y; θ)
=

h(x)
h(y)

exp{〈θ, t(x)− t(y)〉},
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which can be constant in θ if and only if 〈θ, t(x)− t(y)〉 is constant.
Because the family is full (in particular θ is not contained in an affine
subspace), this happens if and only if t(x) = t(y).

Note that in the proof we only used that θ is not contained in an
affine space, so this result generalizes to curved exponential families.

Proposition 1.2.7 (Distribution of the sufficient statistic). Suppose
X has distribution in the exponential family (1.1). Then, under certain
regularity conditions, the distribution of t = t(X) is

f (t; θ) = g(t) exp{〈θ, t〉 − A(θ)}, (1.6)

where the structure function g(t) in the discrete case is In the discrete case the proof is elemen-
tary.

g(t) = ∑
t(x)=t

h(x),

and in the continuous case The last expression is written rather
informally. The integral is computed
with respect to the measure on the
set {x : t(x) = t} induced from the
Lebesgue measure. Here the proof is
non-trivial and we skip it.

g(t) =
∫

t(x)=t
h(x)dx.

Example 1.2.8. Consider a centered Gaussian distribution with Σ ∈ Sm
+.

Given a random sample x1, . . . , xn from this distribution, the statistics
nµn := ∑n

i=1 xix
ᵀ
i has the Wishart distribution.

1.3 Convexity and the MLE

Recall a basic version of the Hölder’s inequality.

Proposition 1.3.1 (Hölder’s inequality). If f , g are two functions on
a measurable space (X , µ) then for every p, q ∈ [1, ∞] such that 1/p +

1/q = 1 we have

∫
X
| f (x)g(x)|µ(dx) ≤

(∫
X
| f (x)|pµ(dx)

)1/p (∫
X
|g(x)|qµ(dx)

)1/q
. (1.7)

Moreover, if p, q > 1 then (1.7) holds as equality if and only if | f |p and
|g|q are linearly dependent in L1(X ) meaning that there exist real numbers L1(X ) is the vector space of all func-

tions f on X with the property that
‖ f ‖1 :=

∫
X | f (x)|µ(dx) is finite. For-

mally, we identify two functions that
are equal almost surely.

α, β ≥ 0 such that α| f |p = β|g|q µ-almost everywhere.

Here is an important fundamental fact about exponential families.

Theorem 1.3.2. For every exponential family (1.1) with Θ defined in (1.4)
we have:

(i) Θ is a convex set and the function A(θ) is convex on Θ.

(ii) Pθ1 = Pθ2 if and only if

A((1− λ)θ1 + λθ2) = (1− λ)A(θ1) + λA(θ2) for all λ ∈ (0, 1).
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(iii) If the exponential family is minimal then A is strictly convex on Θ and
Pθ1 6= Pθ2 if θ1 6= θ2 ∈ Θ.

(iv) A is lower semi-continuous on Rd and is continuous in the interior of For the definitions and basic results see
Section A.2.2.Θ.

Proof. (i) Let θ1, θ2 ∈ Θ, λ ∈ (0, 1) and denote θλ = (1− λ)θ1 + λθ2.
By the Hölder’s inequality with p = 1/(1− λ) and q = 1/λ:

Z(θλ) =
∫

h(x)e〈θλ ,t(x)〉µ(dx)

=
∫ (

h(x)e〈θ1,t(x)〉
)1−λ (

h(x)e〈θ2,t(x)〉
)λ

µ(dx)

≤
(∫

h(x)e〈θ1,t(x)〉µ(dx)
)1−λ (∫

h(x)e〈θ2,t(x)〉µ(dx)
)λ

= Z(θ1)
1−λZ(θ2)

λ.

Taking the logs we get convexity of A. Now convexity of Θ follows
easily.

(ii) The Hölder’s inequality above is strict unless

〈θ1 − θ2, t(x)〉 ≡ const (µ a.s.). (1.8)

This last assertion is equivalent to Pθ1 = Pθ2 .
(iii) If (1.8) holds for some θ1 6= θ2 then the exponential family is

not minimal.
(iv) By Fatou’s lemma Z(θ) is lower semicontinuous and so A(θ)

is lower semicontinuous. Any convex function defined and finite on a
convex set Θ ⊂ Rd must be continuous on the interior of Θ. ← Exercise B.2.10

The following definition will be important in the rest of this chap-
ter.

Definition 1.3.3. A minimal exponential family is regular if its canonical
parameter space Θ is open.

In the finite discrete case we are always regular. ← Exercise 1.9.7

Most of the exponential families you will ever encounter are reg-
ular. But Θ does not need to be always open. An instance of a non-
regular exponential family is given by the inverse Gaussian7. 7 See Section 3.2.1 in Rolf Sundberg’s

book

Proposition 1.3.4. In a regular exponential family, A(θ) is smooth and

∇A(θ) = Eθ(t(X)) =: µ(θ) (1.9)

∇2 A(θ) = varθ(t(X)) =: V(θ). (1.10)

Taking higher derivatives, we obtain higher cumulants of t(X).
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Proof. Note that

K(s) := A(θ0 + s)− A(θ0) = log Eθ0 e〈s,t(x)〉,

which shows that K(s) is the cumulant generating function of t(X)

with respect to the distribution Pθ0 . Since θ0 is an interior point of Θ,
K(s) is well-defined in a neighbourhood of zero and so all cumulants
exist (see, for example, p. 267 in 8). Using the chain rule, we get 8 Patrick Billingsley. Convergence of

probability measures. John Wiley & Sons,
2013

that, for any r ≥ 1, the r-th order derivatives satisfy ∇r
s K(s) =

∇r
θ A(θ0 + s), where the notation ∇r is hopefully intuitive and it

denotes a d× · · · × d array with the (i1, . . . , ir)-th entry:

(∇r
s K(0))i1···ir =

∂r

∂si1 · · · ∂sir
K(0), (∇r

θ A(θ0))i1···ir =
∂r

∂θi1 · · · ∂θir
A(θ0).

By taking s = 0, we obtain

∇r
s K(0) = ∇r

θ A(θ0), (1.11)

The expression on the left in (1.11) gives precisely the r-th order
cumulants of t(X). If r = 1 this is Eθ0(t(X)) and if r = 2 then this is
varθ0(t(X)).

If A(θ) is smooth then log f (x; θ) = 〈θ, t(x)〉 − A(θ) is smooth too.
In this case the Fisher information matrix satisfies

I(θ) := −Eθ(∇2
θ log f (x; θ)) = ∇2

θA(θ).

Note that the observed information

J(θ) := −∇2
θ`n(θ) = I(θ)

and so, in particular, it does not depend on the data. We obtain the
following result.

Proposition 1.3.5. In a regular exponential family, the log-likelihood
function, given in (1.5), is a smooth and strictly concave function of the
canonical parameter θ. The score function U(θ) = ∇`n(θ) satisfies

U(θ) = µn − µ(θ)

and the observed information J(θ) equals the expected (Fisher) information
I(θ), and they are both given by the variance of t,

I(θ) = J(θ) = V(θ).

Recall that X is formally defined as the support of Pθ. Define K to
be the convex hull of the image t(X ):

K := conv(t(X )). (1.12)
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For example, for the multivariate Gaussian distribution in Exam-
ple 1.1.6, x ∈ Rm and so t(x) = − 1

2 xx> is a rank-one negative
semi-definite matrix. In this case, the convex hull of all such matrices,
namely K, is the cone of all negative semidefinite matrices.

The next results offers an alternative parametrization for the expo-
nential model.

Proposition 1.3.6. In a minimal regular exponential family:

(i) The mapping µ : Rd → Rd given by θ 7→ ∇A(θ) is one-to-one on Θ.

(ii) The log-likelihood function with data µ ∈ K has a maximum in Θ if
and only if µ ∈ µ(Θ) and then the maximum θ is given uniquely as
θ = µ−1(µ).

(iii) µ(Θ) = int(K) and so in particular µ(Θ) is open.

Proof. (i) By Theorem 1.3.2, minimality implies that A is strictly con-
vex. Thus, for every m ∈ Rd, the function 〈θ, m〉 − A(θ) is strictly
concave. In particular, it has at most one stationary point in Θ, that
is, at most one θ ∈ Θ such m = ∇A(θ).

(ii) This is just (i) rephrased.
(iii) To get the first inclusion µ(Θ) ⊆ int(K), we first show that

µ(Θ) ⊆ K, where the latter denotes the closure of K. For every
θ ∈ Θ and for every c ∈ R, if there exists u ∈ Rd such that
〈u, t(X)〉 ≤ c almost surely (t(X ) is contained in the given half-space)
then 〈u, Eθ(t(X))〉 ≤ c for every θ ∈ Θ. This implies that if a half-
space H contains K then it also contains µ(Θ). The intersection of
all such halfplanes is equal to K; this is a standard application of the
Hyperplane Separation Theorem B.1.3. This shows that µ(Θ) ⊆ K. To ← Exercise B.1.4

prove that µ(Θ) ⊆ int(K), we argue by contradiction. Suppose that
µ(θ0) for some θ0 ∈ Θ lies in the boundary of K, ∂K = Kr int(K).
Then, again by the Hyperplane Separation Theorem, there exists a
closed halfplane H = {µ : 〈u, µ〉 ≤ c} such that int(K) ⊆ H but
µ(θ0) ∈ ∂H. In particular,

Z :=
〈

u, t(X)− µ(θ0)
〉
≤ 0 almost surely.

Note however that, since Eθt(X) = µ(θ), Eθ0 Z = 0, which implies
that Z = 0 Pθ0 -almost surely. This however contradicts minimality of
the exponential family. We conclude that µ(Θ) ⊆ int(K).

It remains to show that the opposite inclusion int(K) ⊆ µ(Θ) also
holds. We again argue by contradiction. Let t0 ∈ int(K)r µ(Θ) then
the equation t0 = ∇A(θ) has no solution, or equivalently, the log-
likelihood function `(θ) = 〈θ, t0〉 − A(θ) is not bounded above on Θ.
To get a contradiction, fix any θ0 ∈ Θ and consider half-lines

Lu := {θλ = θ0 + λu : λ ≥ 0}.
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Now Lu can be either not entirely contained in Θ (case 1) or it can
be contained in Θ (case 2). We will show that over each Lu the value
of −`(θλ) goes to infinity as λ → ∞ (in case 1) or as we approach
the boundary of Θ (in case 2). In consequence, maximizing ` over Θ
can be reduced to a compact subset {θ : `(θ) ≥ `(θ0)} and thus the
optimum must exist. But then it must be of the form t0 = ∇A(θ̂)

leading to a contradiction.
Case 1: Since the half-line Lu is not contained in Θ, for some λ0

the point θλ0 lies on the boundary of Θ. Since Θ is open, A(θλ0) = ∞
and hence `(θλ0) = −∞. Thus −`(θλ)→ ∞ as λ→ λ0.

Case 2: In this case we can take λ → ∞ without leaving Θ. We will
still show that −`(θλ)→ ∞. Note that

e−`(θλ) = Z(θλ)e−〈θλ ,t0〉 =
∫
X

h(x)eλ〈u,t(x)−t0〉e〈θ0,t(x)−t0〉µ(dx).

Denote the integrand by I(λ). Define

A+ = {x ∈ X : 〈u, t(x)− t0〉 > 0},
A0 = {x ∈ X : 〈u, t(x)− t0〉 = 0},

A− = {x ∈ X : 〈u, t(x)− t0〉 < 0},

and note that A+, A0, A− form a partition of X . The integrand I(λ) is
always non-negative and it is increasing in λ on A+, constant on A0,
and decreasing on A−. The monotone convergence theorem assures that
we can pass with the limit of λ inside the integral, namely

lim
λ→∞

∫
A−

I(λ)µ(dx) = 0,

lim
λ→∞

∫
A0

I(λ)µ(dx) =
∫

A0

e〈θ0,t(x)−t0〉µ(dx) < ∞,

and
lim

λ→∞

∫
A+

I(λ)µ(dx) = ∞.

Unless A+ has measure zero, we conclude that limλ→∞ e−`(θλ) = ∞
or equivalently limλ→∞−`(θλ) = ∞.

To conclude the proof, it remains to show that A+ has positive
measure. If the measure is zero, 〈u, t(x)〉 ≤ 〈u, t0〉 for all x ∈ X .
We will again show that there must be equality, which contradicts
minimality. This is where we use the fact that t0 is an interior point
of K. Let x1 ∈ X and consider the half-line from t(x1) through t0.
If this half-line crosses t(X ) at some other point t(x2) after crossing
t0, we can write t0 as a convex combination of t(x1) and t(x2), which
implies that 〈u, t(x1)〉 = 〈u, t(x2)〉 = 〈u, t0〉. If this half-line does
not contain any other point in t(X ), this whole half-line must be
contained in int(K). Take any other point t(x2) ∈ int(K) on the half-
line after crossing t0. By definition t(x2) is a convex combination of
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some finitely many points in t(X ), which allows as to write t0 as a
convex combination of t(x1) and some other points in t(X ). We again
conclude that 〈u, t(x1)〉 = 〈u, t0〉. In this way we showed that for an
arbitrary x ∈ X , 〈u, t(x)〉 = 〈u, t0〉, which contradicts the minimality
of our exponential family.

Proposition 1.3.6 shows that µ can be used as an alternative
parametrization of the exponential family. For example, in the mean
zero Gaussian distribution the mean parametrization is given by the
covariance matrix Σ (or more precisely by − 1

2 Σ). In the next section,
we discuss a whole range of suitable parametrizations.

1.4 Marginal and conditional distributions*

We will consider partitioning of the sufficient statistics t into u and
v, t = (u, v) with the corresponding partition of θ = (θu, θv) and
µ = (µu, µv). We consider two basic examples.

Example 1.4.1. We have shown that X ∼ N(µ, σ) forms an exponential
family with t(x) = (x,−x2/2), θ = ( µ

σ2 , 1
σ2 ) and µ = (µ,− 1

2 (µ
2 +

σ2)). Given a sample xi for i − 1, . . . , n, we get an exponential family
with the same canonical parameter and the sufficient statistics t(x1:n) =

(∑i xi,− 1
2 ∑i x2

i ) and the mean parameter (nµ,− n
2 (µ

2 + σ2)). Here we
could take u(x) = ∑i xi and v(x) = − 1

2 ∑i x2
i or the other way around.

Example 1.4.2. In the multivariate Gaussian case we have shown that
t(x) = − 1

2 xx>, θ = K, µ = − 1
2 Σ. Fix any subset E ⊂ {(i, i) : i =

1, . . . , m} ∪ {(i, j) : 1 ≤ i < j ≤ m}. This corresponds to fixing
some entries of a symmetric matrix. We could take u = − 1

2 (xixj)ij∈E and
v = − 1

2 (xixj)ij/∈E.

Recall the formula for the distribution of t(X) as given in Proposi-
tion 1.2.7.

Proposition 1.4.3 (Marginal distribution). In a regular exponential
family with t = (u, v) and θ = (θu, θv) the marginal model for u is a
regular exponential family for each given θv, depending on θv but with the
same parameter space for its mean value parameter µu.

Proof. The marginal distribution for u is obtained by integrating v
out:

f (u; θ) =
∫

g(u, v) exp
{
〈θu, u〉+ 〈θv, v〉 − A(θu, θv)

}
dv

= exp
{
〈θu, u〉 − A(θu, θv)

}(∫
g(u, v) exp{〈θv, v〉}dv

)
.

For any fixed θv this has the form of a regular exponential family.
This exponential family has canonical parameter θu but the space of
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canonical parameters will typically depend on θv (it is an intersection
of Θ with θv = fixed). However, by Proposition 1.3.6, the mean
parameter space is always the same and equal to the interior of the
convex hull of u(X ), which is equal to the projection of µ(Θ) on the
u coordinates (i.e. µu).

Proposition 1.4.4 (Conditional distribution). With the same setting
as in Proposition 1.4.3, the conditional model for x given u (and thus also
for v given u) is a regular exponential family with canonical statistics v.
The conditional model depends on u but with one and the same canonical
parameter θv as in the joint model.

Proof. We have

f (x|u; θ) =
f (u, x; θ)

f (u; θ)
=

h(x) exp{〈θv, v(x)}∫
g(u, v) exp{〈θv, v(x)}dv

.

For the fixed value of u, the expression in the denominator does not
depend on x but only on θv and so it represents the normalizing con-
stant of this distribution. Note f (x|u; θ) is defined only for those x
for which t(x) = (u(x), v(x)) ∈ t(X ), and thus the space of suffi-
cient statistics depends on u. However, the canonical parameter is
the same, θv in the projection Θv of Θ on the coordinates θv. To get
f (v|u; θ) we only substitute h(x) for g(u, v) above but otherwise the
argument is the same.

Explicit calculations with these marginal and conditional distri-
butions are typically hard but the two results above are important in
guiding our analysis.

Example 1.4.5. Consider the univariate Gaussian example discussed in
Example 1.4.1 and the induced distribution of the sample x1:n. Let u =

∑i xi and v = − 1
2 ∑i x2

i and recall that the distribution has canonical
parameters ( µ

σ2 , 1
σ2 ). The marginal distribution of ∑i x2

i is proportional to
a noncentral χ2 and does not in general form an exponential family unless
we fix the value of µ

σ2 . Next, consider instead its conditional distribution
given ∑i xi = nx̄. This may appear quite complicated but Proposition 1.4.4
suggests that it may be still tractable. Given x̄, ∑i x2

i differs only by an
additive constant from ∑ x2

i − nx̄2 = (n− 1)s2, where we used the standard
notation

s2 =
1

n− 1

n

∑
i=1

(xi − x̄)2. (1.13)

Thus, it is enough to characterize the distribution of (n − 1)s2 given x̄. It
is well-known that s2 is independent of x̄, and that the distribution of (n− ← Exercise 1.9.8

1)s2 is proportional (by σ2) to a (central) χ2
n−1. From the explicit form of

a χ2 it is easily seen that the conditional distribution forms an exponential
family.
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← Exercise 1.9.8
As a corollary of the above two results we obtain a useful result

on a range of possible alternative parametrizations. For a given split
t = (u, v) consider the vector (µu, θv) with µu ∈ µu(Θ) and θv ∈ Θv.
Here by Θv we denote the projection of Θ on the coordinates θv and
by µu(Θ) we mean the projection of µ(Θ) on the coordinates µu.

Proposition 1.4.6. The mixed parametrization (µu, θv) is a valid parametriza-
tion with the parameter space µu(Θ)×Θv (variational independence!). The
Fisher information for (µu, θv) is

I(µu, θv) =

[
(Σuu)−1 0

0 ((Σ−1)vv)−1

]
,

where Σ = var(t) and Σuu = var(u). The same formula holds for the
observed information in the MLE, J(µu, θv).

Proof. Fix an exponential family with canonical statistics t(x) and
canonical parameter θ ∈ Θ. By Proposition 1.2.7, the distribution
of t(X) is an exponential family with the same canonical parameter.
This distribution is uniquely defined by the marginal distribution of
u and the conditional distribution of v given u. The latter forms an
exponential family with canonical parameter θv ∈ Θv by Proposi-
tion 1.4.4. Now fix θv, which corresponds to fixing the conditional
distribution of v given u. By Proposition 1.4.3, the marginal distri-
bution of u is an exponential family with the mean parameter µu. By
Proposition 1.3.6 the range of this mean parameter is the interior of
the convex hull of u(X ) (independent on θv). This is precisely the
projection of µ(Θ) on µu and this shows that the map θ 7→ (µu, θv)

is one-to-one with range µu(Θ) × Θv. For the proof of the second
statement see 9. 9 Rolf Sundberg. Statistical modelling

by exponential families, volume 12 of
Institute of Mathematical Statistics Text-
books. Cambridge University Press,
Cambridge, 2019

← Exercise 1.9.9
← Exercise 1.9.10

Example 1.4.7. Consider the multivariate Gaussian distribution in Exam-
ple 1.1.6 with m = 2. We have K = Σ−1, that is,

K =

[
K11 K12

K12 K22

]
=

1
Σ11Σ22 − Σ2

12

[
Σ22 −Σ12

−Σ12 Σ11

]
.

The canonical parameters are (K11, K22, K12) and the mean parameters
are − 1

2 (Σ11, Σ22, Σ12). The constraints on the canonical parameters are
K11 > 0, K22 > 0, K11K22 > K2

12 (namely, K is positive definite). The
constraints on the mean parameter follow from the constraints on Σ: Σ11 >

0, Σ22 > 0, Σ11Σ22 > Σ2
12 (Σ is positive definite). Consider a mixed

parametrization (− 1
2 Σ11,− 1

2 Σ22, K12). The projection µu(Θ) is simply
(−∞, 0)2. The projection, Θv is the whole real line R (irrespective of the
value of K12 we can set K11, K22 big enough for K to be positive definite).
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By Proposition 1.4.6, for every choice of Σ11 > 0, Σ22 > 0 and K12 ∈ R,
there will be a unique positive definite matrix Σ with the prescribed diagonal
entries Σ11, Σ22 and such that − 1

Σ11Σ22−Σ2
12

Σ12 = K12. In this case, this can

be checked directly. To compute the corresponding Σ12, we need to solve the
quadratic equation

K12Σ2
12 − Σ12 − K12Σ11Σ22 = 0.

There are two real solutions but only one of them, namely,

Σ12 =
1−

√
1 + 2K2

12Σ11Σ22

2K12

results in a positive definite Σ.

1.5 Conditional inference for canonical parameter*

Suppose ψ is the parameter of interest, where (λ, ψ) is a transfor-
mation of θ. For simplicity we focus on the case when ψ = θv and
λ = µu is regarded as nuisance parameter. As shown in Proposi-
tion 1.4.6, λ = µu = Eθ(u) is the preferable nuisance parameter
(rather than θu), since θv and µu are variation independent and infor-
mation orthogonal.

Proposition 1.5.1 (Conditionality principle for full families). Statistical
inference about the canonical parameter component θv in presence of the
nuisance parameter λ = µu = Eθ(u) should be made conditional on u, that
is, the conditional model for x or v given u.

This is only a recommendation so rather than providing a formal
proof we motivate this statement informally.

Motivation. The likelihood for (µu, θv) factorizes as

L(µu, θv; t) = L1(µu, θv; u)L2(θv; v|u) (1.14)

where the two parameters are variation independent. In some cases
L1 depends only on µu, in which case

L(µu, θv; t) = L1(µu; u)L2(θv; v|u).

Then it is clear that there is no information about θv in the first factor
L1 and the argument for the principle is compelling.

However, even when L1 depends on θv, there is really no informa-
tion about θv in u. Indeed, note first that u and µu have the same di-
mension, and that u serves as an estimator (the MLE) of µu, whatever
is the value of θv. This means that the information in u about(µu, θv)
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is totally consumed in the estimation of µu. Furthermore, the esti-
mated value of µu does not provide any information about θv, and µu
would not do so even if it were known, due to the variation indepen-
dence between µu and θv. Thus, the first factor L1 contributes only
information about µu.

Example 1.5.2 (Conditional independence for a Gaussian sample).
Suppose we want to make inference about σ2, or σ. Then we are led to con-
sider the conditional distribution of ∑i x2

i , given x̄, that depends on σ alone
(c.f. Example 1.4.5 and Proposition 1.4.4 ). The marginal distribution of
x̄ depends on both µ and σ2, so the joint and conditional likelihoods are
different functions of σ2.

As we have seen in Example 1.4.5, in the conditional approach nx̄2 is a
constant, and after subtraction of this empirical constant from ∑i x2

i we are
led to the use of the statistic s2. Now, we already know that x̄ and s2 are
independent, so the even simpler result is that the inference should be based
on the marginal model for (n − 1)s2/σ2, with its χ2

n−1-distribution. In
particular this leads to the conditional and marginal ML estimator σ̂2 = s2,
which differs by the factor n/(n− 1) from the MLE in the joint model (with
denominator n).

1.6 Kullback-Leibler divergence

The Fenchel conjugate of the cumulant function A is the function

A∗(t) = sup{〈θ, t〉 − A(θ) : θ ∈ Rd}.

For regular exponential families A∗(t) < ∞ if and only if t ∈ µ(Θ).
The function A∗ is convex as a supremum of linear functions10 and, 10 see Proposition B.2.5.

in fact, strictly convex. If t ∈ µ(Θ), the unique optimizer of the
log-likelihood is θ(t), where θ : M → Θ is the inverse of the map
µ : Θ→ M; see Proposition 1.3.6. It follows that, for t ∈ µ(Θ),

A∗(t) = 〈θ(t), t〉 − A(θ(t)) (1.15)

or alternatively, for θ ∈ Θ,

A∗(µ(θ)) = 〈θ, µ(θ)〉 − A(θ) (1.16)

implying in particular that A∗ is smooth, since µ and A are both
smooth. By composite differentiation in (1.15), since µ(θ(t)) = t, we
obtain

∇A∗(t) = θ(t) +∇θ(t) · t−∇θ(t) · µ(θ(t)) = θ(t),

where the gradient is taken with respect to t.
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For two distributions over some state-space X with densities p, q
with respect to some measure µ, the Kullback-Leibler divergence
K(p, q) is defined as

K(p, q) :=
∫
X

p(x) log
p(x)
q(x)

µ(dx).

The following result is well-known and it is a direct application of
the Jensen’s inequality stated formally in Theorem B.2.3.

Proposition 1.6.1. We have K(p, q) ≥ 0 with equality if and only if p = q
almost surely.

Proof. We use the fact that − log y is a strictly convex function. By
Theorem B.2.3,

0 = − log Ep
q(X)

p(X)
≤ −Ep log

q(X)

p(X)
= Ep log

p(X)

q(X)
= K(p, q)

with equality if and only if q(X)/p(X) is constant almost surely.
Since p, q are both densities, this is possible if and only if they are
equal almost surely.

Given two distributions Pθ1 , Pθ2 in the given exponential family
we write the corresponding Kullback-Leibled divergence as K(θ2, θ1).
We easily check that Since µ1 = ∇A(θ1), (1.17) has an-

other interpretation as the Bregman
divergence (defined by the function A
between θ2 and θ1. Look this up!

K(θ1, θ2) = A(θ2)− A(θ1)− 〈θ2 − θ1, µ1〉. (1.17)

Proposition 1.6.2. Consider two distributions in the exponential family
(1.1), one with the mean parameter µ1 ∈ µ(Θ) and the other with canonical
parameter θ2 ∈ Θ. If this exponential family is regular, the Kullback–
Leibler divergence between these two distributions is

K(µ1, θ2) = −〈µ1, θ2〉+ A∗(µ1) + A(θ2). (1.18)

The Kullback–Leibler divergence is well defined and nonnegative over
µ(Θ)×Θ. Moreover, K(µ1, θ2) = 0 if and only if µ1 = µ(θ2).

Proof. We leave it as an exercise. ← Exercise 1.9.11

The reason to express the Kullback–Leibler distance in terms of µ1
and θ2 rather than θ1, θ2 (as usually done in the literature) is that we
wish to exploit the following basic result.

Proposition 1.6.3. The Kullback–Leibler divergence K(µ1, θ2) is strictly
convex both in µ1 and in θ2.

Proof. This follows directly from (1.18) and the fact that both A(θ)

and A∗(µ) are strictly convex functions
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This set-up has been exploited in various places. See, for example,
Section 5 in 11. Another important application is in situations when 11 Martin J Wainwright and Michael I.

Jordan. Graphical models, exponential
families, and variational inference. Now
Publishers Inc, 2008

a statistical submodel is given by affine restrictions on the mean
parameter. Note that the MLE can be equivalently defined as the
minimizer of K(µn, θ). We have a parallel definition, when the dual
MLE is given as the minimizer of K(µ, θ(µn)).

Example 1.6.4 (Behrens-Fisher problem). The Behrens-Fisher problem
is concerned with testing the difference between the means of two normally
distributed populations when the variances of the two populations are not
assumed to be equal, based on two independent samples. Since the hypoth-
esis is linear in the mean parameter, this problem can be addressed with the
dual MLE; see 12 for details. 12 E Susanne Christensen. Statistical

properties of I-projections within
exponential families. Scandinavian
Journal of Statistics, pages 307–318, 1989

We finish this chapter with one of the most fundamental results
motivating exponential families. The maximum entropy principle
states that under uncertainty, one should take a model which maxi-
mizes the entropy subject to constraints on the known features about
the system. We show that the exponential family arises naturally if
the constraint is given by the expected value of some statistics.

Recall that for a distribution P that admits a density function p(x)
with respect to the base measure µ, the entropy HP of P is

HP = −EP log p(X) = −
∫

log p(x)p(x)µ(dx).

For notational simplicity, in what follows consider the exponential
family (1.2), where the function h(x) has been incorporated into
the base measure µ. In this case each distribution in this family has
the same support, which is equal to the support of µ. For such an
exponential family Pθ we have

HPθ
= −〈θ, µ(θ)〉+ A(θ) = −A∗(µ(θ)), (1.19)

where the second equality follows from (1.16).
Consider the problem of maximizing the entropy for all distri-

butions P that admit a density function absolutely continuous with
respect to µ and EP(t(X)) = t0

maximize HP s.t. P ∼ µ, EPt(X) = t0. (1.20)

The following result provides an important characterization of expo-
nential families.

Theorem 1.6.5. Consider the exponential family (1.2). Suppose there exists
θ0 ∈ Θ such that ∇A(θ0) = t0. Then for any distribution P, which
satisfies condition of (1.20), we have

HPθ0
− HP = K(P, Pθ0).

Thus, Pθ0 is the unique solution to (1.20).
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Proof. Note that ∇A(θ0) = t0 is equivalent to µ(θ0) = Eθ0 t(X) = t0.
Let p(x) be the density of P with respect to µ. Consider

K(P, Pθ0) =
∫

p(x) log
p(x)

f (x; θ0)
µ(dx)

= −HP −
∫ (
〈θ0, t(x)〉 − A(θ0)

)
p(x)µ(dx)

= −HP − 〈θ0, t0〉+ A(θ0)

(1.19)
= HPθ0

− HP.

By Proposition 1.6.1, this shows that HP ≤ HPθ0
with equality if and

only if P = Pθ0 . This concludes the proof.

Example 1.6.6. Consider all distributions with the support Rm and with
the property that EX = µ, E(XX>) = Σ + µµ>. Among all such
distributions, the multivariate normal N(µ, Σ) is the one that maximizes the
entropy.

1.7 Generalized Linear Models

The generalized linear models are formulated based on the construc-
tion of exponential families. Here we provide only a basic treatment
that explains the origin of the construction and the most important
examples.

Consider the pairs (y1, x1), . . . , (yn, xn), where the input x1, . . . , xn ∈
Rd are considered fixed and the outputs y1, . . . , yn are independent
observations each from density

f (yi; xi, w, σ2) = h(yi, σ2) exp
{

1
σ2 (yiθi(w)− A(θi(w)))

}
.

where θi(w) = x>i w and σ2 is called the dispersion term. From the
standard theory, we get immediately that

µ(θi) := E[Yi|xi, w, σ2] = A′(θi).

Indeed, the standard result show that for a fixed σ2, E( 1
σ2 Y) =

1
σ2 A′(θ). In the same way, we argue that

V(θ, σ2) := varθ(Yi|xi, w, σ2) = σ2 A′′(θi).

From now on we fix σ2 and with no loss of generality we take
σ2 = 1. The log-likelihood function is

`n(w) =
1
n

n

∑
i=1

log f (yi; xi, w) = ( 1
n

n

∑
i=1

yixi)
>w− 1

n

n

∑
i=1

A(x>i w)+ const.

Since a composition of a convex and a linear function is convex, we
conclude that `n(w) is a concave function.
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Let X ∈ Rn×d be the data matrix with rows xi and let y be the
vectors with entries yi. It can be shown that the unique optimizer of ← Exercise 1.9.13

`n(w) (if it exists), must satisfy the likelihood equations

X>y = X>A′(Xŵ), (1.21)

where the function A′ is applied elementwise to the vector Xŵ. In
machine learning it is customary to call A′ in this context an activa-
tion function.

We now discuss a bunch of basic examples.

Example 1.7.1 (Linear regression). Consider the univariate Gaussian
distribution in Example 1.1.4. Suppose now that σ2 is fixed and the model is
parametrized only by the mean µ. We can rewrite the density as

f (y; µ, σ2) = 1√
2πσ2 e−

y2

2σ2 exp{ 1
σ2 (yµ− µ2

2 )} = h(y, σ2) exp{ 1
σ2 (yµ− A(µ))},

where h(y, σ2) = 1√
2πσ2 e−

y2

2σ2 and A(µ) = µ2/2. If we model the mean µ

as a linear function of a vector x, µ = w>x we get the standard Gaussian
linear regression

f (y|x, w, σ2) =
1√

2πσ2
exp

{
− 1

2σ2 (y−w>x)2
}

.

We easily see that this is a generalized linear model as defined above. As
A′(µ) = µ and A′′(µ) = 1, we get E(Y|x, w, σ2) = µ = w>x,
var(Y|x, w, σ2) = σ2 and, by (1.21), the MLE equations are X>y =

X>Xw, which are identical to the OLS estimating equations.

Example 1.7.2 (Binomial regression). The binomial distribution for the
number of successes in n trials, y ∈ {0, . . . , n} has the probability mass
function

Bin(y; n, p) =

(
n
y

)
py(1− p)n−y =

(
n
y

)
exp{y log p

1−p + n log(1− p)}.

If θ = log p
1−p then p = eθ

1+eθ , which is typically called a sigmoid function

and denoted by σ(θ). Moreover, A(θ) = n log(1 + eθ) and so A′(θ) =

nσ(θ). Now we use this distribution for the GLM setup. If the response
variable is the number of successes in n trials, y ∈ {0, . . . , n}, we can use
binomial regression, which is defined by

f (y; x, N, w) = Bin(y; n, σ(w>x)),

where the logistic regression becomes a special case with n = 1. This clearly
has the right form and E(Y) = nθ, var(Y) = np(1 − p). By Exer-
cise 1.9.13 the likelihood equations are

X>y = X>σ(Xŵ).
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Example 1.7.3 (Poisson regression). The Poisson distribution is a distri-
bution over X = {0, 1, 2, . . .} with the probability mass function

f (y; µ) =
µy

y!
e−µ y ∈ X .

This is an exponential family with mean parameter µ (EY = µ) and canoni-
cal parameter θ = log(µ). In Poisson regression we take θ = w>x.

Modelling the canonical parameters as a linear function of external
variables is not the only choice. For example, for the Bernoulli distri-
bution in Example 1.7.2 gives the logistic regression. An alternative
approach is to model p = Φ(w>x), which gives the probit regres-
sion. Generalized linear models with non-canonical link functions
correspond to curved exponential families.

1.8 Diaconis-Ylvisaker conjugate priors

An important advantage of exponential families over more general
classes of distributions is that they admit explicit conjugate prior
for Bayesian computations. The conjugate prior measure for the
exponential family (1.1) is given by the density (w.r.t. the Lebesgue
measure) of the form

π(θ) = C exp{〈θ, τ〉 − n0 A(θ)}, τ ∈ Rd, n0 ≥ 0. (1.22)

Note that π(θ) ≡ 0 outside of Θ because there A(θ) ≡ +∞. It can
be also shown that the distribution is normalizable if n0 > 0 and
τ/n0 ∈ K = conv(T(X ))13. 13 Persi Diaconis and Donald Ylvisaker.

Conjugate priors for exponential fam-
ilies. The Annals of statistics, pages
269–281, 1979

Proposition 1.8.1. For a regular exponential family, consider the conjugate
prior in (1.22). If µ is the mean parameter then we have Eθ[µ] =

τ
n0

.

Proof sketch. We use the fact that µ = ∇A(θ). We have

Eθ[τ − n0∇A(θ)] =
∫

Θ
(τ − n0∇A(θ))C exp{〈θ, τ〉 − n0 A(θ)}dθ

=
∫

Θ
∇(C exp{〈θ, τ〉 − n0 A(θ)})dθ

=
∫

Θ
∇π(θ)dθ

It can be shown that the latter integral is equal to zero. This result
is a consequence of Green’s theorem (a general form of the funda-
mental theorem of calculus). A rigorous proof of this result was first
presented in Diaconis and Ylvisaker (1979); for a simplified proof see
14. 14 Lawrence D. Brown. Fundamentals

of statistical exponential families with
applications in statistical decision theory,
volume 9 of Institute of Mathematical
Statistics Lecture Notes—Monograph
Series. Institute of Mathematical
Statistics, Hayward, CA, 1986
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If the prior is of the form (1.22) then the posterior π(θ|x1:n) satis-
fies

π(θ|x1:n) ∝ π(θ)
n

∏
i=1

f (xi; θ)

= C
n

∏
i=1

h(xi) exp{〈θ, τ +
n

∑
i=1

t(xi)〉 − (n + n0)A(θ)}.

And so it has the same general form as the prior, where (τ, n0) is
replaced with (τ + nµn, n0 + n). By Proposition 1.8.1, the Bayes esti-
mator of the mean parameter is

E[µ|x1:n] =
τ + nµn
n0 + n

= λ
τ

n0
+ (1− λ)µn,

where λ = n0
n0+n and so the Bayes estimator is a convex combination

of the MLE µn and the prior mean τ/n0.
We can easily define conjugate priors over non-canonical param-

eter. For example, to get a conjugate prior over the mean parameter
we simply change θ with θ(µ) in (1.22) and change the definition of C
so that the corresponding expression integrates to 1. Note that this is
not the same as the density obtained through the change of variable
formula.

Example 1.8.2. If we do it for the Bernoulli distribution, the conjugate
prior for the mean parameter is the Beta distribution.

1.9 Exercises

Exercise 1.9.1. Prove formally, using (1.4), that the space of canonical
parameters in the centered multivariate Gaussian distribution is Sm

+.

Exercise 1.9.2. Consider a multivariate Gaussian distribution with general
mean vector µ ∈ Rm. Show that the canonical parameter space is Rm ×
Sm
+ with canonical parameters (Kµ, K) and that the sufficient statistics is

(x,− 1
2 xxᵀ).

Exercise 1.9.3. Show that the distribution of x1:n in Proposition 1.1.7 is
of exponential type with the same canonical space Θ. What is the sufficient
statistics? (c.f. Example 1.1.4)

Exercise 1.9.4 (Ising model on a bipartite graph). Consider the Ising
model on the bipartite graph G with m nodes X1, . . . , Xm and n nodes
Y1, . . . , Yn such that G has mn edges connecting each Xi with each Yj. Show
that to compute the conditional distribution of Y = (Y1, . . . , Yn) given
X = (X1, . . . , Xm) we essentially need to: (i) apply a linear function to
X, (ii) apply an activation function to each element of the resulting vector.
(Does it ring a bell?)
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Exercise 1.9.5 (Gaussian graphical models). Let G be a graph over m
nodes representing m random variables Xi ∈ R for i = 1, . . . , m with mean
zero. Describe the distribution satisfying

f (x; θ) ∝ exp{
m

∑
i=1

θiix2
i + ∑

ij∈G
θijxixj}.

Exercise 1.9.6. Consider an exponential family with sufficient statistics
t(x) and canonical parameter θ ∈ Θ. Consider now a model whose parame-
ter space is L ∩Θ for some affine subspace L ⊆ Rd, such that L ∩Θ 6= ∅.
Show that it forms an exponential family with Θ′ = Θ ∩ L and sufficient
statistics which is a linear transformation of t(x).

Exercise 1.9.7. Suppose the state-space X is finite. Show that every expo-
nential family over X is regular.

Exercise 1.9.8. Suppose that X = (X1, . . . , Xn) has i.i.d. components that
are N(µ, σ2). Show that the vector X− X1 is independent of X = 1

n 1>X.
Use this fact to conclude that s2 defined in (1.13) is independent of x̄. Hint:
This result follows from basic matrix algebra. Let A = In − 1

n 11>. Note
that AX = X− X1 and that cov(X) = σ2 In. Finally, note that (n− 1)s2 =

tr(Axx>A>).

Exercise 1.9.9. Let E be any set of pairs of elements of {1, . . . , m}. Use
Proposition 1.4.6 to show that for any two A, B ∈ Sm

+ there exists a unique
X ∈ Sm

+ such that Xij = Aij for ij ∈ E and (X−1)ij = Bij for ij /∈ E.

Exercise 1.9.10. Consider the Gaussian distribution N(µ, σ2). From the
first principles, provide the two mixed parametrizations. Discuss their set of
parameters and the corresponding Fisher information matrices.

Exercise 1.9.11. Prove Proposition 1.6.2.

Exercise 1.9.12. In the zero-mean Gaussian distribution N(0, Σ) with
K = Σ−1, the log-likelihood function is

`(K; Sn) = log det K− 〈K, Sn〉,

where Sn = 1
n ∑i xix>i is the sample covariance matrix. Following Sec-

tion 1.6 of the notes show that the dual log-likelihood, up to some additive
constants, is

ˇ̀(Σ; Sn) = log det Σ− 〈Σ, S−1
n 〉.

Consider the bivariate Gaussian distribution with mean zero and covariance

Σ =

[
a b
b a

]
.

Compare in simulations the maximum likelihood estimator (â, b̂) of (a, b)
with the dual maximum likelihood estimator (ǎ, b̌). Based on your simula-
tions, what is the asymptotic behaviour of

√
n(â− ǎ)?



34 advanced theory of statistics

Exercise 1.9.13. Consider a generalized linear model with canonical link
function. Argue that the maximum likelihood estimator of the parameter w,
for data (yi, xi) for i = 1, . . . , n, leads to a convex optimization problem.
Show that the MLE satisfies

X>y = X>A′(Xw),

where X ∈ Rn×d is the data matrix, y = (y1, . . . , yn), and in A′(Xw) the
function A′ is applied elementwise to the vector Xw.



2
Statistical Decision Theory (1 week)

Statistical decision theory was covered in the first semester. Here I
recall some of this material but in class we focus entirely on admissi-
bility.

2.1 Decision theoretic framework*

Statistical decision theory, developed by Abraham Wald, Jerzy Ney-
man and others during the mid-20th century, provides an abstraction
that allows for comparison of statistical procedures. Our decision
theoretic framework is made up from the following ingredients:
• A family of probabilistic models with parameterization θ ∈ Θ.
We can think of this as a mapping from the parameter space Θ to a
family of probability distributions P = {Pθ : θ ∈ Θ}. We assume that
all distributions in P are absolutely continuous with respect to some
underlying measure µ. Examples of parameter spaces and models
include the following:

- Θ ⊆ Rd: exponential, Gaussian, other parametric models.

- Θ ⊆ (a function space): in nonparametric settings, e.g. the set of
all twice-differentiable functions.

• A decision procedure In general this is a recipe that defines what
action to take, given a set of observations (X , µ). The set of possible
actions is denoted A. Examples of possible actions might include:

- Accepting or rejecting a null hypothesis, A = {0, 1}.

- Estimating a value for some model parameter θ, A = Θ.

- Selecting one family of models as “superior” to other models
(model selection).

Formally, a (non-randomized) decision rule is a measurable function
δ : X → A or δ : X n → A. An estimator δ is a particular kind
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of decision procedure by which we estimate the value of θ from the
observations. In this case A = Θ. Denote by D0 the set of all (non-
randomized) decision rules.
• A loss function, which tells us how to evaluate different decision
procedures. This is an extended mapping L : Θ × A → [0, ∞],
in which L(θ, a) represents the loss incurred by deciding a when θ

is “true”. In many applications L(θ, a) is convex both in θ and in
a (or jointly) but there are important examples where there is no
convexity. Canonical examples of the loss functions are the convex
loss functions L(θ, a) = ‖θ − a‖2, L(θ, a) = ‖θ − a‖, and the 0/1-loss
L(θ, a) = 1(θ 6= a). Depending on the particular application we also
consider hinge loss, Kullback-Leibler divergence, and many others.

We assume that L(θ, a) lower semicontinuous in a. This means that
for every θ ∈ Θ and every t ∈ R the set {a ∈ A : L(θ, a) ≤ t} is
closed. By Exercise 2.7.1, such L(θ, a) is then also measurable in a1. In ← Exercise 2.7.1

1 We think about A ⊆ Rd as a measur-
able space with the underlying σ-field
of Borel sets (generated by the open
subsets). A function f : A → R is then
measurable if the sets {a : f (a) ≤ t} are
measurable.

particular, if X has distribution Pθ then L(θ, δ(X)) is Pθ measurable.
We define the risk function as:

R(θ, δ) = Eθ L(θ, δ(X)).

When the sample space is continuous, a quadratic loss function is
frequently used. In this case, the risk is simply the mean squared
error.

Example 2.1.1. Suppose a coin is being tossed and you are interested
in the probability of getting heads. We can model this using a family of
Bernoulli distributions on the binary outcome space: Xi ∼ Ber(θ) with
θ ∈ Θ = (0, 1). Suppose we observe n replications with i.i.d results
X = (X1, . . . , Xn) ∈ {0, 1}n from Pθ . We consider various rules δi(X)

for estimating θ. In this case A = [0, 1]. We use the quadratic loss
L(θ, δ(X)) = (θ − δ(X))2. and evaluate the associated risk function for
each estimator:

• The first estimator is the sample mean δ1(X) = 1
n ∑n

i=1 Xi with risk

R(θ, δ1) =
1
n

θ(1− θ).

• The second estimator is given by the constant value δ2(X) = 1
2 with risk

R(θ, δ2) = (θ − 1
2 )

2.

• The third estimator

δ3(X) =
∑n

i=1 Xi + 3
n + 6

with risk

R(θ, δ3) =
9 + (n− 36)θ − (n− 36)θ2

(n + 6)2 .
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The risks functions for the first and the last estimator are plotted in Fig-
ure 2.1. Intuitively, it seems clear that if we strongly believe that θ is close
to 0.5, δ3 outperforms δ1. Later we learn how to formalize that.

Figure 2.1: Risks functions for δ1 (blue)
and δ3 (red) shown for n = 100.

Example 2.1.2 (Benefits of bias). Suppose Xi ∼ U(0, θ) are drawn i.i.d.
i = 1, . . . , n. Consider the statistic

δ(X) = max{X1, . . . , Xn}.

Its distribution is easily found to be

P(δ(X) ≤ t) =


0 it t < 0( t

θ

)n if 0 ≤ t ≤ θ

1 if t > θ

with density f (t) = n
θn tn−1 for t ∈ [0, θ]. We thus have

Eθ(δ(X)) =
n
θn

∫ θ

0
tndt = n

n+1 θ.

Similarly,

Eθ(δ
2(X)) =

n
θn

∫ θ

0
tn+1dt =

n
n + 2

θ2.

Clearly n+1
n δ(X) is an unbiased estimator. But instead consider all estima-

tors of the form aδ(X), a ∈ R. Find the value of a that gives the minimal
risk with the quadratic loss function. We have

R(θ, aδ) = Eθ(θ − aδ(X))2 = θ2 − 2aEθ(δ(X)) + a2Eθδ(X)2

= θ2 − 2a
n

n + 1
θ2 + a2 n

n + 2
θ2.

This is a convex function optimum does not depend on θ and the minimum
is easily found to be a∗ = n+2

n+1 . We have

R(θ, n+1
n δ) =

θ2

n(n + 2)
, R(θ, n+2

n+1 δ) =
θ2

(n + 1)2 .

This shows that unbiased estimators are not always best if the goal is to
minimize risk.

There are situations where certain decision rules can be disre-
garded. A decision rule δ(X) is inadmissible if there is some compet-
ing procedure δ′ has uniformly lower risk, meaning:

(a) R(θ, δ′) ≤ R(θ, δ) for all θ ∈ Θ,

(b) R(θ, δ′) < R(θ, δ) for at least one θ ∈ Θ.
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Otherwise the decision rule is admissible. We treat admissibility
in more detail in Section 2.4. In practice however, we often need to
compare two admissible procedures and then there is no one ob-
vious way to say that one is better than the other; more on that in
Section 2.3.

Example 2.1.2 shows that a natural unbiased estimator may not be
admissible. A slightly more artificial example follows.

Example 2.1.3. Continuing Example 2.1.1, consider δ4(X) = X1, a
rather silly estimator that uses only the first observation. Then R(θ, δ4) =

Eθ(θ − X1)
2 = θ(1 − θ) which is always greater than R(θ, δ1) for all

θ ∈ (0, 1) (unless n = 1 of course). Therefore δ4 is inadmissible.

Given a sample X = (X1, . . . , Xn), define the empirical risk as

R̂n(θ, δ) =
1
n

n

∑
i=1

L(θ, δ(Xi)). (2.1)

A popular way of constructing an estimator is by minimizing the
empirical risk, which is directly related to M-estimation discussed
later in Section 8.3. ← Exercise 2.7.2

Remark 2.1.4. In the supervised learning set-up we have the training
data {(X1, Y1), . . . , (Xn, Yn)}. Where Xi ∈ X are called features and
Yi ∈ Y ⊂ R are called labels. Here the loss function L(y, δ(x)) is defined
on Y ×X . The (expected) risk is then defined through a double integral over
X ×Y . In this context the empirical risk becomes

R̂n(δ) =
1
n

n

∑
i=1

L(Yi, δ(Xi)).

2.2 Randomized decision rules*

It can often be useful to consider randomized decision rules.

Definition 2.2.1. A randomized decision rule δ is a measurable mapping
from X to probability measures on A, x 7→ δx. By this we mean that the
function x 7→ δx(B) ∈ [0, 1] is measurable for any fixed Borel subset
B ⊆ A. (such objects are also called probability kernels)

The idea is that for a fixed X = x a random action A will be drawn
from δx, A|X = x ∼ δx, that is, P(A ∈ B|X = x) = δx(B) for every
Borel set B ⊆ A. The definition makes sure that the joint distribution
probabilities of the the following form are well defined:

P(A ∈ B, X ∈ U) =
∫

U

∫
B

δx(da)P(dx) =
∫

U
δx(B)P(dx),

which they are because δx(B) is measurable in x.
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Note that the marginal distribution of X and the conditional distri-
bution of A given X naturally specify the joint distribution of (A, X)

and so also the marginal distribution of A. For a randomized deci-
sion rule, we define the risk function as

R(θ, δ) = Eθ L(θ, A) = Eθ (E[L(θ, A)|X]) =
∫∫

L(θ, a)δx(da)Pθ(dx).

(2.2)
Here the conditional expectation E(·|X = x) is computed with
respect to the conditional distribution δx of A given X = x. Denote by
D the set of all randomized decision rules such that R(θ, δ) < +∞ for
all θ ∈ Θ. The set D contains all non-randomized decision rules D0 in
which case to each x we assign the point mass at this point.

Example 2.2.2 (Statistical testing). Consider the problem of testing H0 :
θ ∈ Θ0 versus H1 : θ ∈ Θ1. Here A = {0, 1}. We consider here a
randomized testing procedure where based on data x ∈ X we compute
ϕ(x) ∈ [0, 1] and let δx be the Bernoulli distribution with the success
probability ϕ(x). In testing problems we typically use the 0/1-loss:

L(θ, a) = 1(a = 1, θ ∈ Θ0) + 1(a = 0, θ ∈ Θ1).

The power function assigns to θ the probability or rejecting H0:

β(θ) := Pθ(A = 1) = E[Pθ(A = 1|X)] = Eϕ(X). (2.3)

The risk function for the ranomized rule defined above is

R(θ, δ) = EθE[L(θ, A)|X] = EθP(A = 1, θ ∈ Θ0|X) + EθP(A = 0, θ ∈ Θ1|X)

=

Eθ ϕ(X) if θ ∈ Θ0

Eθ(1− ϕ(X)) if θ ∈ Θ1

=

β(θ) if θ ∈ Θ0

1− β(θ) if θ ∈ Θ1
.

In standard statistical theory, randomized decision rules appear
mostly in the context of statistical testing. It is important however
to discuss briefly general advantages of considering them. For two
randomized decision rules δ, δ′ and λ ∈ (0, 1) the convex combination
(1− λ)δ + λδ′ is the randomized decision rule defined by

(1− λ)δ + λδ′ =

δ with probability 1− λ,

δ′ with probability λ.
(2.4)

With this definition the set of randomized decision rules D forms a
convex set. The following proposition suggests that convexity will
play an important role in our analysis; see also Remark 2.3.1 below.



40 advanced theory of statistics

Proposition 2.2.3. The set D of all randomized decision rules is convex.
The function δ 7→ R(θ, δ) is a linear function of δ ∈ D for any fixed θ, that
is,

R(θ, (1− λ)δ + λδ′) = (1− λ)R(θ, δ) + λR(θ, δ′)

for every λ ∈ (0, 1) and δ, δ′ ∈ D.

Proof. The first statement is clear. For the second statement let A0, A1

be the random variables representing the randomized decisions δ

and δ′. Their mixture is A and so A is equal to A0 with probability
(1− λ) and it is equal to A1 with probability λ. We thus have

R(θ, (1− λ)δ + λδ) = Eθ L(θ, A) = (1− λ)Eθ L(θ, A0) + λEθ L(θ, A1),

which is equal to (1− λ)R(θ, δ) + λR(θ, δ′) as claimed.

It may be surprising that linearity in Proposition 2.2.3 holds irre-
spective of the loss function. The following remark may help.

Remark 2.2.4. It is important to note a subtlety in the above discussion. If
δ, δ′ are non-randomized decision rules then (1− λ)δ + λδ′ could mean two
different objects. It could be either a randomized decision rule as defined in
(2.4), but it could be also a non-randomized decision rule

((1− λ)δ + λδ′)(x) = (1− λ)δ(x) + λδ′(x).

For the last definition, there is no equivalent of Proposition 2.2.3 although
convexity of D0 still holds as long as A is convex. In the hypothesis testing
case, A = {0, 1} is not convex.

2.3 Bayesian and minimax rules*

In the ideal situation we would be able to choose the best decision
rule δ as the one that leads to the lowest risk. However the risk
R(θ, δ) of δ depends on θ and, in general, there is no total ordering
on the risk functions for different θ; c.f Figure 2.1. The only realistic
solution is to define a functional on the space of risk functions and
evaluate decision rules according to the value of this functional.

2.3.1 Definitions and basic properties

Two natural choices for functionals on the risk functions are the
maximum risk and the Bayes risk. The maximum risk of δ is defined
as the number

R(δ) = sup
θ∈Θ

R(θ, δ).

For a given prior distribution π(θ) on Θ, the corresponding Bayes
risk is

r(π, δ) =
∫

R(θ, δ)π(θ)dθ.
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We say that a decision rule δ∗ is a (randomized) minimax rule if

R(δ∗) = inf
δ∈D

R(δ).

A (randomized) Bayes rule with respect to prior π is any decision
rule δ∗ that satisfies

r(π, δ∗) = inf
δ∈D

r(π, δ).

When the infima are over D0 we call the corresponding decision
procedures non-randomized Bayesian and non-randomized mini-
max rules respectively.

In practice we prefer non-randomized decision rules. The reason
for considering randomized versions can be explained as follows.

Remark 2.3.1. By Proposition 2.2.3, R(θ, δ) is linear (and so convex) in δ

for any fixed θ. By Proposition B.2.5, R(δ) is convex and r(π, δ) is linear
in δ. It follows that both minimizing R(δ) and r(π, δ) over D is a (infinite
dimentional) convex optimization problem. For non-randomized rules such
favorable properties will hold only under special assumptions on the loss
function.

The following result shows that there is no difference between
randomized and non-randomized Bayes rules.

Theorem 2.3.2. Every Bayes rule δ∗ satisfies r(π, δ∗) = infδ∈D0 r(π, δ).

Proof. We omit the formal proof. See Section 1.8 in 2. 2 Thomas S. Ferguson. Mathematical
statistics: A decision theoretic approach.
Probability and Mathematical Statistics,
Vol. 1. Academic Press, New York-
London, 1967

2.3.2 Simple geometric insights

It is good to briefly discuss the geometric picture that drives our in-
tuition. Consider the set of all finite mixtures of all non-randomized
decision rules. It is natural to denote this set as conv(D0). Although
in general D 6= conv(D0) from the point of view of risk analysis
often we can use these two sets interchangably obtaining the same
results; see Section 1.6 in 3 for a more careful discussion and further 3 Thomas S. Ferguson. Mathematical

statistics: A decision theoretic approach.
Probability and Mathematical Statistics,
Vol. 1. Academic Press, New York-
London, 1967

references. This insight makes Theorem 2.3.2 very natural to con-
jecture because r(π, δ) is a linear function of δ and we optimize it
(essentially) over conv(D0).

We next discuss a trivial instance of this when things can be ex-
plicitly depicted in two dimensions. Take Θ = {0, 1} the risk function
R(θ, δ) can be represented by a point (R(0, δ), R(1, δ)) ∈ R2. Define
the risk set

R = {(R(0, δ), R(1, δ)) : δ ∈ conv(D0)}.

By Proposition 2.2.3, R is a convex set, namely, if y, y′ ∈ R (with the
underlying δ, δ′) then (1− λ)y + λy′ lies in R as it is realized by the
randomized rule (1− λ)δ + λδ′.
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Suppose that the considered set of non-randomized decision rules
D0 is finite. In this case R forms a polytope and the geometry of the
Bayes rule is quite straightforward. A prior distribution π is simply
a point (π(0), π(1)) with nonnegative coordinates that sum to 1.
Moreover,

r(π, δ) = π(0)R(0, δ) + π(1)R(1, δ).

Thus a Bayes rule will be obtained as one of the minimizers of a
given linear function on R. The maximizers may be unique but it is
not always the case. In this case, Theorem 2.3.2 holds trivially.

For the minimax rule note that

R(δ) = max{R(0, δ), R(1, δ)}.
Draw the line R(0, δ) = R(1, δ) and consider how the minimax risk
can be improved above or below the line.

2.3.3 Finding the Bayes rule

We next explain how to find a Bayes rule. By Theorem 2.3.2, it is
enough to minimize r(π, δ) over δ ∈ D0. For a prior distribution π(θ)

let π(θ|x) denote the posterior distribution. We write p(x|θ) be the
density of the distribution Pθ . By the Bayes theorem

π(θ|x) =
p(x|θ)π(θ)∫
p(x|θ)π(θ)dθ

=
p(x|θ)π(θ)

m(x)
, (2.5)

where m(x) =
∫

p(x|θ)π(θ)dθ. The posterior risk is defined as

r(δ|x) :=
∫

L(θ, δ(x))π(θ|x)dθ. (2.6)

One of the main result on Bayesian rules is the following proposition.

Proposition 2.3.3. The Bayes risk r(π, δ) for δ ∈ D0 satisfies

r(π, δ) =
∫

r(δ|x)m(x)dx.

Define δ∗ pointwise, for every x ∈ X , as

δ∗(x) = δ0(x), where r(δ0|x) = inf
δ∈D0

r(δ|x). (2.7)

If δ∗ ∈ D0 (i.e. if δ∗ is measurable) then, by construction, r(δ∗|x) =

infδ∈D0 r(δ|x) for every x ∈ X and δ∗ is a Bayes rule.

Proof. Using the Fubini’s theorem we get

r(π, δ) =
∫

R(θ, δ)π(θ)dθ =
∫∫

L(θ, δ(x))p(x|θ)π(θ)dxdθ

(2.5)
=

∫∫
L(θ, δ(x))π(θ|x)m(x)dxdθ

=
∫ (∫

L(θ, δ(x))π(θ|x)dθ

)
m(x)dx

=
∫

r(δ|x)m(x)dx.
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It is also clear that δ∗ minimizes the above integral over D0:

inf
δ∈D0

r(π, δ) = inf
δ∈D0

∫
r(δ|x)m(x)dx ≥

∫
( inf

δ∈D0
r(δ|x))m(x)dx = r(π, δ∗).

If δ∗ ∈ D0 (c.f. Remark 2.3.4), the inequality becomes equality. By
Theorem 2.3.2, minimizing over D0 is equivalent to minimizing over
D showing that δ∗ is a Bayes rule.

Remark 2.3.4. The function δ∗ defined in Proposition 2.3.3 will be however
measurable in all practical situations. For more details see 4. 4 Lawrence D Brown and Roger Purves.

Measurable selections of extrema. The
Annals of Statistics, pages 902–912, 1973In some situations the Bayes rule can be found explicitly.

Proposition 2.3.5. If Θ,A ⊆ Rd and L(θ, a) = ‖θ − a‖2 then the Bayes
rule is

δ∗(x) =
∫

θπ(θ|x)dθ = E(θ|X = x).

Proof. By Proposition 2.3.3, the decision rule δ∗ = infδ∈D0 r(δ|x) is a
Bayes rule. In our case

r(δ|x) =
∫
‖θ − δ(x)‖2π(θ|x)dθ.

For a fixed x, write a = δ(x) and minimize the above expression with
respect to a. We have

∇a

∫
‖θ − a‖2π(θ|x)dθ = −2

∫
(θ − a)π(θ|x)dθ,

which is equal to the zero vector if and only if a =
∫

θπ(θ|x)dθ =

E(θ|X = x).

Example 2.3.6. Given a sample X1, . . . , Xn from N(θ, 1) consider the prior
π ∼ N(0, τ2). The posterior is

N
(

nτ2

nτ2 + 1
x̄n,

τ2

nτ2 + 1

)
.

Thus, for this prior and with the quadratic loss, the Bayes rule is

δ∗(x1, . . . , xn) =
nτ2

nτ2 + 1
x̄n.

The risk function is

R(θ, δ∗) = Eθ(θ − nτ2

nτ2+1 X̄n)
2 =

(
1

nτ2 + 1

)2
θ2 +

1
n

(
nτ2

nτ2 + 1

)2

.

Since Eθ2 = τ2, the Bayes risk is

r(π, δ∗) = Eθ(θ − nτ2

nτ2+1 X̄n)
2 =

(
1

nτ2 + 1

)2
τ2 +

1
n

(
nτ2

nτ2 + 1

)2

.

For comparison, consider δ0(x1, . . . , xn) = x̄n. We have R(θ, δ0) =
1
n and

so r(π, δ0) =
1
n .

← Exercise 2.7.3
← Exercise 2.7.4
← Exercise 2.7.5
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2.3.4 The link between minimax and Bayesian rules

The next result gives a connection between minimax and Bayesian
rules.

Theorem 2.3.7. Let δ∗ be a Bayes rule for some prior π. Suppose that

R(θ, δ∗) ≤ r(π, δ∗) for all θ ∈ Θ. (2.8)

Then δ∗ is minimax.

Here probably the most interesting case when this happens is
when R(θ, δ∗) is constant in θ. Compare this with the geometric
picture presented in Section 2.3.2.

Proof. We prove the contrapositive statement. If δ∗ is not minimax
then there exists δ0 such that R(δ0) < R(δ∗). However, the fact that
r(π, δ0) ≤ supθ R(θ, δ0) implies that

r(π, δ0) ≤ R(δ0) < R(δ∗)
(2.8)
≤ r(π, δ∗).

But this contradicts the fact that δ∗ is a Bayesian rule.

To illustrate the utility of this theorem in actually finding minimax
estimators consider the following example.

Example 2.3.8 (Bernoulli distribution). Suppose X ∼ Bern(θ), θ ∈
Θ = [0, 1]. Given any prior π over [0, 1], we define m1 = E(θ) and
m2 = E(θ2). The frequentist risk for the squared loss is

R(θ, δ) = θ2(1 + 2(δ0 − δ1)) + θ(δ2
1 − δ2

0 − 2δ0) + δ2
0 ,

whereas the Bayes risk is

r(π, δ) = m2(1 + 2(δ0 − δ1)) + m1(δ
2
1 − δ2

0 − 2δ0) + δ2
0 .

Note that it depends on π only through the first two moments! The Bayes
decision rule is found minimizing with respect to δ0, δ1:

δ0 =
m1 −m2

1−m1
, δ1 =

m2

m1
. (2.9)

To satisfy the constant risk property, we note that R(θ, δ) does not depend
on θ if and only if δ1 − δ0 = 1

2 and δ2
1 − δ2

0 − 2δ0 = 0, or equivalently
δ0 = 1

4 , δ1 = 3
4 . Solving for m1, m2 in (2.9) yields the solution

m∗1 =
1
2

, m∗2 =
3
8

.

This, if π is such that Eθ = 1
2 and Eθ2 = 3

8 and δ∗0 = 1
4 , δ∗1 = 3

4 ,
then δ∗ is a Bayesian rule with respect to π and inequality (2.8) holds. By
Theorem 2.3.7, δ∗ is also minimax.
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Note that if π = Beta(1/2, 1/2) then θ has these moments. The as-
sociated Bayes (and hence minimax) risk is 1

16 . These calculations can be
generalized to the case of n i.i.d. samples X1, . . . , Xn from the Bernoulli
distribution. We leave it as an exercise.

Consider the following slight generalization of the minimax rule:
allow nature to choose a distribution π over Θ. In this case our goal
is to minimize

r(δ) := sup
π

r(π, δ).

In this context it is useful to consider the notion of a least favourable
prior. A prior π∗ is called least favorable if

inf
δ∈D

r(π∗, δ) = sup
π

inf
δ∈D

r(π, δ).

← Exercise 2.7.6

2.3.5 Minimax theorem*

The minimax decision problem has a natural game-theoretic interpre-
tation. In particular, a two-player game is played between nature and
the statistician, with nature picking the prior π, and the statistician
choosing a (possibly randomized) decision rule δ. Then the statisti-
cian pays to nature the amount r(π, δ). Note that nature gains the
same amount the statistician loses, so that the game is zero-sum.The
following two quantities are important

L∗ = sup
π

inf
δ

r(π, δ)

U∗ = inf
δ

sup
π

r(π, δ)

called respectively the lower and the upper values of the game. These
quantities have the following interpretation: U∗ is the amount the
player pays when he is told what distribution nature choses before he
choses δ. Conversely, L∗ is the amount the player pays when nature is
told the player’s strategy δ before it chooses π. ← Exercise 2.7.7

Theorem 2.3.9 (von Neumann). Suppose that

1. The parameter space Θ = {θ1, . . . , θk} is finite, and

2. The risk set

R = {y ∈ Rk : yi = R(θi, δ) for some δ ∈ D}

is closed and lies in the nonnegative orthant.

Then

(i) The game has the value L∗ = U∗.
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(ii) There exists a probability vector π ∈ Rk that is a least favourable prior.

Proof. In Exercise 2.7.7 we show that L∗ ≤ U∗ so in order to establish
(i) we need to prove that L∗ ≥ U∗. Given α ∈ R, define the lower-
rectangular set of the form

Bα = {y ∈ Rk : yi ≤ α, ∀i = 1, . . . , k}.

In addition, define

γ = arg inf
α∈R
{Bα ∩R 6= ∅}.

By definition of γ, for each n ∈ N there exists a (randomized) deci-
sion rule δn, such that

R(θj, δn) ≤ γ +
1
n

, for all j = 1, . . . , k.

Therefore, for any prior π on Θ = {θ1, . . . , θk}, we have

r(π, δn) ≤ γ +
1
n

.

Taking a supremum over the choice of priors yields that supπ r(π, δn) ≤
γ + 1

n and hence for n ∈N

inf
δ

sup
π

r(π, δ) ≤ γ +
1
n

.

This inequality holds for every n ∈ N and taking the limit gives
U∗ ≤ γ.

Now we are going to use the Separating Hyperplane Theorem B.1.3
to construct a vector π = (π1, . . . , πk) that can be viewed as a least
favourable prior, therefore establishing (ii). It will also show that
L∗ ≥ γ establishing part (i).

Consider again the lower rectangle Bγ. Observe that its interior
int(Bγ) and the risk set R are two disjoint convex sets in Rk. Conse-
quently, the separating hyperplane theorem guarantees existence of
some non-zero vector π ∈ Rk and constant c such that

〈π, y〉 ≥ c for all y ∈ R,

〈π, y〉 ≤ c for all y ∈ int(Bγ).

We claim that π ≥ 0. This can be proven by contradiction. Suppose
πi < 0 for some i. Directly by definition of the set Bγ, we can con-
struct a sequence of y vectors such that yi → −∞ and yj = 0 for j 6= i,
while still staying in int(Bγ). However, this yields a sequence such
that 〈π, y〉 becomes indefinitely large contradicting the separation
statement (these sequence ends up on the wrong side of the hyper-
plane 〈π, y〉 = c). Thus we must have π ≥ 0. Since π 6= 0 we can
normalize it to sum to one, so it can be interpreted as a valid prior.
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Consider the vector x∗ := γ1. Since x∗ lies in the closure of
int(Bγ), we must have

〈π, x∗〉 = γ ≤ c,

where we have used normalization property of π. Now letting δ be
an arbitrary decision rule with risk vector z ∈ Rk such that zi =

R(θi, δ) for all i we have

r(π, δ) = 〈π, z〉 ≥ c ≥ γ.

Since δ was arbitrary, infδ r(π, δ) ≥ γ and, in consequence, L∗ ≥ γ,
which completes the proof of part (i). Furthermore, the vector π that
we constructed is the least favourable prior of part (ii).

2.4 Admissibility and Rao-Blackwell

It is clear that we can discard inadmissible rules from our analysis.
Thus it is useful to know that the procedure we analyse is admissible.
It should be clear that minimax procedures are admissible.

Theorem 2.4.1. If a Bayes rule for π is essentially unique (in the sense of
measurable functions) then δ is admissible.

Proof. Suppose there exists δ0 such that R(θ, δ0) ≤ R(θ, δ) for all
θ ∈ Θ. Then r(π, δ0) ≤ r(π, δ) and so, if δ is Bayes, then δ0 is also
Bayes. By our assumption, δ = δ0 almost surely. In consequence, for
every θ

Eθ L(θ, δ(X)) = Eθ L(θ, δ0(X))

and so the risk functions are equal implying that δ0 does not strictly
dominate δ.

← Exercise 2.7.8
← Exercise 2.7.9In case, we cannot assure uniqueness, it is still useful to provide

some sufficient conditions on admissibility. ← Exercise 2.7.10

We now revisit the Rao-Blackwell theorem in the language of
statistical decision theory. It allows for a simple general construction
of decision rules that dominate a given decision rule δ. Recall that a
statistic T = T(X) is sufficient for θ if the conditional distribution of
X given T does not depend on θ. Given any rule, we can define

η(T) = E[δ(X)|T].
Since T is sufficient, E[δ(X)|T] does not depend on θ and so, η(T) is
a valid statistic. The following classical result explains why η(T) may
be preferred over δ(X).

Theorem 2.4.2 (Rao-Blackwell). Let T be a sufficient statistic for P =

{Pθ : θ ∈ Θ}, let δ be a decision rule, and define η(T) = E[δ(X)|T]. If
θ ∈ Θ, R(θ, δ) < +∞, and L(θ, a) is convex in a, then

R(θ, η) ≤ R(θ, δ).
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Proof. Using the Jensen’s inequality (c.f Theorem B.2.3) for the con-
vex function f (a) = L(θ, a) and with the conditional expectation
E(·|T = t) we get

L(θ, η(T)) = L(θ, E(δ(X)|T)) ≤ E
(

L(θ, δ(X))
∣∣∣T). (2.10)

Taking expectations on both sides we conclude R(θ, η(T)) ≤ R(θ, δ(X)).

This theorem states that, as long as the loss function is convex,
every estimator that depends on the data not through the sufficient
statistics can be improved. In consequence, in our study of optimal
procedures, we can always focus on procedures that are based on the
sufficient statistics.

Remark 2.4.3. In Theorem 2.4.2 we can also show that if L(θ, a) is strictly
convex in a, the inequality will be strict unless δ(X) = η(T) a.e.. A rough
argument goes as follows: If f is strictly convex then, by Theorem B.2.3, the
inequality in (2.10) becomes strict unless δ(X) becomes constant a.s. after
conditioning on the event {T = t} (for every t). This implies that δ(X)

must be a function of T and so δ(X) = E(δ(X)|T) a.s. If this inequality is
strict then it remains strict after taking the expectation.

← Exercise 2.7.11

Example 2.4.4. Suppose Xi ∼ U(0, θ), i = 1, . . . , n. Consider X(n) :=
max{X1, . . . , Xn}. The fact that X(n) is a sufficient statistics follows
from the Fisher-Neyman factorization theorem. Indeed, denote X(1) :=
min{X1, . . . , Xn}, then the density of the sample x = (x1, . . . , xn) is

fθ(x) =
1
θn 1{x(1) ≥ 0}1{x(n) ≤ θ},

which is equal to h(x)gθ(x(n)) with h(x) = 1{x(1) ≥ 0} and gθ(x(n)) =
1
θn 1{x(n) ≤ θ}.

Consider now an unbiased estimator of θ given as

δ(X) =
2
n

n

∑
i=1

Xi.

Under the quadratic loss

R(θ, δ) = varθ(δ(X)) =
4
n

varθ(X1) =
4
n

θ2

12
=

θ2

3n
.

Consider now the rao-blackwellized version of δ defined as η(X(n)) =

E[δ(X)|X(n)]. By Theorem 2.4.2 it dominates δ. To compute this new
estimator explicitly, fix i and note that, for every t > 0

E[Xi|X(n) = t, Xi < t] = E[Xi|Xi < t] =
t
2

.
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The first equation follows because X(n) is independent of Xi conditionally
on the event {Xi < X(n)} (in this case the maximum is a function of
the remaining variables). The second equality follows simply because the
distribution of Xi conditionally on Xi < t is U(0, t), which follows by
standard calculations. We have shown that

E[Xi|X(n), Xi < X(n)] =
X(n)

2
.

Trivially,
E[Xi|X(n), Xi = X(n)] = X(n).

The probability of the event {Xi = X(n)} is 1
n and thus

E[Xi|X(n)] =
1
n

E[Xi|X(n), Xi = X(n)]+
n− 1

n
E[Xi|X(n), Xi < X(n)] =

n + 1
2n

X(n),

which gives

η(X(n)) =
2
n

n

∑
i=1

E[Xi|X(n)] =
2n
n

n + 1
2n

X(n) =
n + 1

n
X(n).

In Example 2.1.2 we showed that this is an unbiased estimator of θ. We ← Exercise 2.7.11

showed that its risk satisfies R(θ, η) = θ2

n(n+2) . If n ≥ 2 we then indeed
have R(θ, η) ≤ R(θ, δ) confirming the Rao-Blackwell theorem. Note how-
ever that Example 2.1.2 also showed that η(X(n)) is not admissible!

Theorem 2.4.5. Let X1, . . . , Xn be a random sample from N(θ, 1). The
sample mean X̄n is an admissible estimator of θ under the squared loss.

We are not going to prove this result as it is quite technical. The
idea follows from the fact that X̄n is a limit of Bayes rules for priors
πk = N(0, k). Indeed, in this case, by Example 2.3.6, the posterior
is N( k2

k2+1 x̄n, k
k2+1 ) and so it concentrates around x̄n for large k. The

Bayes rule is k2

k2+1 x̄n. Since each of these is admissible, with a bit
of more care we can argue that the same holds in the limit. More
generally, it can be show that every admissible procedure is a limit of
Bayes procedures; see Theorem 3.40

5. 5 Mark J. Schervish. Theory of statistics.
Springer Series in Statistics. Springer-
Verlag, New York, 1995

2.5 Stein’s paradox

Consider a sample X(1), . . . , X(n) ∼ Nd(µ, Σ) with Σ known. Here we
assume Σ = σ2 Id. In this case ε := X − µ ∼ Nd(0, σ2 Id). Using the This is called the Gaussian sequence

model and will reappear in this lecture.square loss L(µ, a) = ‖µ − a‖2 we easily show that the risk of any
estimator µ̂n admits the following decomposition

R(µ, µ̂n) = E‖µ̂n −E[µ̂n]‖2 + ‖E[µ̂n]− µ‖2.

The first term is the variance of µ̂n and the second term is related to
its bias. The MLE estimator of µ is the sample average X̄n. Its bias is
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zero and its variance is

E‖ 1
n ∑

i
(X(i) − µ)‖2 = 1

n E‖ε‖2 = σ2 d
n

. (2.11)

For simplicity take σ2 = 1. In the special case when n = 1, the
MLE is X which is an unbiased estimator with large variance d. Con-
sider first as an alternative a simple linear estimator µ̂C = CX with
C = diag(c) diagonal and c = (c1, . . . , cd). In this case

R(µ, µ̂C) =
d

∑
i=1

(1− ci)
2µ2

i +
d

∑
i=1

c2
i .

Suppose we restrict ourselves to the hyperrectangular model class
|µi| ≤ τi. In this case we can easily find that the minimax risk is

inf
c

sup
−τ≤µ≤τ

R(µ, µ̂C) = inf
c

d

∑
i=1

(1− ci)
2τ2

i +
d

∑
i=1

c2
i =

d

∑
i=1

τ2
i

1 + τ2
i

< d.

This computation shows that for sparse model classes diagonal esti-
mators µ̂C may strictly dominate the MLE if c is chosen carefully.

In this section we show a famous surprising result that the ob-
servation X = (X1, . . . , Xd) is not an admissible estimator for the
parameter µ = (µ1, . . . , µd) unless d ≤ 2. We start introducing the
Stein’s Unbiased Risk Estimates (SURE).

2.5.1 Stein’s Unbiased Risk Estimates (SURE)

For a function h : Rd → Rd denote by Jh(x) the Jacobian of h at
x ∈ Rd, that is, the matrix of partial derivatives with

(Jh(x))ij =
∂hi
∂xj

.

The goal of this section is to prove the following result.

Proposition 2.5.1. [Stein’s Unbiased Risk Estimates (SURE)] Let X1, . . . , Xd

be independent, Xi ∼ N(µi, 1). Consider an estimator µ̂(X) of µ =

(µ1, . . . , µd) and let
h(x) = x− µ̂(x). (2.12)

Suppose that h(x) satisfies

(i) h is differentiable,

(ii) Eµ‖Jh(X)‖ < ∞.

Define
R̂ = d + ‖h(X)‖2 − 2tr(Jh(X)).

Then
R(µ, µ̂) = Eµ‖µ̂(X)− µ‖2 = EµR̂.
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Remark 2.5.2. Proposition 2.5.1 is true if condition (i) is replaced with
(i’) h is weakly differentiable. A primary application being soft-thresholding
when

hi(x) = hi(xi) = xi −


xi − λ xi > λ

0 |xi| ≤ λ

xi + λ xi < −λ.

Here hi(x) is weakly differentiable in the sense that whenever −∞ < a ≤
b < ∞ there exists h′i(xi) such that∫ b

a
h′i(xi)dxi = hi(b)− hi(a).

To prove Proposition 2.5.1, we start with the Stein’s lemma:

Lemma 2.5.3 (Stein’s lemma). Let X ∼ N(µ, σ2) and let h : R → R be
differentiable with E|h′(X)| < ∞. Then

E[(X− µ)h(X)] = σ2Eh′(X).

Proof. First assume µ = 0, σ2 = 1. In this case we equivalently
show that E(Xh(X)) = Eh′(X). Without loss of generality assume
h(0) = 06. The proof is an application of integration by parts. We 6 Both sides will not change if we

replace h with h− h(0).have
(h(x)e−x2/2)′ = h′(x)e−x2/2 − xh(x)e−x2/2

and so
0 = Eh′(X)−E(Xh(X)),

which establishes the result. The fact that we get zero on the left
follows from the fact that limx→±∞ h(x)e−x2/2 = 0, which can be
argued since E|h′(X)| < +∞. Indeed, first note that

|h′(t)|e−x2/21[0,x](t) ≤ |h′(t)|e−t2/2

and the dominating function on the right is integrable by assump-
tion. We also note that the smaller function goes to zero as x → ±∞.
Thus, we can use the dominating convergence theorem

lim
x→±∞

h(x)e−x2/2 = lim
x→±∞

∫ x

0
h′(t)e−x2/2dt = lim

x→±∞

∫ ∞

−∞
h′(t)e−x2/21[0,x](t)dt

=
∫ ∞

−∞
lim

x→±∞
h′(t)e−x2/21[0,x](t)dt = 0.

This establishes the result in the standard normal case. For general µ

and σ define Z = (X − µ)/σ ∼ N(0, 1). Define h̃(z) = h(µ + σz). We
have

E[(X− µ)h(X)] = σE(Z h(µ + σZ)) = σE(Z h̃(Z))

= σEh̃′(Z) = σ2Eh′(µ + σZ) = σ2Eh′(X),

where moving from the first to the second line we used the case
µ = 0, σ = 1 proved earlier.
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We need another technical lemma.

Lemma 2.5.4. Let X = (X1, . . . , Xd) be a random vector with independent
entries, Xi ∼ N(µi, 1). If h : Rd → Rd satisfiesx E‖Jh(X)‖ < ∞. Then

E((X− µ)>h(X)) = Etr(Jh(X))

Proof. Denote by Xri the vector X with Xi removed. Using Lemma 2.5.3,
for every i = 1, . . . , d

E((Xi − µi)hi(X)) = E
(

E[(Xi − µi)hi(X)|Xri]
)

= E

(
E

[
∂hi(X)

∂xi
|Xri

])
= E

(
∂hi(X)

∂xi

)
.

Summing over i we get the result.

Now Proposition 2.5.1 follows easily.

Proof of Proposition 2.5.1. We have

R(µ, µ̂) = E ((µ̂(X)− µ)ᵀ(µ̂(X)− µ)

= E ((µ̂(X)− X + X− µ)ᵀ(µ̂(X)− X + X− µ))

= E‖h(X)‖2 − 2E((X− µ)ᵀh(X)) + E‖X− µ‖2

Lem 2.5.4
= E‖h(X)‖2 − 2E(tr(Jh(X))) + E‖X− µ‖2

= ER̂,

where the last equality follows because E‖X − µ‖2 = d, which
follows because X− µ is standard normal.

A natural estimator of µ is X and it has constant risk R(µ, X) =

E‖X − µ‖2 = d. Although it is unbiased, the variance is large if d is
large. The James-Stein estimator of µ = (µ1, . . . , µd) is defined as

δJS(X) =

(
1− d− 2
‖X‖2

)
X.

Theorem 2.5.5. The risk of the James-Stein estimator is

R(µ, δJS) = d−Eµ

(
d− 2
‖X‖

)2
.

In particular, the natural estimator is not admissible if d ≥ 3.

Proof. For the James-Stein estimator the function h in Proposi-
tion 2.5.1 is

h(x) =
d− 2
‖x‖2 x

and so

R̂ = d +
(d− 2)2

‖X‖2 − 2tr(Jh(X)).



statistical decision theory (1 week) 53

The diagonal entries of the Jacobian have a simple form

∂hi
∂xi

=
d− 2
‖x‖2 − 2

d− 2
‖x‖4 x2

i

giving

tr(Jh(X)) =

(
d− 2
‖X‖

)2
and R̂ = d−

(
d− 2
‖X‖

)2
.

By Proposition 2.5.1, if d ≥ 3

R(µ, δJS) = EµR̂ = d−Eθ

(
d− 2
‖X‖

)2
< d = R(µ, X)

proving inadmissibility.

← Exercise 2.7.12

It is interesting to study the risk of a general linear estimator µ̂C =

CX for an arbitrary square matrix C. To use SURE note that h(X) =

(Id − C)X and so Jh(x) = (Id − C) giving tr(Jh(x)) = d − tr(C).
Therefore

R(µ, µ̂C) = Eµ[d + ‖(Id − C)X‖2 − 2d + 2tr(C)] = E‖(C− Id)X‖2 − d + 2tr(C). (2.13)

We formulate the following result without a proof.

Proposition 2.5.6. The linear estimator µ̂C = CX is admissible if and only
if

(i) C is symmetric,

(ii) the eigenvalues satisfy 0 ≤ ρi(C) ≤ 1,

(iii) ρi(C) = 1 for at most two i.
← Exercise 2.7.13

In many situations in the expression (2.13) C = C(λ) depends on a
regularization parameter λ so one could find optimal λ∗ by minimiz-
ing the MSE over λ. One example is given by ridge regression. In this
case for some Z ∈ Rd×p

C = Z(Z>Z + λId)
−1Z> (2.14)

and the corresponding estimator is obtained as µ̂Z = Zβ̂ where ← Exercise 2.7.14

β̂ ∈ Rp is obtained by solving

min
β

1
2
‖X− Zβ‖2 +

λ

2
‖β‖2, λ > 0.
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2.6 Minimizing risk under constraints

Earlier we saw that finding a decision rule δ that minimizes the risk
R(θ, δ) uniformly over θ is impossible. In Section 2.3 we saw two
common strategies for introducing a global risk and finding optimal
decision rules. An alternative approach is to introduce a reasonable
constraint on the set of decision rules one is willing to consider. In
this case, it can be possible to find a (constrained) δ for which R(θ, δ)

is minimized uniformly over θ. It is not so surprising that the in-
teresting constraints are often convex. We review some of the most
popular.

2.6.1 Unbiasedness constraints

An estimator is called unbiased if Eθδ(X) = θ for all θ. Sometimes
the following definition is used instead.

Definition 2.6.1. For a loss L(θ, a) a decision rule δ is unbiased with
respect to L if

Eθ(L(θ′, δ(X))) ≥ Eθ(L(θ, δ(X))) = R(θ, δ) for all θ, θ′ ∈ Θ.

(Note that on both sides the expectation is taken with respect to Pθ .)

Exercise 2.7.15 explores the connection between unbiased decision ← Exercise 2.7.15

rules and unbiased estimation. Exercise 2.7.17 partially motivates the ← Exercise 2.7.17

more general definition.

Proposition 2.6.2. The set of all (randomized) unbiased decision rules is
convex.

Proof. In exactly the same way as in the proof of Theorem 2.2.3 we
can show that Eθ L(θ′, δ) is linear in δ for any θ′. Let λ ∈ (0, 1) and
suppose that both δ and δ′ are unbiased. It follows that

Eθ L(θ′, (1− λ)δ + λδ′) = (1− λ)Eθ L(θ′, δ) + λEθ L(θ′, δ′)

≥ (1− λ)Eθ L(θ, δ) + λEθ L(θ, δ′)

= Eθ L(θ, (1− λ)δ + λδ′)

proving that (1− λ)δ + λδ′ is unbiased.

Though unbiasedness is more general, we shall focus here on the
estimation problem. The next result says we need not look at Bayes
estimators in this context, because (except in weird cases) they cannot
be unbiased.

Proposition 2.6.3. No unbiased estimator δ(X) of θ ∈ Θ ⊆ Rd can
be a Bayes estimator (under the square loss) unless the prior π satisfies
π({θ : R(θ, δ) = 0}) = 1.
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Proof. Suppose δ is a Bayes rule (under square loss with respect to π)
and is unbiased. By Proposition 2.3.5 and the fact that δ is unbiased:

δ(X) = E(θ|X) and θ = E(δ(X)|θ).

Then depending on the order in which we condition, we get

E(θ>δ(X)) =

E[θ>E(δ(X)|θ)] = E(θ>θ)

E[δ(X)>E(θ|X)] = E(δ(X)>δ(X))
.

Therefore E(θ>δ(X)) = E(θ>θ) = E(δ(X)>δ(X)) and

E‖δ(X)− θ‖2 = E(δ(X)>δ(X))− 2E(θ>δ(X)) + E(θ>θ) = 0.

Since r(π, δ) = E‖δ(X)− θ‖2 (with the expectation both with respect
to X and θ) we get that r(π, δ) = 0. But the Bayes risk also satisfies
r(π, δ) =

∫
R(θ, δ)π(θ)dθ. Since R(θ, δ) ≥ 0 for all θ, the only way

the π-integral can be zero is if π assigns probability 1 to the set of θ

where R(θ, δ) vanishes. This proves the claim.

Next we formulate a very powerful result, which states that there
is a rule that uniformly minimizes risk over the unbiased estimators
and, moreover, gives easily verifiable sufficient conditions to identify
this best estimator. We first recall the notion of completness.

Definition 2.6.4. A statistic T is called complete for the model P = {Pθ},
if for every measurable function g, if Eθ g(T) = 0 for all θ then g(T) = 0
almost surely.

Although we did not specify this explicitly, a sufficient statistics in
a regular exponential family is always complete.

Theorem 2.6.5 (Lehmann-Scheffe). Let X ∼ Pθ and suppose that T is a
complete sufficient statistic. Suppose the goal is to estimate θ under convex
loss, and that an unbiased estimator exists7. Then there exists an essentially 7 Note that in this result the estimator is

unbiased in the classical sense but the
loss function is general.

unique unbiased estimator that is a function of T and uniformly minimizes
the risk.

Proof. We first show that if δ is an unbiased estimator that uniformly
minimizes risk then, without loss of generality, we can assume it is
a function of T. Let δ be an unbiased estimator and define its rao-
blackwellized version η(T) = E(δ(X)|T) as in Theorem 2.4.2. Unbi-
asedness of δ gives

θ = Eθδ(X) = Eθ [E(δ|T)] = Eθ [η(T)]

and so η(T) is unbiased too. Moreover, by Theorem 2.4.2, R(θ, η) ≤
R(θ, δ) for all θ.
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Now we will show that the estimator η(T) is essentially unique.
Suppose η∗(T) is also unbiased. Then

Eθ(η(T)− η∗(T)) = 0 for all θ ∈ Θ

and by completness η(T) = η∗(T) a.s. showing that η(T) is essen-
tially unique.

Note that the proof also shows how such an estimator can be
obtained. We simply start with an unbiased estimator and rao-
blackwellize it. In Example 2.4.4 we essentially followed this con-
struction. The estimator δ(X) = 2

n ∑n
i=1 Xi is unbiased. Here X(n) =

max{X1, . . . , Xn} is a minimal sufficient statistics and can be showed
to be complete. The rao-blackwellized version of this estimator is
n+1

n X(n).

Remark 2.6.6. We may have a situation when no unbiased estimator exists;
e.g. estimating θ in a Bin(n, 1

θ ). Indeed, we would require

θ = Eδ(X) =
n

∑
k=0

δ(k)
(

n
n

)
1
θk (1− 1

θ )
n−k.

After multiplying by θn we get that

θn+1 = ∑
k=0

δ(k)n
(

n
k

)
(θ − 1)n−k,

which is impossible to hold for all θ ∈ (0, 1) irrespective of δ because on the
right we have a polynomial of order n.

In the special case when θ ∈ R with the square loss function, if δ

is unbiased then R(θ, δ) = var(δ(X)). In this case δ in Theorem 2.6.5
is called the unbiased estimator with uniformly minimum variance
(UMVU).

Example 2.6.7 (Finding UMVU). Let X1, . . . , Xn be i.i.d. Exp(µ, 1). So

p(x; µ) =

exp(−(x− µ)) x ≥ µ

0 x < µ.

Both T1 = X(1) − 1
n and T2 = 1

n ∑i Xi − 1 are possible estimators and
both are unbiased. Moreover, var(T1) = 1

n2 << var(T2) = 1
n . Note that

T1 is a function of a minimal sufficient statistics. To show that T = X(1) is
a sufficient statistics we use the Fisher-Neyman factorization theorem and
note that the distribution of the data satisfies

n

∏
i=1

p(x; µ) = e−∑i xi enµ1{T ≥ µ}
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and so indeed T is sufficient. To show that T is complete, note that the
density of T is

pT(t; µ) =

n exp(n(µ− t)) t ≥ µ

0 t < µ.

Let g(T) be a measurable function such that Eµg(T) = 0 for all µ > 0.
Equivalently, for all µ > 0

G(µ) = enµ
∫ ∞

µ
e−ntg(t)dt = 0.

In particular, G is almost everywhere differentiable with G′(µ) = 0 By the
fundamental theorem of calculus,

0 = G′(µ) = neµn
∫ ∞

µ
e−ntg(t)dt + enµ(−e−nµg(µ)) = g(µ)

implying that T must be complete. Thus, T1 is actually the UMVU.

2.6.2 Equivariance constraints∗

Equivariance is a classical topic in statistics. Recently it also got a
lot of attention in machine learning as equivariant convolutional
networks grew popular. The idea is very simple and we will explain
it first on a concrete example. Suppose the exercise is to classify
pictures into one of the categories. Pictures may get rotated and we
do not want the label to depend on this rotation. In other words, we
want the procedure to be invariant under picture rotations. Suppose
now that before running the classification exercise, we first reduce
the quality of the images in order to save space. In that case, we may
want to require that the compression algorithm on a rotated image
outputs rotation of the compression of the original image. In that
case, we say that the procedure is equivariant.

In order to generalize this simple example, we formalize the set-
up. Recall that a group is a set G with a binary operation “·” and
identity element e ∈ G such that:

(i) g · h ∈ G for all g, h ∈ G,

(ii) (g · h) · k = g · (h · k) for all g, h, k ∈ G. (associativity)

(iii) g · e = e · g = g for all g ∈ G,

(iv) for every g ∈ G there exists h ∈ G such that g · h = h · g = e, we
write h = g−1.

The following examples will be important in the sequel.
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Example 2.6.8. The set of real numbers R with addition forms a group. Its
identity element is 0. We denote this group by (R,+).

Example 2.6.9. The group of permutations of the set {1, . . . , m}.
Example 2.6.10. The set of real invertible m× m matrices forms a group
under the matrix multiplication with the identity element given by the
identity matrix. This group is sometimes called the generalized linear group
denoted GLm(R).

Example 2.6.11. The group SO(m) of rotations in Rm. The group is a
subgroup of GLm(R).

The groups in this section will act on X , that is, each g ∈ G defines
a function g : X → X , which (perhaps abusing notation a bit) we
denote in the same way, and:

1. e(x) = x for all x ∈ X ,

2. (gh)(x) = g(h(x)) for all g, h ∈ G and x ∈ X .

Following the standard algebraic notation, we write g · x for this
action. For example, the group GLm(R) acts on Rm by the matrix
multiplication x 7→ g · x for a matrix g ∈ GLm(R). The group (R,+)

also acts on Rm by translations x 7→ x + c1 for c ∈ (R,+). The group
of permutations acts on Rm by permuting the coordinates. If σ is a
permutation of {1, . . . , m} then the corresponding transformation of
Rm is x 7→ (xσ(1), . . . , xσ(m)).

The same abstract group can act on different sets. Fix a sample
space X ⊆ Rm and a group G that acts on it. Suppose P = {Pθ :
θ ∈ Θ} is a model for a random variable X ∈ X with the identifiable
parameter θ (i.e. Pθ = Pθ′ implies θ = θ′). We say that P is a group
transformation model with respect to G if it holds that:

X ∼ Pθ then gX ∼ Pθ′ for some θ′ ∈ Θ.

(the model is invariant under the group action) This particular θ′

then determined by θ and the transformation g. In other words, the
transformations g also act on θ. We will use the same notation for the
action on X and on Θ:

X ∼ Pθ ⇐⇒ g · X ∼ Pg·θ .

Example 2.6.12. Let P0 be a probability measure with symmetric density
p0 with respect to the Lebesgue measure on R (the mean of this distribution
is zero if it exists). For X ∼ P0 and θ ∈ R, let Pθ be the distribution of
X + θ. Doing this for all θ generates the family P = {Pθ : θ ∈ R}. The
parameter θ is called the location parameter. The normal family N(θ, 1) is
a special case. Here the group is (R,+) and we have

X ∼ Pθ ⇐⇒ X + c ∼ Pθ+c.
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Example 2.6.13. Extending the previous example, suppose that P0,1 is a
distribution of a univariate random variable X with mean zero and variance
1. Denote by Pµ,σ the distribution of σX + µ for µ ∈ R and σ > 0.
Then (µ, σ) is called the location-scale parameter for X. This setup is
generalized to a random vector X in Rm by considering the distributions
of σX + µ1. In the vector case it is more suitable to consider a location-
scale family by taking µ ∈ Rm and U ∈ Sm

+ and considering the induced
distributions of UX + µ. What is the associated group?

Example 2.6.14. Suppose X has a m-variate zero-mean Gaussian distri-
bution with covariance matrix Σ. The group GLm(R) or m× m invertible
matrices acts on X = Rm, x 7→ Ax, A ∈ GLm(R). If X is Gaussian
with covariance Σ, then AX is Gaussian with covariance AΣAᵀ and so the
action of GLm(R) on Θ = Sm

+ is A · Σ = AΣA>. We have

X ∼ PΣ ⇔ AX ∼ PAΣA> .

Example 2.6.15. A slightly more involved example considers a simple
Gaussian graphical model given by three-dimensional centered Gaussian
distributions with the inverse covariance matrix satisfying K13 = 0. The
group is given by all invertible matrices of the form g · h, where

h ∈


1 0 0

0 1 0
0 0 1

 ,

0 0 1
0 1 0
1 0 0


 , g =

∗ ∗ 0
0 ∗ 0
0 ∗ ∗

 .

The action on the parameter space is the same as in the previous example.
(verify the details)

Consider a decision procedure in the situation when there is a
group acting on X and Θ as described above. As it was noted in the
introductory example, if we have a group acting on the sample space,
we may want some statistical procedures like testing or classification
to be invariant with respect to this group action. A decision rule δ is
called invariant if δ(g · x) = δ(x) for all x ∈ X and all g ∈ G.

Example 2.6.16. Suppose X ∼ Pθ and the goal is to test hypothesis θ ∈ Θ0

versus θ ∈ Θ, A = {0, 1}. Suppose that a group G acts on X and on Θ0,
that is, X ∼ Pθ for θ ∈ Θ0 then g · X ∼ Pθ′ for θ′ ∈ Θ0. Intuitively, if
for data X we accept/reject the null, we should also accept/reject it for data
g · X. We will be then interest in test procedures δ : X → {0, 1} that are
invariant.

Example 2.6.17. Consider a classification function δ : X → {1, . . . , c}.
In many applications, there is a group of transformations of X and we want
the classification procedure to classify each example the same way as its
transformed version (think images and their rotated versions). We again will
requite that δ is invariant.
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In estimation of group transformation models we have A = Θ and
in this case G acts on A in the same way as it acts on Θ. In this case
we may want to restrict to procedures that are equivariant.

Definition 2.6.18. A function δ : X → Θ is equivariant if δ(g · x) =

g · δ(x).

Example 2.6.19. Let X = Rm and define maps gc(x) = x + c1, the
location shifts. These transformations form a group. The function β(x) =

x̄1 is equivariant where x̄ is the average of entries of x. The function α(x) =
x− x̄1 is invariant.

Although this plays no role here, we note that equivariance is also
a convex constraint under a minor condition. ← Exercise 2.7.18

The last ingredient in designing good equivariant procedures is a
loss function that is also amenable to this group action setting.

Definition 2.6.20. The loss function L : Θ × A → [0, ∞] is called
invariant (with respect to G) if, for each g ∈ G, θ ∈ Θ, and a ∈ A,
L(g · θ, g · a) = L(θ, a).

Example 2.6.21. [Example 2.6.14 continued] Let

L(Σ, S) = − log det(SΣ−1) + tr(SΣ−1 − Im)

be the Kullback-Leibler divergence between two mean-zero Gaussian distri-
butions with covariances S and Σ. Basic matrix algebra gives that

L(gΣg>, gSg>) = L(Σ, S).

Thus, in the problem of estimating Σ we have A = Sm
+ and L(Σ, S) is a

valid invariant loss function.
← Exercise 2.7.19

Definition 2.6.22. An invariant decision problem is when: P is a group
transformation model, δ is equivariant, and L is invariant.

We view the insistence that the decision rule be equivariant as
a constraint on the possible decision rules, just like unbiasedness
is a constraint. Then the question is if there is an equivariant rule
that uniformly minimizes the risk. The first result is a step in this
direction.

Theorem 2.6.23. In an invariant decision problem, the risk function
R(θ, δ) of an equivariant decision rule δ is an invariant function on Θ.

Proof. We have

R(g · θ, δ) = Eg·θ(L(g · θ, δ(X))) = Eg·θ(L(θ, g−1 · δ(X)))

= Eg·θ(L(θ, δ(g−1 · X))) = Eθ(L(θ, δ(X))),

where the last equation follows from the fact that X ∼ Pg·θ if and
only if g−1 · X ∼ Pθ .
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This theorem really shows that R(θ, δ) is constant on G-orbits in Θ,
that is, the sets

G · θ = {θ′ ∈ Θ : θ′ = g · θ for some g ∈ G}.
This gives a plausible justification for restricting attention to equivari-
ant decision rules. Since the risk function is constant on orbits in Θ
when the loss is invariant, this makes it easier to compare equivari-
ant rules by means of their risk functions. In particular, if the group
acts transitively on the parameter space (i.e. there is only one orbit),
then the problem of noncomparability of risk functions disappears
altogether as the risk function becomes constant on δ. This happens
in some interesting situations, e.g. for the location model.

Theorem 2.6.24 (Pitman’s estimator). Suppose that Y = (X1 −
Xn, . . . , Xn−1 − Xn) and L(θ, a) = (θ − a)2. Suppose that δ0 is a loca-
tion equivariant estimator with finite risk. Then, the equivariant estimator
with smallest risk is δ0(X)−E0[δ0(X)|Y].
Proof. If δ0 is a location equivariant estimator with finite risk then
all other equivariant estimators have the form δ0(X)− v(Y). Indeed,
δ is equivariant if and only if δ − δ0 is invariant. So it remains to
show that every invariant function f is a function of Y. This follows
because

f (x) = f ((y, 0) + xn1) = f (y, 0) = v(y).

By Theorem 2.6.23, the risk function is invariant in θ for an equivari-
ant δ, and so

R(θ, δ) = R(0, δ) = E0[δ0(X)− v(Y)]2 = E0(E0[(δ0(X)− v(Y))2|Y]),
which is minimized by minimizing E0[(δ0(X)− v(Y))2|Y = y] uni-
formly in y. This is accomplished by choosing v(y) = E0[δ0(X)|Y =

y].

Like with the Lehmann-Scheffe theorem, we get an explicit pro-
cedure of obtaining the best equivariant estimator by improving any
given equivariant estimator. ← Exercise 2.7.20

It can be shown that the Pitman’s estimator is the generalized
Bayes rule with respect to the uniform “prior” distribution. This fact
and Theorem 2.6.24 can be both generalized; see Section 6.2.3 in 8; we 8 Mark J. Schervish. Theory of statistics.

Springer Series in Statistics. Springer-
Verlag, New York, 1995

will not provide any more details.

Theorem 2.6.25. Consider an invariant decision problem. Under some
assumptions, if the formal Bayes rule with respect to the right invariant
Haar prior on G exists, then it is the minimum risk equivariant rule.

The following case of the truncated normal distribution shows
the power of this result. Using Theorem 2.6.24 directly is rather te-
dious. Computing the generalized Bayes rule E(θ|X) in this case is
straightforward. ← Exercise 2.7.21
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2.6.3 Type I error constraints

Recall the testing problem in Example 2.2.2, which is a particular
instance of a decision problem with A = {0, 1} and 0/1-loss

L(θ, a) = 1(a = 1, θ ∈ Θ0) + 1(a = 0, θ ∈ Θ1) (2.15)

which is associated to testing two competing hypotheses H0 : θ ∈ Θ0

versus H1 : θ ∈ Θ1. The data are X ∼ Pθ for θ ∈ Θ0 ∪Θ1.
It is usual to find tests that bound the type I error, defined as

supθ∈Θ0
β(θ), on some level α, where the power function β(·) is de-

fined in (2.3). By the risk calculation in Example 2.2.2,

sup
θ∈Θ0

β(θ) = sup
θ∈Θ0

R(θ, δ).

On the other hand

sup
θ∈Θ1

R(θ, δ) = sup
θ∈Θ1

(1− β(θ)) = 1− inf
θ∈Θ1

β(θ),

which is precisely the type II error. It follows that

R(δ) = sup
θ∈Θ0∪Θ1

R(θ, δ) = max{ sup
θ∈Θ0

R(θ, δ), sup
θ∈Θ1

R(θ, δ)}.

By “bounding the type I error” we mean optimizing R(δ) by restrict-
ing to test procedures δ with an explicit constraint on the type I error:

sup
θ∈Θ0

R(θ, δ) ≤ α.

← Exercise 2.7.22

Definition 2.6.26. A test ϕ∗ with level α is called uniformly most pow-
erful (UMP) if

Eθ ϕ∗ ≥ Eθ ϕ, for all θ ∈ Θ1

for all ϕ with level at most α.

As we will see, test of this form may appear only in very special
situations and mostly in the univariate case. A particularly famous
instance is discussed in Section 3.1.

2.7 Exercises

Exercise 2.7.1. Show that if f : A → [−∞, ∞] for A ⊆ Rd is lower
semicontinuous then it is measurable. Hint: Use Exercise A.2.8.

Exercise 2.7.2. Suppose that x1, . . . , xn ∈ R. Show that the minimizer of
f (θ) = 1

n ∑n
i=1(θ − xi)

2 is the average 1
n ∑n

i=1 xi. Moreover, show that the
median of the collection x1, . . . , xn minimizes f (θ) = 1

n ∑n
i=1 |θ − xi|.
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Exercise 2.7.3. Show that the estimator δ3 in Example 2.1.1 is a Bayes rule
for the quadratic loss and a beta distribution.

The next two exercises allow you to explore a similar situation in
the case when the loss function is not differentiable.

Exercise 2.7.4. In the one-dimensional case, show that if L(θ, a) = |θ − a|
then the Bayes estimator is the median of the posterior distribution π(θ|x)
(c.f. Exercise 2.7.2).

Exercise 2.7.5. Show that if L(θ, a) is the 0/1-loss then the Bayes estimator
is the mode of the posterior distribution π(θ|x).
Exercise 2.7.6. In the setting of Theorem 2.3.7 show that π is least favourable.

Exercise 2.7.7. Show that in Section 2.3.5 we always have L∗ ≤ U∗.

Exercise 2.7.8. Let (X1, . . . , Xn) be a random sample of binary random
variables with Xi ∼ Bern(θ) with θ ∈ (0, 1).

(i) Show that the sample mean X̄n is an admissible estimator of θ under the
loss function L(θ, a) = (a− θ)2/[θ(1− θ)].

(ii) Show that X is an admissible estimator of θ under the squared error
loss.

Exercise 2.7.9. Show that if a minimax rule is essentially unique then it is
admissible.

Exercise 2.7.10. Show the following result: If risk functions for all decision
rules are continuous in θ, if δ is Bayes for π and has finite integrated risk
r(π, δ) < +∞, and if the support of π is the whole parameter space, then δ

is admissible. Hint: This looks much more complicated than it actually is.

Exercise 2.7.11. Show that if δ(X) is an unbiased estimator, Eθδ(X) = θ,
then η(T) is also unbiased.

Exercise 2.7.12. Consider the special case when θ = 0. In this case ‖X‖2 ∼
χ2

d. Show that E0
1
‖X‖2 = 1

d−2 and so

R(0, δJS) = 2 << d.

Exercise 2.7.13. Suppose that Z ∈ Rd×p is a fixed matrix of full column
rank (in particular p ≤ d). Consider a linear estimator of µ given by µ̂ =

Z(Z>Z)−1Z>X. Compute the risk of this estimator. Discuss conditions
when the risk of this estimator can be significantly smaller given p << d.

Exercise 2.7.14. Show that the linear estimator µ̂C with C defined in (2.14)
satisfies the conditions of Proposition 2.5.6 and so it is admissible.

Exercise 2.7.15. Show that the decision rules that are unbiased with respect
to the square loss L(θ, δ) = ‖θ − δ(X)‖2 are the rules satisfying Eθδ(X) =

θ.
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Exercise 2.7.16. Suppose Y ∼ Nn(µ, In). Let X ∈ Rn×p be a fixed matrix
with full column rank. In this exercise we consider estimators of the form
µ̂ = X β̂ for some estimator β̂. More specifically, we study the least squares
estimator β̂LS = (X>X)−1X>Y.

(i) Find the formula for the risk R(µ, µ̂C) of a general linear estimator
µ̂C = CY.

(ii) Let µ̂LS = X β̂LS be the corresponding estimator of the mean of Y. Find
the risk of this estimator directly in terms of C0 = X(X>X)−1X>, µ, n,
and p only.

(iii) Suppose µ = Xβ∗ for some β∗ ∈ Rp. Show that R(µ, µ̂LS) = p.

(iv) Consider the ridge estimator µ̂ridge = (X>X + δIp)−1X>Y and the
corresponding matrix Cδ = X(X>X + δIp)−1X>, where δ ≥ 0. Show
that R(µ, µ̂ridge) = tr(C2

δ) + ‖(In − Cδ)µ‖2.

(v) Suppose that X>X = Ip and that µ = Xβ∗ for some β∗. Show
that for every β∗ 6= 0 there exists δ > 0 such that R(Xβ∗, µ̂ridge) <

R(Xβ∗, µ̂LS).

Exercise 2.7.17. Consider estimation in a regular exponential family and let
the action space A be its set of mean parameters. Consider the loss function
given by the Kullback-Leibler divergence in (1.18):

L(θ2, µ1) = K(µ1, θ2) = A∗(µ1) + A(θ2)− 〈θ2, µ1〉.

Given a sample X1, . . . , Xn, consider the sample average of the sufficient
statistics δ(X1, . . . , Xn) = µn. The minimizer θ̂n of L(θ, µn) is the MLE of
the canonical parameter. Although µn is an unbiased estimator (in the usual
sense) of the true mean parameter µ, this is typically not true for θ̂n. Show
that µn is an unbiased decision rule in the sense of Definition 2.6.1.

Exercise 2.7.18. Show that the set of equivariant randomized decision
rules is convex (with convex combination defined as in (2.4)). Discuss some
natural conditions under which the set of non-randomized equivariant
procedures also forms a convex set.

Exercise 2.7.19. Show that the squared loss function is invariant for the
translation family in Example 2.6.12.

Exercise 2.7.20. Show that for the Gaussian model N(θ, 1) the Pitman’s
estimator is the sample mean.

Exercise 2.7.21. Let (X1, . . . , Xn) be a random sample of random variables
with the Lebesgue density

fθ(x) =


√

2
π e−(x−θ)2/2 if x ≥ θ,

0 otherwise
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where θ ∈ R is unknown. Find the minimum risk location equivariant
estimator of θ under the squared loss.

Exercise 2.7.22. Show that bounding the type I error in Section 2.6.3 gives
a convex constraint on δ ∈ D.





3
Hypothesis testing and multiple testing (2 weeks)

Our goal in this section is not to give an extensive treatment of hy-
pothesis testing procedures. We trust that much of it was covered in
earlier courses. This includes the basic philosophy of constructing
statistical tests (rejection regions, p-values etc).

Given data X ∼ Pθ and a model P = {Pθ : θ ∈ Θ}, consider two
competing hypothesis: H0 : θ ∈ Θ0, H1 : θ ∈ Θ1. Unless otherwise
stated we assume that Θ = Θ0 ∪Θ1 and Θ0 ∩Θ1 = ∅. In this context,
A = {0, 1} and we are interested in statistical testing procedures
δ : X → {0, 1}. In consequence, every nonrandomized test can be
associated with a measurable set S ⊆ X such that the decision rule
becomes: accept H1 if X ∈ S and accept H0 when X /∈ S. From the
theoretical perspective it is also useful to allow for randomized tests,
in which case the critical function ϕ to every x ∈ X is assigns the
probability of rejecting H0 given X = x

ϕ(x) = P(reject H0|X = x),

where ϕ is assumed to be a measurable function from X to [0, 1]. A
nonrandomized test is a randomized test with ϕ(X) = 1(X ∈ S).

Recall from Example 2.2.2 that the power function is the function
β : Θ→ [0, 1] defined by

β(θ) := Pθ(reject H0) =
∫

ϕ(x)dPθ = Eθ ϕ(X).

Using the 0/1-loss we see that the risk function satisfies

R(θ, δ) =

β(θ) if θ ∈ Θ0

1− β(θ) if θ ∈ Θ1
.

In the idealised situation we would have β(θ) = 0 if θ ∈ Θ0 and
β(θ) = 1 for θ ∈ Θ1. This is obviously not possible in most of the
cases. For example, when all Pθ have the same support. However,
a good test would try to be close to that. We define the significance
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level of a test as

α = sup
θ∈Θ0

β(θ) = sup
θ∈Θ0

Eθ ϕ(X).

The main technical convenience of randomized tests comes from the
fact that the set of critical functions is a convex set.

3.1 Neyman-Pearson lemma*

In this section we discuss a classical result in the case when H0 and
H1 are both simple with the underlying density functions p0 and p1

with respect to some underlying measure µ. The type I error is

E0 ϕ(X) =
∫

ϕ(x)p0(x)dµ(x)

and another quantity of interest is

E1 ϕ(X) =
∫

ϕ(x)p1(x)dµ(x).

A good test will result in small type I error (small E0 ϕ) and small
type II error (big E1 ϕ). We want to explore to what extend this can
be achived.

As discussed in Section 2.6.3, a natural approach is to consider the
optimization problem:

maximize E1 ϕ(X) subject to E0 ϕ(X) ≤ α.

We call such test the most powerful.
Consider the likelihood ratio statistic

LR(x) =
p1(x)
p0(x)

,

where we define LR(x) = +∞ if p1(x) > 0, p0(x) = 0, and LR(x) = 0
if p0(x) = p1(x) = 0. For any λ ≥ 0 we consider the critical function

ϕλ(x) :=


1 if LR(x) > λ

γ if LR(x) = λ

0 if LR(x) < λ.

(3.1)

Note that, if γ ∈ (0, 1), the corresponding test is randomized, as we
need to toss a γ-coin when we observe LR(x) = λ. Our freedom to
choose γ will add extra flexibility in a second.

Constructing a test of size α is not a problem. It is enough to toss
an α-coin to decide on the decision. However, this procedure does not
depend on the data so it is clear that its power will be low.
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Theorem 3.1.1 (Neyman-Pearson Lemma). Given any level α ∈ [0, 1]
there exists a likelihood ratio test ϕ with level α. Any likelihood ratio test
with level α maximizes E1 ϕ among all tests with level ≤ α.

Proof. To prove the first part note that for α = 0 we can take λ = +∞,
and for α = 1 we can take γ = 1, λ = 0 (check carefully). Now take
α ∈ (0, 1). By construction, P0(LR = ∞) = 0 and so LR is finite
P0-a.s. We claim that this implies that

∃λ < ∞ such that P0(LR > λ) ≤ α and P0(LR ≥ λ) ≥ α.
(3.2)

Figure 3.1: The claim (3.2) is clear if
the CDF P(LR ≤ λ) is continuous.
If it is not and α accurs at one of the
jumps, we use the fact that the CDF,
and so also the function P0(LR > λ) is
right-continuous as on the picture.

Before we continue, take a look at Figure 3.1. As we showed in
Proposition C.1.2, the survival function G(λ) = P0(LR > λ) is
right-continuous. Thus taking

λ := inf
t≥0
{t : P0(LR > t) ≤ α}

we get P0(LR > λ) ≤ α. By Remark C.1.3, the function P0(LR ≥ λ) is
left-continuous in λ. Since, for every ε > 0

P0(LR ≥ λ− ε) ≥ P0(LR > λ− ε) > α,

we get that limt→λ− P0(LR ≥ t) = P0(LR ≥ λ) ≥ α confirming (3.2).
By properly randomizing our procedure, we can obtain level ex-

actly α. If P0(LR = λ) = 0 then P0(LR > λ) = P0(LR ≥ λ) = α and
so the likelihood ratio test for this λ has level exactly α. If P0(LR =

λ) > 0, we define

γ =
α−P0(LR > λ)

P0(LR ≥ λ)−P0(LR > λ)
∈ (0, 1)

and it is straightforward to check that E0 ϕλ(X) = α with this choice
of γ.

By the first part, there exists λ ≥ 0 (and γ ∈ [0, 1]) such that ϕλ has
size α. Let ϕ be any test with level ≤ α. We have

E1 ϕ(X) ≤ E1 ϕ(X)− λ(E0 ϕ− α) =
∫

ϕ(x)(p1(x)− λp0(x))µ(dx) + λα

≤
∫

ϕλ(x)(p1(x)− λp0(x))µ(dx) + λα

≤ E1 ϕλ(X)− λ(E0 ϕλ − α) = E1 ϕλ(X).

← Exercise 3.7.1

The following corollary will be useful.

Lemma 3.1.2. In the likelihood ratio test with level α = E0 ϕλ(X) we have
E1 ϕλ(X) > α with equality if and only if p0 ≡ p1.
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Proof. A silly test δ, where we decide based on an α-coin flip re-
gardless the data (ϕ(x) = α for all x) satisfies α = E0δ(X) but
also E1δ(X) = α. By the Neyman-Pearson lemma we conclude that
E1 ϕλ(X) ≥ α. By Lemma 3.7.1, we can conclude that the inequality is
strict, unless the silly coin-flip is equivalent with the likelihood ratio
test, which happens if and only if p0(x) = p1(x) for all x.

Example 3.1.3. Suppose pθ(x) = θe−θx for x > 0. Consider the test
H0 : θ = 1 versus H1 : θ = θ1 for a fixed θ1 > 1. A likelihood ratio test is
given by the rejection region

LR(x) =
p1(x)
p0(x)

= θ1e(1−θ1)X > λ

or equivalently if

x <
log(θ1/λ)

θ1 − 1
= λ′.

The level is

α = P0(X < λ′) =
∫ λ′

0
e−xdx = 1− e−λ′ .

Solving λ′ = − log(1− α) gives a test with level α. By Proposition 3.1.1
the test constructed in this way maximizes E1 ϕ over all tests with level
at most α. Note that the test does not depend on θ1! Hence, this test is the
UMP test for H0 : θ = 1 versus H1 : θ1 > 1. In the next section we provide
some general theory explaining this phenomenon.

Often, instead of LR(x) we work with the log-likelihood ratio
λ(x) = log LR(x) (for essentially the same reason as we prefer log-
likelihoods). If p0, p1 both lie in the same exponential family with
parameters θ0, θ1 then

λ(x) = 〈θ1 − θ0, t(x)〉 − (A(θ1)− A(θ0))

and so thresholding LR(x) is equivalent to thresholding a linear
function of t(x). The following simple example plays an important
role later.

Example 3.1.4 (Linear discriminant analysis). Consider two classes
that are distributed as multivariate Gaussians, say N(µ0, Σ) and N(µ1, Σ),
respectively, differing only in their mean vectors. For each observation we
want to decide from which of the two classes it comes. In this case, the log-
likelihood ratio reduces to the linear statistic

λ(x) =

〈
µ1 − µ0, Σ−1

(
x− µ0 + µ1

2

)〉
. (3.3)

(Note that λ(µ1) > 0 and λ(µ0) < 0)
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By the Neyman-Pearson lemma, the optimal decision rule is based on
thresholding this statistic. Concretely, if the two classes are equally likely,
then the corresponding Bayes risk of our procedure is given by

Err(λ) :=
1
2

P0(λ(X) ≥ λ) +
1
2

P1(λ(X) ≤ λ) (3.4)

and we use it to evaluate the quality of this decision rule. ← Exercise 3.7.2

Given our Gaussian assumptions, some algebra shows that the error
probability can be written in terms of the Gaussian cumulative distribution
function Φ as

Err(0) = Φ(−γ/2) where γ = ‖µ1 − µ0‖Σ, (3.5)

where ‖x‖Σ =
√

xᵀΣ−1x.

3.1.1 Derivation from the first principles*

In our calculations above we used a guess that the optimal test
should be based on the likelihood ratio and then it was straight-
forward to show that such a test must be optimal. In this subsection,
we argue how we could come up with this guess. Note that our opti-
mization problem is equivalent to maximizing

f (ϕ) =

E1 ϕ if E0 ϕ ≤ α,

−∞ otherwise.

Denote by ϕ∗ an optimizer of this function and note that

inf
λ≥0

{
E1 ϕ− λ(E0 ϕ− α)

}
= f (ϕ). (3.6)

The function L(ϕ, λ) = E1 ϕ − λ(E0 ϕ − α) is called the Lagrangian
and (3.6) shows that

sup
ϕ

f (ϕ) = sup
ϕ

inf
λ≥0

L(ϕ, λ), (3.7)

where the supremum over ϕ is unrestricted and it runs over all criti-
cal functions. It is clear that

sup
ϕ

inf
λ≥0

L(ϕ, λ) ≤ inf
λ≥0

sup
ϕ

L(ϕ, λ). (3.8)

The next result states that the inequality in (3.8) is actually an equal-
ity. The proof is similar to the proof of Theorem 2.3.9.

Proposition 3.1.5. We have

sup
ϕ

inf
λ≥0

L(ϕ, λ) = inf
λ≥0

sup
ϕ

L(ϕ, λ). (3.9)
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Proof. This is a standard strategy in proving strong duality. Let

A = {(u, t) : E0 ϕ− α ≤ u, E1 ϕ ≥ t for some ϕ}

so that E1 ϕ∗ = sup{t : (0, t) ∈ A}. Consider also a set

B = {(0, s) : s > E1 ϕ∗}.

The sets A, B are both convex and disjoint subsets of R2 (make
sure you agree). By the separating hyperplane theorem (c.f. Theo-
rem B.1.3) there exist real numbers λ̃, µ, β such that

λ̃u− µt ≥ β for all (u, t) ∈ A, (3.10)

λ̃u− µt ≤ β for all (u, t) ∈ B. (3.11)

If (u, t) ∈ A then (u′, t′) ∈ A for every u′ > u and t′ < t. Hence,
(3.10) implies that λ̃ ≥ 0 and µ ≥ 0 for otherwise this expression
could not be bounded below. Since u = 0 in B, (3.11) states that
−µt ≤ β for every t > E1 ϕ∗. But then also −µE1 ϕ∗ ≤ β. It follows
that for every ϕ

λ̃(E0 ϕ− α)− µE1 ϕ ≥ β ≥ −µE1 ϕ∗.

or equivalently, denoting λ∗ = λ̃
µ ,

λ∗(E0 ϕ− α)−E1 ϕ ≥ β
µ ≥ −E1 ϕ∗.

This gives that

sup
ϕ

inf
λ≥0

L(ϕ, λ) = E1 ϕ∗ ≥ sup
ϕ

L(ϕ, λ∗) ≥ inf
λ≥0

sup
ϕ

L(ϕ, λ).

This proves the reverse of (3.8) and thus the equality in (3.9).

By equation (3.7) and Proposition 3.1.5, in order to maximize f we
can first optimize L(ϕ, λ) over ϕ and then over λ. For any fixed λ ≥ 0
we have

L(ϕ, λ) = E1 ϕ− λ(E0 ϕ− α) =
∫
X

ϕ(x)(p1(x)− λp0(x))dx + λα.

As we also argued in the previous section, irrespective of α, it is clear
that ϕ that optimizes L(ϕ, λ) satisfies

ϕ(x) =

1 if p1(x)− λp0(x) > 0

0 if p1(x)− λp0(x) < 0
. (3.12)

If p1(x)− λp0(x) = 0, ϕ(x) can take any value. So the optimum ϕ is
given by a likelihood ratio test.
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3.2 Some constructions of UMP tests*

If the hypotheses are not both simple the situation is in general much
more complicated and a uniformly most powerful test (as defined in
Section 2.6.3) may be hard or impossible to obtain. In this section we
discuss some of the special situations when a UMP can be obtained.
We also provide alternative approaches to find a test with good prop-
erties.

3.2.1 Monotone likelihood ratios

A one-dimensional family of densities pθ(x), θ ∈ Θ ⊆ R has mono-
tone likelihood ratios (MLR) in T(x) if, whenever θ < θ′, the likeli-
hood ratio pθ′(x)/pθ(x) = h(T(x)) for a nondecreasing function h. A
canonical example of such a situation is a one-dimensional exponen-
tial family with

pθ(x) = h(x) exp{η(θ)T(x)− A(θ)},

with the canonical parameter η being a strictly increasing function of
the parameter of interest θ. In this case, if θ′ > θ, then

pθ′(x)
pθ(x)

= exp{(η(θ′)− η(θ))T(x) + A(θ)− A(θ′)},

which is increasing in T(x).
In this section we will be interested in testing

H0 : θ ≤ θ0 versus H1 : θ > θ0.

Consider the test

ϕt(x) =


1 if T(x) > t,

γ if T(x) = t,

0 if T(x) < t

(3.13)

Note that for MLR families the corresponding test is equivalent to
the likelihood ratio test. In particular, for any θ1 > θ0, this statistic
gives a most powerful test for H0 : θ = θ0 versus H1 : θ = θ1 at level
α = Eθ0 ϕt(X). The following result allows us to get a more general
statement.

Proposition 3.2.1. If P = {Pθ : θ ∈ Θ ⊆ R} has monotone likelihood
ratios and Pθ 6= Pθ′ for θ 6= θ′. Then, for every t > 0, the power function
β(θ) = Eθ ϕt(X) is strictly increasing in θ.

Proof. Note that for any θ1 < θ2, ϕt(X) is equivalent to the likelihood
ratio test and so it is the most powerful test for testing H0 : θ = θ1

versus H1 : θ = θ2 at level Eθ1 ϕt(X). By Lemma 3.1.2, we conclude
that Eθ1 ϕt(X) ≤ Eθ2 ϕt(X) with equality if and only if pθ1(x) =

pθ2(x).
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As a corollary from this result we get that

sup
θ≤θ0

Eθ ϕt(X) = Eθ0 ϕt(X).

In particular, the same test statistic can be used to get a most power-
ful test of size α = Eθ0 ϕt(X) for testing H0 : θ ≤ θ0 versus H1 : θ = θ1

for any θ1 > θ0. This reasoning gives us the following result (read
carefully Definition 2.6.26 again).

Theorem 3.2.2. Suppose the family of densities has monotone likelihood
ratios. Then the test ϕt in (3.13) is uniformly most powerful for H0 : θ ≤ θ0

versus H1 : θ > θ0 and has level α = Eθ0 ϕt. Any α ∈ (0, 1) is possible.

We discuss an example that is not an exponential family.

Example 3.2.3. Suppose the data X1, . . . , Xn are i.i.d. from the uniform
distribution on [0, θ]. The joint density pθ(x) is positive if and only if
xi ∈ [0, θ] for i = 1, . . . , n and this happens if and only if M(x) =

min{x1, . . . , xn} ≥ 0 and T(x) = max{x1, . . . , xn} ≤ θ. Thus

pθ(x) =

1/θn if M(x) ≥ 0, T(x) ≤ θ

0 otherwise.

Suppose θ2 > θ1, M(x) ≥ 0, and T(x) ≤ θ2. Then

pθ2(x)
pθ1(x)

=

(θ1/θ2)
n if T(x) ≤ θ1

+∞ otherwise.

This shows that the family of joint densities has monotone likelihood ratios.
If we are interested in testing θ ≤ 1 versus H1 : θ > 1, the test function
ϕt(x) gives the UMP. This test has level

E1 ϕt(X) = P1(T ≥ t) = 1− tn

and a specified level α can be achieved taking t = (1− α)1/n. The power of
this test is

β(θ) = Pθ(T ≥ t) =

0 if θ < t

1− 1−α
θn if θ ≥ t.

3.2.2 Affine submodels*

Consider an exponential family as in (1.5). Consider a p-dimensional
linear space L ⊆ Rd and the corresponding Θ0 = Θ ∩ L. There
exists a simple affine change of coordinates form θ to (λ, ψ) such that
Θ0 = {(λ, ψ) : ψ = 0}. If the basis of L is given by the columns of
Rd×p then θ = Aλ parametrizes Θ0. Thus, for θ ∈ Θ0 we have

〈θ, t〉 = 〈Aλ, t〉 = 〈λ, Aᵀt〉 = 〈λ, u〉,
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where u = Aᵀt is the sufficient statistics of the p-dimensional model
parametrized by Θ0.

Thus, without loss of generality we assume t = (u, v) with ψ = θv

and λ = µu. We want to test the q-dimensional hypothesis (q = d− p)
ψ0 = 0:

H0 : ψ = 0, versus ψ 6= 0.

A simple example is that we have a regression model and want to
delete a certain set of its regressors to reduce the dimension of the
model. Alternatively, the primary model might be the smaller p-
dimensional model with canonical statistics u. We want to test if this
model fits data, by embedding it in a wider model. As an example,
consider the problem of testing a Gaussian graphical model with
respect to graph G0 (see Example 1.9.5) versus a Gaussian graphical
model with respect to graph G ⊃ G0.

We first consider a model reduction of the canonical statistics
from t = (u, v) to u. In Section 1.5 we argued that any inference
on ψ should be done conditionally on u. The argument was that
u provides no information about ψ as expressed in the likelihood
factorisation (1.14) valid whether H0 is true or not. All information
provided by u is consumed in estimating µu and this parameter has
no information about ψ by variational inference.

Recall the form of the distribution of t = (u, v) in (1.6) and con-
sider the conditional distribution for v given u. Inserting ψ = 0
simplifies this to

f0(v|u) =
g(u, v)
g0(u)

, (3.14)

where index 0 indicates distribution under H0, and in particular
g0(u) =

∫
g(u, v)dv is the structure function in the marginal expo-

nential family for u under H0. Note that, under the null, the condi-
tional distribution of v given u is parameter free.

We propose the following test for H0 : ψ = 0 versus H1 : ψ 6= 0:

(i) Use f0(v|u) as the test statistic, which, under the null, is equal to
the conditional density of v given u.

(ii) Reject H0 if f0(v|u) is too small, and calculate the p-value as

P
(

f0(v|u) ≤ f0(v|u)
)
=
∫

f0(v|u)≤ f0(v|u)
f0(v|u)dv,

where u, v denote the observed quantities.

These test follow the Fisher’s principle of exact tests. “Exactness”
comes from the fact that the test achieves exactly the desired size α

(as opposed to approximate tests). One obvious question is about the
power of such a procedure.
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Consider a special case of the above setting when t = (u, v) with
v one-dimensional. In this case θv is one-dimensional too and we can
obtain a uniform most powerful test for H0 : ψ = 0 versus H1 : ψ 6= 0.
Recall that, under the null, the conditional distribution of v given u is
parameter free. We will then use directly v as the test statistic with u
fixed and consider the test ϕ∗(x) defined as

ϕ∗(x) =



1 if v > c∗(u),

1 if v < c∗(u),

γ∗(u) if v = c∗(u),

γ∗(u) if v = c∗(u),

0 if v ∈ (c∗(u), c∗(u)),

with c(·) and γ(·) adjusted so that the test has exactly level α.

Theorem 3.2.4. If the exponential family is regular and θv is one dimen-
sional, then ϕ∗ is a uniformly most powerful unbiased test of H0 : θv = 0
versus H1 : θv 6= 0.

Proof. See Theorem 13.6 in 1. 1 Robert W. Keener. Theoretical statistics.
Springer Texts in Statistics. Springer,
New York, 2010. Topics for a core
course

Example 3.2.5 (Mean value test for a normal distribution). Consider
testing H0 : µ = 0 for a sample of size n from N(µ, σ2). In Example 1.1.4
we note that the canonical parameters of this family are ( µ

σ2 ,− 1
2σ2 ) so equiv-

alently we test θ1 = 0 with v = ∑i xi. The exact test should be conditional,
given u = ∑i x2

i = ‖x‖2. Thus we are free to eliminate the scale parameter
by considering v/

√
u instead of v. Indeed, use Exercise 3.7.3 to conclude ← Exercise 3.7.3

that, under the null, u⊥⊥ v/
√

u and the vector 1√
u (x1, . . . , xn) is uniformly

distributed on the (n− 1)-dimensional unit sphere and so the distribution
of v/

√
u is also parameter-free. Exercise 3.7.3 also allows to conclude that

v/
√

u is independent of u. Thus we can forget about conditioning on u, that
is, we may restrict attention to the marginal distribution of v/

√
u.

The last step is to show that this test is equivalent to the t-test. Let τ =√
nx̄/s be the t-test statistic. Let us rewrite v/

√
u as

nx̄√
∑i x2

i

=
nx̄√

(n− 1)s2 + nx̄2
=

nx̄/s√
(n− 1) + (

√
nx̄/s)2

=

√
nτ√

(n− 1) + τ2
.

The right-hand side is seen to be an odd function and monotone function of
τ. Thus, a single tail or a symmetric pair of tails in u/

√
v is equivalent to a

single or symmetric pair of tails in the usual t-test. ← Exercise 3.7.4

3.3 Sequential testing*

The aim of this section is to give a brief introduction into sequential
testing. For simplicity we focus on the sequential probability ratio
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test. This test was suggested by Wald for simple versus simple test-
ing with i.i.d observations with optional stopping. Let X1, X2, . . . be
iid from a distribution with density pk, k = 0, 1, and consider testing
H0 : k = 0 versus H1 : k = 1. Define

LRn = LRn(X1, . . . , Xn) =
n

∏
i=1

p1(Xi)

p0(Xi)
, (3.15)

the likelihood ratio for the first n observations. By convention,
LR0 = 1. From the Neyman-Pearson theorem we know that for a
fixed sample size the best test rejects H0 according to the size of LRn.
In the Sequential Probability Ratio Test (SPRT) at each step the re-
searcher has three options: stop and accept H0, stop and accept H1,
or continue sampling. For the SPRT these options are resolved by
comparing the likelihood ratio with two critical values γ0 < 1 < γ1 in
the following manner:

1. If LRn ∈ (γ0, γ1), take another observation.

2. If LRn ≥ γ1, reject H0.

3. If LRn ≤ γ0, accept H0.

Formally, the sample size for this SPRT is then a random variable
defined as

N := inf{n : LRn /∈ (γ0, γ1)}.

We will set the thresholds to provide desired power

β = P1(LRN ≥ γ1)

and size

α = P0(LRN ≥ γ1).

Note that both quantities involve N, which makes the analysis
more subtle. To simplify the notation, for a fixed n ∈ N, let x :=
(x1, . . . , xn) and write pk(x) := ∏n

i=1 pk(xi), k = 0, 1. Let R1 = {x :
LRn ≥ γ1} be the rejection region. Note that

P1(LRn ≥ γ1) =
∫

R1

p1(x)dx =
∫

R1

LRn p0(x)dx ≥ γ1P0(LRn ≥ γ1).

(3.16)
Similarly, denoting R0 = {LRn ≤ γ0},

P0(LRn ≤ γ0) =
∫

R0

p0(x)dx =
∫

R0

LR−1
n p1(x)dx ≥ γ−1

0 P1(LRn ≤ γ0).

(3.17)
With a bit more careful treatment (using Wald’s likelihood ratio iden-
tity, Theorem 2.3.3 and Section 3.1.1.1 in 2) we can replace n with the 2 Alexander Tartakovsky, Igor Nikiforov,

and Michele Basseville. Sequential anal-
ysis: Hypothesis testing and changepoint
detection. CRC Press, 2014
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stopping time N both in (3.16) and (3.17). It follows that β ≥ γ1α and
(1− α) ≥ γ−1

0 (1− β) and so

γ1 ≤
β

α
and γ0 ≥

1− β

1− α
. (3.18)

The relation between (α, β) and (γ0, γ1) is complicated. The above
inequalities lead to an approximate analysis. Suppose (α∗, β∗) are
some desired size and the power. Using the proposal of Wald, we set
γ∗1 = β∗

α∗ and γ∗0 = 1−β∗
1−α∗ . Note that α∗, β∗ are typically not equal to the

real size and power. The bounds in (3.18) guarantee however that is
α∗ is small and β∗ is large then α ≈ α∗ and β ≈ β∗; see Figure 3.2.

Figure 3.2: Bounds in (3.18) with
γ0 = 1−β∗

1−α∗ and γ1 = β∗
α∗ .

Expected stopping time of SPRT. To gain insight into this issue,
let us consider the expected stopping time. We can calculate the
expected value of N as follows. First observe that, for any fixed time
n,

Ek(log LRn) =
n

∑
i=1

Ek

(
log

p1(Xi)

p0(Xi)

)
=

nD(p1‖p0) if k = 1

−nD(p0‖p1) if k = 0,

where D(p0‖p1) is the KL-divergence between p0 and p1.

Proposition 3.3.1 (Wald’s identity). Let Y1, Y2, . . . be independent
and identically distributed random variables with mean µ and suppose
E|Yi| < C for some C. Let N be any integer-valued random variable such
that E[N] < ∞ and {N = n} ∈ σ(Y1, . . . , Yn). Then E[∑N

i=1 Yi] = µE[N].

Proof. Start by noting that the event {N ≥ i} = (
⋃i−1

j=1{N = j})c.
Thus, the event is independent of Yi, Yi+1, . . . (since it is determined
by Y1, . . . , Yi−1). From this we see that

∞

∑
i=1

E(|Yi|1(N ≥ i)) =
∞

∑
i=1

E(|Yi|)P(N ≥ i) ≤ C EN < ∞. (3.19)

Write

E(
N

∑
i=1

Yi) = E(
∞

∑
i=1

1(N ≥ i)Yi) =
∞

∑
i=1

E(1(N ≥ i)Yi).

(the interchange of expectation and summation is justified by the
dominated convergence theorem and (3.19)). Therefore,

∞

∑
i=1

E[1(N ≥ i)Yi] = E(Y1)
∞

∑
i=1

E(1(N ≥ i)) = µ
∞

∑
i=1

P(N ≥ i) = µE(N).

So, by Wald’s Identity we have

Ek(log LRN) =

E1(N)D(p1‖p0) if k = 1

−E0(N)D(p0‖p1) if k = 0.
(3.20)
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Now to obtain an expression for Ek(N) we will derive another for-
mula for Ek[log LRN ]. Let us assume the value of the likelihood ratio
is approximately equal to a threshold level when the SPRT termi-
nates. The value of the likelihood ratio will typically be just slightly
greater/lower than the upper/lower threshold level. Using this ap-
proximation and smoothing (note that Pk(LRN ∈ (γ0, γ1)) = 0) we
can write

E0(log LRN) ≈ α log(γ1) + (1− α) log(γ0)

≈ α log
β

α
+ (1− α) log

1− β

1− α
,

where we used the fact that γ1 = β
α and γ0 = 1−β

1−α . Similarly,

E1(log LRN) ≈ β log
β

α
+ (1− β) log

1− β

1− α
. (3.21)

Denoting by πα ∼ Bern(α) and πβ ∼ Bern(β), we get E0(log LRN) ≈
−D(πα‖πβ) and E1(log LRN) ≈ D(πβ‖πα). With these approxima-
tions, using (3.20), we obtain expressions for Ek(N):

E0(N) ≈ D(πα‖πβ)

D(p0‖p1)

E1(N) ≈ D(πβ‖πα)

D(p1‖p0)
.

Note that the expected stopping times increase as the KL divergences
decreases (as the two densities become less distinguishable). Increas-
ing β or decreasing α also increases the expected stopping time.

Optimality of SPRT The expected stopping time of the SPRT that
we determined above is optimal. No other test can achieve the same
β and α with a smaller expected number of samples, under either
hypothesis, as the following result shows.

Lemma 3.3.2 (Lower bound on expected stopping time of any testing
procedure (Wald&Wolfowitz 1948)). Let α and β be given and consider
any sequential test with size ≤ α and power ≥ β. Then the expected stop-
ping times N′ for the test satisfy Ek N′ ≥ Ek N for k = 0, 1, where N is the
stopping time of the corresponding SPRT with size α and power β.

The lemma shows that if no other test can have error levels as
small or smaller than the SPRT and have expected stopping times less
than the values computed above for the SPRT.

Example 3.3.3 (Sequential testing in Gaussian case). Let X1, X2, . . . be
an i.i.d. sequence of normal variables N(µ, 1). Consider the simple binary
testing problem: H0 : µ = 0, H1 : µ = µ0 > 0. For simplicity, let us
specify equal probabilities of error, that is, α = 1− β << 1

2 . In this case the
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optimal cut-off for the (non-sequential) likelihood ratio test is to reject the
null if log LRn ≥ 0. It also easily follows that

α = Φ
(√

nµ0

2

)
,

where Φ is the CDF of the standard normal variable. So the number of
samples required for a specified α is

n =
2(Φ−1(α))2

µ0
.

Since D(p0‖p1) = µ2/2 and D(πα‖πβ) = D(πβ‖πα) = (1 −
2α) log 1−α

α , the expected stopping time of the SPRT in this case is ap-
proximately

E0(N) = E1(N) =
2(1− 2α)

µ2
0

log
1− α

α
.

Compare the two quantities to see that the sequential sample requirement is
indeed preferred.
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3.4 Motivating multiple testing

Selective inference means searching for interesting patterns in data,
with statistical guarantees that account for the search process. It en-
compasses multiple testing, post-selection inference, and adaptive or
interactive inference. There are two main situations for considering
simultaneous inference. One situation is when we test multiple hy-
pothesis. Another is when we try to obtains simultaneous coverage
for confidence intervals for a multiple parameters. In this section we
will focus on multiple testing.

As a general motivation, consider the general problem of si-
multaneously testing a finite number of null hypotheses Hi

0 for
i = 1, . . . , m.

Example 3.4.1. Suppose that we have m genes and data about expression
levels for each gene among healthy individuals and those with lung cancer.

Healthy (k patients) Lung cancer (l patients)

Expression Level of Gene i x(0)ij , 1 ≤ j ≤ k x(1)ij , 1 ≤ j ≤ l

The i-th null hypothesis, denoted Hi
0, would state that the mean expression

level of the i-th gene is the same in both groups of patients.

We assume that the tests for the individual hypotheses are avail-
able (Ti test statistic, Ri rejection region, Pi the associated p-value,
i.e. the smallest α leading to rejection) and the problem is how to
combine them into a simultaneous test procedure. The easiest yet
extremely naive approach (as illustrated in the webcomic xkcd3) is 3 See https://xkcd.com/882/

to disregard the multiplicity and simply test each hypothesis at level
α. However, with such a procedure the probability of one or more
false rejections rapidly increases with n. For example, if all test are
independent of size α and all null hypotheses are true then

P0(
⋂
{Ti /∈ Ri}) =

m

∏
i=1

P0(Ti /∈ Ri) = (1− α)m.

In this sense the claim that the procedure controls the probability of
false rejections at level α is clearly misleading. A similar situation
emerges when constructing a confidence region for a parameter
vector using individual confidence intervals for each component.

3.5 Family-wise error rate

Let H0 ⊆ {1, . . . , m} be the index set of the true hypotheses and let
R ⊆ {1, . . . , m} be the set of rejected hypotheses. Denote m0 = |H0|.
The family-wise error rate (FWER) is

FWER = P(|H0 ∩R| ≥ 1). (3.22)

https://xkcd.com/882/
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A natural approach it to replace the usual condition for testing a
single hypothesis, that the probability of false rejection not exceed α,
by the requirement

FWER ≤ α

for all possible combinations of true and false hypotheses. Methods
that control the FWER are often described by the p-values of individ-
ual tests.

3.5.1 Example: Gaussian sequence model

For simplicity of the discussion, for most of this section, we restrict
our discussion to the important example given by the Gaussian se-
quence model. Consider a model Yi = µi + εi for i = 1, . . . , m, where
εi ∼ N(0, 1). For now we will not assume that εi are independent4. 4 With independence, this model al-

ready appeared in our discussion of the
Stein’s paradox.

Also the case, when variance of the noise is a general σ2 > 0 but
known can be easily covered. The typical question that is asked about
this model is how we can test, which elements of µ = (µ1, . . . , µm) are
zero, or perhaps, which elements of µ are equal to each other. There
are many other questions that can be phrased as linear equalities or
inequalities in the vector µ.

In the question of testing which µi are zero, we already mentioned
the naive approach: take zα/2 = Φ−1(1 − α/2). Test Hi

0 : µi = 0
using the test statistic Ti = |Yi| and rejection rule 1{|Yi| > zα/2}. One
classical fix is given by the Bonferroni correction, which is to use α/m
instead of α. Now, we test Hi

0 : µi = 0 with the test 1{|Yi| > zα/2m}.
Assuming all the nulls are true, we obtain

FWER = P0(∃i |εi| > zα/2m) ≤
m

∑
i=1

P0(|εi| > zα/2m) = m
α

m
= α,

where in the inequality we used the union bound. It is clear that the
union bound can be conservative, which implies that the Bonferroni
bound can be conservative too. In the special case when all εi are
independent, the events {|εi| > zα/2m} are independent and

FWER = P0(∃i |εi| > zα/2m) = 1−
m

∏
i=1

P0(|εi| ≤ zα/2m)

= 1− (1− α

m
)m ≈ 1− e−α ≈ α.

Therefore, in this case, the Bonferroni procedure provides a good
control over the family-wise error rate. This also tells us that if we
have many hypotheses (e.g. m = 10,000 genes in the biological
example) then Bonferroni’s test has size approximately 1 − e−α,
which for small α is approximately α. For example, if α = 0.05,
then 1− e−α = 0.04877 . . . So to get a test of size 0.05, we could test
each hypothesis at level 0.0512/m.



hypothesis testing and multiple testing (2 weeks) 83

Remark 3.5.1 (Šidák correction). The above calculation shows that we
could use zα̃/2 with α̃ = 1 − (1 − α)1/m in order to get the error rate
precisely α under independence.

The Bonferroni correction can become overly conservative in the
case when εi are dependent. In the extreme situation, when they are
all equal we get

FWER = P(∃i |εi| > zα/2m) = P(|ε1| > zα/2m) =
α

m
.

As we said, one of the problems of selective inference can be to
find guarantees for simultaneous coverage. In what follows we are
going to assume full independence of the errors εi. Consider a prob-
lem in which for all v ∈ Rm we want to build a confidence interval
CIv to cover the parameter v>µ with the property that

P
(

v>µ ∈ CIv for all v ∈ Rm
)
≥ 1− α.

Since there are infinitely many vectors v, using the Bonferroni cor-
rection is not possible. One way to solve this problem is to use the
Scheffé’s method. First, it is clear that the problem depends only on
the direction of v and not on its norm. Assume then that ‖v‖ = 1.
The confidence interval CIv will be centered around v>Y. To get its
length, we need to bound |v>Y − v>µ| for all v such that ‖v‖ = 1.
We use

χm(α) = the (1− α)-quantile of the χm distribution

and define
CIv = (v>Y− χm(α), v>Y + χm(α)).

We have

P
(

v>µ ∈ CIv for all ‖v‖ = 1
)

= P
(
|v>Y− v>µ| < χm(α) for all ‖v‖ = 1

)
= P (‖Y− µ‖ < χm(α)) = P (‖ε‖ < χm(α))

= α.

Remark 3.5.2. In this section, we always assumed that σ2 = 1 or equiv-
alently that σ2 is known. If it is unknown, it can be still often estimated

using replicates. So suppose Yij = µi + εij, where εij
i.i.d.∼ N(0, σ2) for

i = 1, . . . , m and j = 1, . . . , n. Let Yi = 1
n ∑j Yij, εi = 1

n ∑j εij. Then

Yi = µi + εi with εi
i.i.d.∼ N(0, σ2/n). Using ideas in Example 1.4.5, we

can then simply construct an estimate σ̂2 of σ2, where σ̂2⊥⊥ ε1, . . . , εm.
Moreover,

σ̂2

σ2 (n− 1)m ∼ χ2
(n−1)m.

Now the correct modification of Bonferonni bounds is to use the quantiles
of t(n−1)m instead of N(0, 1). In the Scheffé’s method we use Fm,(n−1)m in
place of χm.
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3.5.2 Bonferroni and Holm

First, recall a basic fact of statistical tests. Suppose a null hypothesis
H0 is true, and we perform a statistical test of H0 and obtain a p-
value P. What is the distribution of P? Recall that the p-value is the
probability of obtaining test results at least as extreme as the result
actually observed, under the assumption that the null hypothesis
is correct. If our test statistic T has a continuous distribution under
H0 with CDF F, and the rejection regions are of the form {X ∈ X :
T(X) ≤ tα}, then the p-value is just the lower tail probability P =

F(T). Thus, for any u ∈ (0, 1)

P0(P ≤ u) = P0(F(T) ≤ u) = P0(T ≤ F−1(u)) = F(F−1(u)) = u.

So P ∼ U(0, 1) under the null. Similarly, P ∼ U(0, 1) if we reject for
large T, or both large and small T.

If T has a discrete distribution under H0, then so does P, so the
null distribution of P would not be exactly uniform. However, we
still have that

P(P ≤ u) ≤ u for all u ∈ (0, 1). (3.23)

To show this define

G(u) = sup{y : F(y) ≤ u}. (3.24)

Note that, by definition, F(t) ≤ u implies that t ≤ G(u). Since F is
non-decreasing and right-continuous we have F(G(u)) ≥ u5. Suppose 5 Indeed, if t > G(u) then F(t) > u. By

right-continuity, if converging to G(u)
from the right gives F(G(u)) ≥ u.

that u is such that F(G(u)) = u, then

P0(P ≤ u) = P0(F(T) ≤ u) ≤ P(T ≤ G(u)) = F(G(u)) = u.

If F(G(u)) > u, F had a jump at λ = G(u)

lim
y→λ−

F(y) ≤ u, lim
y→λ+

F(y) > u.

By Remark C.1.3 the function P(T < λ) is left-continuous in λ. Thus,
we have

P0(P ≤ u) = P0(F(T) ≤ u) = P(T < λ) = lim
t→λ−

P(T < y) ≤ lim
y→λ−

F(y) ≤ u.

This gives us one simple way of dealing with multiple testing prob-
lem.

Theorem 3.5.3 (Bonferroni Procedure). If, for i = 1, . . . , m, hypothesis
Hi

0 is rejected when Pi ≤ α/m, then the FWER for the simultaneous testing
of H1

0 , . . . , Hm
0 satisfies FWER ≤ α.
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Proof. Suppose hypotheses Hi
0 with i ∈ H0 are true and the other are

false. From the union bound it follows that

FWER = P
(

reject any Hi
0 with i ∈ H0

)
≤ ∑

i∈H0

P(reject Hi
0)

= ∑
i∈H0

P(Pi ≤
α

m
)

(3.23)
≤ ∑

i∈H0

α

m
≤ m0

m
α ≤ α.

From the proof, it is clear that, although this procedure controls
FWER, it is generally too conservative to be useful in detecting Hi

0
that are false. If m0 is smaller than m, using α/m0 would be prefer-
able. The problem, of course, is that m0 is not known. Note however
that is one Hi

0 is false then m0 ≤ m− 1 and we could use α/(m− 1)
as the threshold. If this Hi

0 was true and we rejected it then we al-
ready made a mistake so we can do whatever we want and there is
no harm in using α/(m− 1) for the other hypotheses (if we make a
mistake, it does not matter how many).

The Holm procedure tries to make use of the above observations.
It can conveniently be stated in terms of the p-values P1, . . . , Pn of the
n individual tests. The procedure starts by sorting the p-values. Call
them P(1) ≤ · · · ≤ P(m). Then it goes as follows:

0.00

0.01

0.02

0.03

0.04

0.05

0 25 50 75 100
x

y
Figure 3.3: The plot of the function

α
m−x with m = 100 and α. The ordered
p-values P(1), . . . , P(r) will lie below this
curve.

1. If P(1) ≤ α
m , reject H(1)

0 and continue. Else stop.

2. If P(2) ≤ α
m−1 , reject H(2)

0 and continue. Else stop.

. . . . . .

m. If P(m) ≤ α, reject H(m)
0 .

In other words, the procedure finds the smallest r such that P(r) >
1

m−(r−1)α and it rejects the null hypotheses H(1)
0 , . . . , H(r−1)

0 .

Theorem 3.5.4. The Holm procedure satisfies FWER ≤ α.

Proof. Suppose H0 is the set of true hypotheses. Order the P-values
as above P(1) ≤ · · · ≤ P(m). Ideally, if i ∈ H0 then Pi appears later in
this order sequence. Let j be the smallest (random) index satisfying

P(j) = min
i∈H0

Pi.

Note that, by construction, j ≤ m− m0 + 1 (there are at least m0 − 1
indices following (j)). Now, the Holm procedure commits a false
rejection if r ≥ j + 1, or in other words,

P(1) ≤
α

m
, P(2) ≤

α

m− 1
, . . . , P(j) ≤

α

m− j + 1
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which implies that

min
i∈H0

Pi = P(j) ≤
α

m− j + 1
≤ α

m0
.

(This may be confusing because you may think that we could make
a mistake by rejecting some other null. Note however that, if P(j) >

α
m−j+1 then the procedure stops and no other mistakes are done!) We
thus get

P(|H0 ∩R| ≥ 1) = P(P(1) ≤
α

m
, . . . , P(j) ≤

α

m− j + 1
)

≤ P(min
i∈H0

Pi ≤
α

m− j + 1
) ≤ P(min

i∈H0
Pi ≤

α

m0
).

By the union bound, the probability of a false rejection is bounded
above by

P

(
min
i∈H0

Pi ≤
α

m0

)
≤ ∑

i∈H0

P(Pi ≤
α

m0
) ≤ α.

This means that the Holm procedure is strictly more powerful
than Bonferroni without any extra assumptions. However, Figure 3.3
also suggest that, when m is very large, the Holm procedure may not
substantially differ from the Bonferroni correction.

3.6 False discovery rate

Controlling the FWER may be too conservative and greatly reduce
our power to detect real effects, especially when m is large. In many
modern “large-scale testing” applications, focus has shifted from
FWER in (3.22) to the false-discovery proportion (FDP)

FDP =
|H0 ∩R|
|R| ∨ 1

and on procedures that control its expected value E(FDP), called the
false-discovery rate (FDR). The FDR can be interpreted as follows: if
FDR ≤ 0.1, we expect around 90% of the discoveries to be true.

Controlling FDR is a shift in paradigm - we are willing to tolerate
some type I errors (false discoveries), as long as most of the discov-
eries we make are still true. It has been argued that in applications
where the statistical test is thought of as providing a “definitive an-
swer” for whether an effect is real, FWER control is still the correct
objective. In contrast, for applications where the statistical test identi-
fies candidate effects that are likely to be real and which merit further
study, it may be better to target FDR control.
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3.6.1 Benjamini-Hochberg procedure

It is clear that the false discovery rate depends heavily on the number
of true hypotheses. Thus, any procedure that controls FDR should
be adaptive. As we showed earlier, if i ∈ H0 then P(Pi ≤ u) ≤ u
for all u ∈ (0, 1). The Benjamini-Hochberg (BH) procedure compares
the sorted p-values to a diagonal cutoff line, finds the largest p-value
that still falls below this line, and rejects the null hypotheses for the
p-values up to and including this one. Formally, the BH procedure at
level α is defined as follows:

1. Sort the p-values. Call them P(1) ≤ · · · ≤ P(m) as before.

2. Find the largest r such that P(r) ≤ r
m α.

3. Reject the null hypotheses H(1)
0 , . . . , H(r)

0 .

Remark 3.6.1. Just to avoid confusion with the Holm procedure, note that
we do not require that P(j) ≤ j

m α for j < r.

It is useful to observe the following.

Lemma 3.6.2. Suppose the B-H procedure rejects exactly r hypotheses.
Then i ∈ R if and only if Pi ≤ r

m α.

Proof. If i ∈ R then Pi ≤ P(r) ≤ r
m α, which proves the right im-

plication. For the left implication we argue using a contrapositive
statement. Suppose i /∈ R, let s be such that Pi = P(s). Then s > r and
P(s) >

s
m α > r

m α.

Theorem 3.6.3 (Benjamini and Hochberg). Consider tests of m null
hypotheses. If the test statistics (or equivalently, p-values) of these tests are
independent, then the FDR of the above procedure satisfies

FDR ≤ α
m0

m
≤ α.

Proof. We have

FDR = E

( |H0 ∩R|
|R| ∨ 1

)
= E

(
∑i∈H0

1{i ∈ R}
|R| ∨ 1

)
= ∑

i∈H0

E

(
1{i ∈ R}
|R| ∨ 1

)
.

Let R = |R| and let Rri be the number of rejections if we replace
Pi with zero and run BHα on P1, . . . , Pi−1, 0, Pi+1, . . . , Pm. Note that
Pi ⊥⊥ Rri and Rri ≥ 1. Consider the following:

Claim: i ∈ R ⇔ R = Rri ⇔ Pi ≤ αRri
m .

Before we prove the claim, we show how it helps us to prove the
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theorem. Assuming that the claim holds

FDR = ∑
i∈H0

E

(
1{Pi ≤ αRri

m }
Rri

)
= ∑

i∈H0

E

(
P(Pi ≤ αRri

m |Rri)

Rri

)
Pi⊥⊥Rri
≤ ∑

i∈H0

E

(
αRri

m
Rri

)
= α

m0

m
≤ α.

It remains to prove the claim. We do it in several steps.
[i ∈ R ⇒ Pi ≤ αRri

m ]: First note that BHα is monotone in the
p-values: If Pi ≥ P′i for all then R ≤ R′. From this it follows that
R ≤ Rri. Suppose i ∈ R. Then

Pi ≤
αR
m
≤ αRri

m
.

[Pi ≤ αRri
m ⇒ R = Rri]: By definition of Rri, we must have

Rri many values from P1, . . . , Pi−1, 0, Pi+1, . . . , Pm which are ≤ αRri
m .

Since Pi ≤ αRri
m , it follows that there are Rri many values from

P1, . . . , Pi−1, Pi, Pi+1, . . . , Pm which are ≤ αRri
m . In particular, R ≥ Rri.

The other inequality was shown above and so we get equality.
[R = Rri ⇒ i ∈ R] We prove this implication by contradiction.

Suppose R = Rri but i /∈ R. If i /∈ R then Pi >
αR
m and there are R

many Pj’s with Pj ≤ αR
m . Now run BHα on P1 . . . , Pi−1, 0, Pi+1, . . . , Pm.

Then there are R + 1 many values ≤ αR
m ≤

α(R+1)
m . Thus, we must

have Rri ≥ R + 1 > R, which gives contradiction.

← Exercise 3.7.5

3.6.2 Benjamini-Yekutieli justification

The main problem with the validation of the Benjamini-Hochberg
procedure is that it requires that the hypotheses are independent.
Handling uniformly all dependence structure between the hypothe-
ses is hard. One popular setting where the B-H procedure can be still
validated is when the dependence between the P-values satisfies a
form of positive dependence. We will now discuss this in more detail.

A set S ⊂ Rn is nondecreasing if x ∈ S and y ≥ x implies that
y ∈ S.

Definition 3.6.4. A random vector X = (X1, . . . , Xm) is positively
regression dependent on I ⊆ {1, . . . , m} (PRDS) if P(X ∈ S|Xi = xi) is
non-decreasing in xi for every nondecreasing set S and any i ∈ I.

If (X1, . . . , Xm) is PDRS on I and Yi := fi(Xi) for all 1 ≤ i ≤ m
with fi strictly increasing or decreasing, then (Y1, . . . , Ym) is PRDS on
I as well. Tranformation of this form are called co-monotone trans-
formations. Thus PRDS property is preserved under co-monotone
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transformations. It follows that Pi = P(Ti ≤ Xi) is PDRS as well (at
least in the continuous case).

Theorem 3.6.5. If the joint distribution of P = (P1, . . . , Pm) is PRDS on
the subset H0, the Benjamini-Hochberg procedure controls the FDR at level
m0
m α.

The proof of this result relies on the following proposition.

Proposition 3.6.6. If P is PRDS on the set of true nulls, then the function
P(P ∈ S|Pi ≤ t) for i ∈ H0 is non-decreasing in t for S a non-decreasing
set.

Proof. For any t, P(P ∈ S|Pi ≤ t) = P(P∈S,Pi≤t)
P(Pi≤t) . For t > t′, we have

that

P(P ∈ S|Pi ≤ t′) =
P(P ∈ S, Pi ≤ t) + P(P ∈ S, Pi ∈ (t, t′])

P(Pi ≤ t) + P(Pi ∈ (t, t′])

To show that P(P ∈ S|Pi ≤ t′) ≤ P(P ∈ S|Pi ≤ t), it suffices to show
that

P(P ∈ S, Pi ≤ t)
P(Pi ≤ t)

≤ P(P ∈ S, Pi ∈ (t, t′])
P(Pi ∈ (t, t′])

.

The last statement is because for any positive number a, b, c, d, a
b ≤

a+c
b+d if and only if a

b ≤ c
d . If Fi denotes the CDF of Pi then

P(P ∈ S, Pi ∈ (t, t′]) = E1{P ∈ S, Pi ∈ (t, t′]}
= E[1{Pi ∈ (t, t′]}E(1{P ∈ S}|Pi)]

= E[1{Pi ∈ (t, t′]}P(P ∈ S|Pi)]

=
∫ t′

t
P(P ∈ S|Pi = s)dFi(s)

(PRDS)
≥

∫ t′

t
P(P ∈ S|Pi = t)dFi(s)

= P(P ∈ S|Pi = t)P(Pi ∈ (t, t′]).

Similarly we have

P(P ∈ S, Pi ≤ t) =
∫ t

0
P(P ∈ S|Pi = s)dFi(s)

(PRDS)
≤

∫ t

0
P(P ∈ S|Pi = t)dFi(s)

= P(P ∈ S|Pi = t)P(Pi ≤ t).

We have just shown that

P(P ∈ S, Pi ≤ t)
P(Pi ≤ t)

≤ P(P ∈ S|Pi = t) ≤ P(P ∈ S, Pi ∈ (t, t′])
P(Pi ∈ (t, t′])

as claimed.
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Proof of Theorem 3.6.5. In the proof of Theorem 3.6.3 we noted that

FDR = ∑
i∈H0

E

(
1{i ∈ R}
|R| ∨ 1

)

Note that it is enough to show that E
(

1{i∈R}
|R|∨1

)
≤ α/m for i ∈ H0.

By Lemma 3.6.2, if r rejections are made then Hi
0 is rejected if and

only if Pi ≤ αr
m . Hence, 1{i ∈ R} = 1{Pi ≤ αr

m }. This gives

E

(
1{i ∈ R}

R ∨ 1

)
= E

(
E

[
1{i ∈ R}

R ∨ 1
|R
])

= E

(
1

R ∨ 1
P[i ∈ R|R]

)
=

m

∑
r=1

1
r

P(Pi ≤ αr
m , R = r).

For any true null we now have

m

∑
r=1

1
r

P(Pi ≤ αr
m , R = r) =

m

∑
r=1

1
r

P(Pi ≤ αr
m )P(|R| = r|Pi ≤ αr

m )

≤ α

m

m

∑
r=1

P(R = r|Pi ≤ αr
m ).

Hence, it suffices to show that ∑m
r=1 P(R = r|Pi ≤ αr

m ) ≤ 1. Observe
that {R ≤ r} is an increasing event, that is, it can be written as {P ∈
S} for some non-decreasing set S. This is because increasing all p-
values increases the p-value at each rank. Hence, any ranked p-value
above the threshold remains above it’s threshold, that is, we accept
at least as many as before and hence, do not reject more hypotheses.
Using this, we get that

m

∑
r=1

P(R = r|Pi ≤ αr
m ) =

(
P(R ≤ m|Pi ≤ α)−P(R ≤ 0|Pi ≤ α

m )
)

+
m−1

∑
r=1

(
P(R ≤ r|Pi ≤ αr

m )−P(R ≤ r|Pi ≤ α(r+1)
m )

)
.

Note that each summand in the second line is non-positive since
P(R ≤ r|Pi ≤ x) is increasing in x. Also P(R ≤ 0|Pi ≤ α

m ) ≥ 0, which
implies that

m

∑
k=1

P(R = k|Pi ≤ αk
m ) ≤ P(R ≤ m|Pi ≤ α) ≤ 1.

As stated before, this proves the upper bound on the FDR.

3.7 Exercises

Exercise 3.7.1. Show that if an α-level test maximizes E1 ϕ then it must
be essentially equal to the likelihood ratio test. (Hint: Use the proof of Theo-
rem 3.1.1)
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Exercise 3.7.2. Show that the threshold λ = 0 in Example 3.1.4 is optimal
to optimize the Bayes risk with equal weights on each class. Hint: Note that
Z = Σ−1(X− µ0) is standard normal if X comes from the first class.

Exercise 3.7.3. Show that if Z is d-dimensional standard Gaussian vector
then D = ‖Z‖ and U = Z/‖Z‖ are independent. Conclude that every
d-dimensional vector X ∼ Nd(µ, Σ) admits a stochastic representation
X = µ + DΣ1/2U, where D⊥⊥U with D2 ∼ χ2

d and U being uniformly
distributed on the unit sphere.

Exercise 3.7.4 (Correlation test). Given a sample of size n > 2 from
a bivariate normal distribution, use the same type of procedure as in Ex-
ample 3.2.5 to derive an exact test of the hypothesis that the two variates
are uncorrelated. That is: specify u and v, find a function of them that
is parameter-free under H0, conclude independence, and go over to the
marginal distribution. Finally transform to a test statistic of known distri-
bution. Hint:

√
n− 2 r√

1−r2 is exactly tn−2-distributed under H0.

Exercise 3.7.5. Suppose we perform 10 tests (e.g. test the association be-
tween 10 different outcomes and a potential prognostic factor) and obtain
the p-values 0.0140, 0.2960, 0.9530, 0.0031, 0.1050, 0.6410, 0.7810, 0.9010,
0.0053, 0.4500.

1. Which hypotheses are rejected after Bonferroni correction?

2. Which hypotheses are rejected after Holm correction?

3. Which hypotheses are rejected using the Benjamini and Hochberg proce-
dure?

Exercise 3.7.6. Consider 2m independent coins Xi ∼ Bern(θi) i =

1, . . . , m. Suppose that θi = 1
2 + i

2m+1 for i = 1, . . . , m and θi = 1
2 for

i = m + 1, . . . , 2m. For each of the coins we make n independent tosses.

(a) For each i find the most powerful test for testing θ = 1
2 against θ > 1

2
for level α ≤ 0.05 (finding the test of size exactly α may be too hard).

(b) Consider now the multiple testing problem for all m coins. We proved
that Bonferroni and the Holm procedures both control the FWER. De-
scribe how Bonferroni will look in this case. We want FWER≤ 0.05.

(c) Take a look at the power of Bonferroni. Denote by Pi the distribution
Bern(θi) for i = 1, . . . , m (these are the coins for which the null does not
hold). Try to find some sufficient conditions to bound the probability of
the type II error for each of the false nulls by, say, 0.05.

(d) Provide some simulations to see the difference in power between the
Bonferroni and Holm procedures. For fixed m consider n = m, 10m, 100m
to see how the answer depends on the ratio between n and m.
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(some parts of this problem can be approached in various ways so there is no
one correct solution)



Part II

Statistical Learning Theory:
An Empirical Process

Perspective





4
Motivation and examples (1 week)

This part of the lecture focuses on statistical learning theory taking
the empirical process perspective. These techniques have become
now a standard toolbox for studying modern statistical scenarios.
We will introduce basic tools in emprirical processes and apply those
tools in mathematical statistics and machine learning. We will focus
on the non-asymptotic perspective1. 1 Good references:

Martin J. Wainwright. High-
dimensional statistics: A non-asymptotic
viewpoint. Cambridge University Press,
Cambridge, 2019; and A. W. van der
Vaart and Jon A. Wellner. Weak con-
vergence and empirical processes—with
applications to statistics. Springer Series
in Statistics. Springer, Cham, 2023.
Second edition

We start by introducing the main objects of this theory and some
motivating examples2.

2 Thanks go to Qiang Sun for inspiring
this. Part of the material was discussed
by Wenlong in the Fall semester.

4.1 Uniform law of large numbers

Suppose X, X1, . . . , Xn are independent and identically distributed
random variables taking values in X ⊆ R. Let the CDF of the under-
lying distribution be F(t) = P(X ≤ t) for t ∈ R. The empirical CDF
F̂n is

F̂n(t) =
1
n

n

∑
i=1

1{Xi ≤ t}.

As E1{X ≤ t} = P(X ≤ t), it is clear that, for every t ∈ R, EF̂n(t) =
F(t). By the strong law of large numbers, for every t, F̂n(t)

a.s.→ F(t) as
n→ ∞. The following stronger result is well-known.

Theorem 4.1.1 (Glivenko-Cantelli). For any distribution, the empirical
CDF F̂n is a strongly consistent estimator of the population CDF in the
uniform norm, meaning that

‖F̂n − F‖∞ := sup
t∈R

|F̂n(t)− F(t)| a.s.→ 0.

We will provide the proof of this result using a more general the-
ory in Section 6.3; c.f. Proposition 6.3.6.

One reason, this result can be useful is because in many situations
we want to estimate some functional γ(F) of the population CDF. For
example γg(F) :=

∫
g(x)dF(x) is the expectation Eg(X). Also, for
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any α ∈ [0, 1], the quantile functional Qα is given

Qα(F) := inf{t ∈ R; F(t) ≥ α}.

If we have access to F only through the sample CFD F̂n. A natural
way to estimate γ(F) is using the plug-in estimator γ(F̂n). We could Recall that a function f : X → R on

a metric space (X , d) is continuous if
pn → p in X implies that f (pn) →
f (p) in R. Also recall that pn → p is
equivalent to d(pn, p)→ 0.

define convergence F̂n → F in the sup-norm, as ‖F̂n − F‖∞
a.s.→ 0. Then,

we get that γ(F̂n) is almost surely consistent for γ(F) as long as the
functional γ is continuous with respect to the sup-norm. Indeed, by
continuity in the sup-norm

{ω : ‖F̂n − F‖∞ → 0} ⊆ {ω : ‖γ(F̂n)− γ(F)‖∞ → 0}.

By Theorem 4.1.1, the set on the left has measure 1 and so the set on
the right also has measure one proving γ(F̂n)

a.s.→ γ(F).
We are also interested in the following generalization of Theo-

rem 4.1.1. Let F denote a class of integrable real-valued functions on
X , and let {Xi}n

i=1 be a collection of i.i.d. samples from some distri-
bution P over X . We want to analyze the following quantity

‖Pn −P‖F := sup
f∈F

∣∣∣∣∣ 1n n

∑
i=1

f (Xi)−E f (X)

∣∣∣∣∣ , (4.1)

which measures the absolute deviation between the sample average
1
n ∑ f (Xi) and the population average E[ f (X)], uniformly over class
F .

Note that there may be measurability
concerns associated with this definition.
We will skip the details; see Section 4.4
in Wainwright’s book for some details.

Definition 4.1.2. We say that F is a Glivenko-Cantelli class for P if
‖Pn −P‖F → 0 almost surely as n → ∞. If the convergence in probability
holds, we say that F is a weak Glivenko-Cantelli class for P.

If F is the family of indicator functions f (x) = 1{x ≤ t} for some
t ∈ R, we recover the CDF example in Theorem 4.1.1. In Chapter 6

we discuss some other examples of Glivenko-Cantelli classes. In
general, the condition is that the class cannot be too rich as illustrated
by the example below.

Example 4.1.3. Suppose that F is the set of all indicator functions 1A(x)
for all measurable sets A ⊆ R and suppose that P is absolutely continuous
with respect to the Lebesgue measure on R. We have E1A(X) = P(X ∈
A). For any x1, . . . , xn ∈ R the set A = R r {x1, . . . , xn} is measurable
and P(X ∈ A) = 1. We thus get that ‖Pn − P‖F = 1 for all n, and so,
this class of indicator functions is not Glivenko-Cantelli.

Even if F is not a Glivenko-Cantelli class, we still want to control
the size (4.1) by anserwing the following questions:

1. Does the random variable ‖Pn −P‖F in (4.1) concentrate around
its expectation? What is the size of this expectation?
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2. Provide finite-sample bounds on ‖Pn −P‖F , that is, bounds that
hold for every n, in terms of the class function and the distribution
P of X.

The strategy for controlling (4.1) is to first show that this quan-
tity concentrates around its mean. Given the techniques described in
Chapter 5, this is often easy3. Second, we need to control the mean. 3 For instance, for the class in Exam-

ple 4.1.3, we show concentration around
the mean in Example 5.3.6.

This is often more complicated and requires more advanced tech-
niques that we overview in Chapter 6. Before we discuss more tech-
nical aspects, we first discuss one motivating example in machine
learning and one in statistics.

4.1.1 Example: Binary classification

Consider a random vector (X, Y) with values in X × {−1, 1}. A
classifier is a function g : X → {−1, 1}. The error of the classifier is
given by In the language of the statistical de-

cision theory we first define the loss
L(g) = 1{g(X) 6= Y}. Then the error
R(g) is simply the risk of the classifier
g.
← Exercise 4.3.1

R(g) := P(g(X) 6= Y).

The goal of binary classification is to construct a classifier with small
error based on n i.i.d. observations (X1, Y1),. . . , (Xn, Yn) having the
same distribution as (X, Y). The empirical error of the classifier g is

Rn(g) :=
1
n

n

∑
i=1

1(g(Xi) 6= Yi).

A natural strategy for classification is to pick a class of classifiers C It is natural to associate each classifier
with the set {x : g(x) = 1}. Thus, the
class C can be identified with a set of
measurable subsets of X .

and then to choose the classifier in C which has the smallest training
error

ĝn := arg min
g∈C

Rn(g).

Here one possible choice is to use the logistic regression in Exam-
ple 1.7.2. A good classifier should have a small out of sample test
error

R(ĝn) = P(ĝn(X) 6= Y|(X1, Y1), . . . , (Xn, Yn)).

One possible question concerns how close is ĝn to the optimal
classifier g∗ = arg ming∈C R(g). To compare R(ĝn) with R(g∗) note
that

R(ĝn) = R(g∗) + R(ĝn)− Rn(ĝn) + Rn(ĝn)− R(g∗)

≤ R(g∗) + R(ĝn)− Rn(ĝn) + Rn(g∗)− R(g∗) (4.2)

≤ R(g∗) + 2 sup
g∈C
|Rn(g)− R(g)|.

Another question could be about comparing the training arror and
the test error, which amounts to comparing R(ĝn) with Rn(ĝn). Here
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we have

R(ĝn) = Rn(ĝn) + R(ĝn)− Rn(ĝn) (4.3)

≤ Rn(ĝn) + sup
g∈C
|Rn(g)− R(g)|. (4.4)

With the analogous bound on Rn(ĝn) we conclude that |Rn(ĝn) −
R(ĝn)| ≤ supg∈C |Rn(g)− R(g)|. The key quantity in both cases is

sup
g∈C
|Rn(g)− R(g)|,

which is a special case of (4.1), when F is taken to be the class of
all functions 1(g(x) 6= y) as g varies over C, where the data are
(Xi, Yi) instead of Xi. We provide more details in Section 6.3.1 after
developing necessary theory.

4.1.2 Example: M-Estimation

Let X, X1, . . . , Xn are i.i.d. from P where P ∈ P , with P = {Pθ :
θ ∈ Θ} for Θ ⊆ Rd. A popular method of finding an estimator
θ̂n = θ̂n(X1, . . . , Xn) is to minimize a criterion function of the form

θ 7→ Mn(θ) =
1
n

n

∑
i=1

mθ(Xi).

Here mθ : X 7→ R ∪ {+∞} are known functions. An estimator
maximizing Mn(θ) is called an M-estimator. Often the minimizer is
sought by setting a derivative equal to zero. Therefore, the name M-
estimator is also used for estimators satisfying systems of equations
of the type

Ψn(θ) =
1
n

n

∑
i=1

ψθ(Xi) = 0. (4.5)

Here ψθ : X → Rd are known vector-valued maps.

Example 4.1.4 (Maximum likelihood estimators). Suppose X, X1, . . . , Xn

have a common density pθ . Then the maximum likelihood estimator maxi-
mizes the likelihood ∏i pθ(Xi), or equivalently

This is an expectation of log p(X) with
respect to the sample distribution.

`n(θ) =
1
n

n

∑
i=1

log pθ(Xi).

Thus a maximum likelihood estimator is an M-estimator with mθ =

− log pθ . If the density is differentiable with respect to θ for each fixed x,
then the maximum likelihood estimator also solves an equation of type (4.5)
with ψθ = ∇θ log pθ , the score function of the model.

Other simple examples of M-estimators include the sample me-
dian (c.f. Exercise 2.7.2), the least squares estimator, and more gener-
ally, the estimators obtained by minimizing the empirical risk (2.1) in
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which case mθ(x) = L(θ, δ(x)). The general theory of M-estimators
originated in robust statistics.

Example 4.1.5 (Huber Robust loss). Consider a regression problem. Let
y ∈ Rn and X ∈ Rn×d be the design matrix with rows xi, . . . , xn. Let
L(y, a) = 1

2 (y− a)2. In the standard least squares approach, the vector of
coefficient is estimated by minimizing the empirical risk

m(β) =
1

2n
‖y− Xβ‖2 =

1
n

n

∑
i=1

L(yi, βTxi).

Consider instead the loss Note that Lδ(y, a) is differentiable
everywhere.

Lδ(y, a) =

 1
2 (y− a)2 if |y− a| ≤ δ

δ(|y− a| − 1
2 δ) otherwise

.

The corresponding M-estimator is the minimizer of

mδ(β) =
1
n

n

∑
i=1

Lδ(yi, βTxi).

Let M(θ) = Emθ(X). In the theory of M-estimation, the target
quantity for the estimator θ̂n is

θ∗ := arg min
θ∈Θ

M(θ).

For example, suppose data come from the distribution P with density
q. Let mθ(X) = − log pθ(X). Then

arg min
θ
−E log pθ(X) = arg min

θ
E log

q(X)

pθ(X)
,

which is simply the Kullback-Leibler divergence between the dis-
tribution P and Pθ . In particular, if P ∈ P then it is the unique
minimizer.

The main question of interest while studying M-estimators con-
cerns accuracy of θ̂n for estimating θ∗. In the asymptotic regime
n→ ∞, the two key questions are:

1. Is θ̂n consistent for estimating θ∗, equivalently, does d(θ̂n, θ∗)
p→ 0;

see Section 8.1 for relevant definitions and basic results.

2. If yes, what is the rate of convergence of d(θ̂n, θ∗) to zero? The
usual rate of convergence is Op(n−1/2), so that

√
n(θ̂n − θ∗) con-

verges in distribution4. 4 For a simple example see Exer-
cise 8.6.5.

3. How shall we do inference on θ∗ using θ̂n. For this we may need
to understand better how θ̂n concentrates around θ∗.



100 advanced theory of statistics

Some basic asymptotic results for M-estimators are provided in
Appendix 8.3. Here, we complement this with the link to the uniform
law of large numbers. For the first question we investigate closeness
of Mn(θ) = 1

n ∑n
i=1 mθ(Xi) to M(θ) = Emθ(X) in some sort of

uniform sense over θ, which leads to investigation of (4.1) for

F = {mθ : θ ∈ Θ}

and then translate the result back to the result on d(θ̂n, θ∗).
This is how this can be done: Let Dε = {θ ∈ Θ : d(θ, θ∗) ≥ ε}. We

can bound d(θ̂n, θ∗) as

P(d(θ̂n, θ∗) ≥ ε) ≤ P( sup
θ∈Dε

(Mn(θ
∗)−Mn(θ)) ≥ 0)

≤ P

(
sup
θ∈Dε

{(Mn(θ
∗)−M(θ∗))− (Mn(θ)−M(θ))} ≥ − sup

θ∈Dε

{M(θ∗)−M(θ)}
)

≤ P

(
2 sup

θ∈Dε

{|Mn(θ)−M(θ)|} ≥ inf
θ∈Dε

{M(θ)−M(θ∗)}
)

,

where going from the first to the second line we used the fact that
supθ f (θ) ≤ supθ g(θ) + supθ( f (θ) − g(θ)). Note that the bound
above again relates to the random quantity (4.1). If θ∗ is uniquely
and globally identifiable, that is, there exists η > 0 depending on ε

such that infθ∈Dε
(M(θ)−M(θ∗)) > η. Thus, with proper control of

the size of supθ∈Dε
|Mn(θ)−M(θ)|, the right-hand side in the above

display diminishes to zero5. 5 We get P(d(θ̂, θ∗) ≥ ε) ≤
P(supθ∈Dε

|Mn(θ)−M(θ)| ≥ η/2).

4.2 The Uniform Central Limit Theory

The classical central limit theorem (CLT) studies the following type of
results: for an i.i.d. sequence X, X1, . . . , Xn

Gn( f ) :=
√

n

(
1
n

n

∑
i=1

f (Xi)−E f (X)

)
 N(0, var( f (X))). (4.6)

The uniform central limit theorem studies the above convergence in
distribution uniformly over f in the class F . To illustrate this idea
consider the following example.

4.2.1 Example: Uniform empirical process

Suppose X, X1, . . . , Xn are i.i.d. uniform on [0, 1]. Let F = {1(−∞,t](x) :
t ∈ R}. Define

Un(t) =
√

n(F̂n(t)− F(t)), t ∈ R, (4.7)

where F̂n(t) = 1
n ∑i 1{Xi ≥ t} and F(t) = P(X ≤ t) = t.
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This defines a stochastic process {Un(t) : t ∈ R} which is typically
referred to as an empirical process or, more specifically in this case, a
uniform empirical process.

How do we find a candidate for the limit? The CLT states that, for
each t ∈ [0, 1], Un(t) N(0, t(1− t)) as n → ∞6. Moreover, for every 6 We have EUn(t) = 0 and var(Un(t)) =

var(1{X ≤ t})fixed t1, . . . , tk, the multivariate CLT states that

(Un(t1), . . . , Un(tk)) N(0, Σ),

where Σ = (Σij), Σij = ti ∧ tj − titj. This follows simply because we
can rewrite Un(t) = 1√

n ∑i(1(Xi ≤ t)− t) and, for any t, t′,

EUn(t)Un(t′) = 1
n

n

∑
i=1

E[(1(Xi ≤ t)− t)(1(Xi ≤ t′)− t′)]

= 1
n

n

∑
i=1

(t ∧ t′ − tt′) = t ∧ t′ − tt′.

In consequence, the candidate for the limiting process is the Gaussian
process with kernel κ(s, t) = s ∧ t− st.

We will be interested in the underlying limiting process called a
Brownian bridge.

Definition 4.2.1 (Brownian bridge). Brownian bridge {U(t) : 0 ≤ t ≤
1} is a stochastic process satisfying the following conditions

1. Every realization is continuous in [0, 1] with U(0) = U(1) = 0.

2. For every fixed t1, . . . , tk, the vector (U(t1), . . . , U(tk)) ∼ N(0, Σ),
where σij = ti ∧ tj − titj.

A Brownian bridge is an example of
a Gaussian process on [0, 1] with the
underlying kernel function κ(s, t) =
s ∧ t− st.

Thus, the finite dimensional representation of {Un(t) : t ∈ [0, 1]}
converges in distribution to that of {U(t) : t ∈ [0, 1]}. It is then
natural to ask whether the entire process {Un(t)} converges in distri-
bution to the process {U(t)}.

Convergence of stochastic processes can be defined as follows.
First recall the definition of convergence in distribution given in Sec-
tion 8.1. Equivalently, by Portmanteau Lemma 8.1.1, we say that a
random sequence (Zn) with values in Rk converges in distribution
to Z if and only if Eh(Zn) → Eh(Z) for every h ∈ Cb(R

k), where
Cb(R

k) denotes the class of real-valued bounded functions on Rk.
This equivalent definition can now be generalized to stochastic pro-
cesses.

Definition 4.2.2. For any set F by `∞(F ) denote the set of bounded real-
valued functions on F with the sup-norm.

In particular, `∞([0, 1]) is the space of all bounded functions on
[0, 1] with metric ρ( f , g) := supt∈[0,1] | f (t)− g(t)|.
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Definition 4.2.3. The process {Un(t)} converges to {U(t)} in distribution
if

Eh(Un) → Eh(U) as n→ ∞

for every bounded and continuous real-valued function h : `∞[0, 1]→ R.

There is one measure-theoretic issue with this definition as for
some h, h(Un) could not be measurable. A technical remedy is to
replace expectation by the outer expectation E∗h(Un) induced by the
outer measure. For details see Chapter 1 in 7. 7 A. W. van der Vaart and Jon A. Well-

ner. Weak convergence and empirical
processes—with applications to statistics.
Springer Series in Statistics. Springer,
Cham, 2023. Second edition

4.2.2 The general case

Consider the general empirical process Gn( f ) defined in (4.6), where
f ∈ F . Under the assumption that sup f∈F | f (x)| < ∞ for every
x ∈ X , the function f 7→ Gn( f ) belongs to `∞(F ).

Definition 4.2.4. We say that F is a Donsker class (or P-Donsker) if
Gn(F ) = {Gn( f ) : f ∈ F} converges in distribution in `∞(F ) to some
G(F ) = {G( f ) : f ∈ F} as n→ ∞.

The limiting process G(F ) is a Gaussian process: for every f1, . . . , fk

the vector (G( f1), . . . , G( fk)) is a multivariate Gaussian distribution.
This all looks abstract but the following example should illustrate

importance of these considerations in statistics.

Example 4.2.5 (A goodness-of-fit statistics). Consider X, X1, . . . , Xn

i.i.d. from a distribution P on R with CDF F. Suppose we want to test
H0 : F = F0 versus H1 : F 6= F0. Kolmogorov proposed the following test
statistics

Dn :=
√

n sup
x∈R

|F̂n(x)− F0(x)|. (4.8)

It turns out that, under H0, the distribution of Dn does not depend on F0;
see Exercise 4.3.2. If F0 is strictly increasing and continuous we can then ← Exercise 4.3.2

with no loss of generality assume that F0 is a uniform distribution on [0, 1];
F0(t) = t for t ∈ [0, 1]. We obtain that under the null

Dn = sup
0≤t≤1

|Un(t)| = ‖Un‖∞ → ‖U‖∞,

where Un(t) was defined in (4.7). Thus8 8 Pn(Dn ≤ x) = E1{Dn ≤ x} =
E1{‖Un‖∞ ≤ x}

lim
n→∞

P(Dn ≤ x) = P( sup
0≤t≤1

|U(t)| ≤ x).

Example 4.2.6 (Asymptotics of MLE). Suppose X, X1, . . . , Xn are iid
from Pθ0 . The maximum likelihood estimator is

θ̂n := arg max
θ∈Θ

1
n

n

∑
i=1

log p(xi; θ).
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A classical result is that, under second order or third order smoothness
conditions

√
n(θ̂n − θ0)  N(0, I(θ0)

−1), where I(θ0) is the Fisher
information matrix defined as See Section 8.3.2 for some details.

I(θ0) = E[∇ log pθ(X)∇> log pθ(X)]
∣∣∣
θ=θ0

.

What is the minimal smoothness asumption that is needed for the above
result to hold? It turns out that if we use UCLT together with the notion of
differentiability in quadratic mean (DQM), first-order smoothness will be
enough. This is useful in some examples that involve the Laplace density.

Example 4.2.7 (Asymptotics of M-estimators). The UCLT can also be
used to derive asymptotic distributions for M-estimators. We consider two
representative examples of location estimators.

1. The sample median is defined as

θ̂n = arg min
θ∈R

1
n

n

∑
i=1
|Xi − θ|.

Assume the CDF F is differentiable around its median θ0 with positive
derivative F′(θ0) =: p(θ0). Using UCLT, we can prove that

√
n(θ̂n − θ0) N(0, 1

4p2(θ0)
).

2. A form of mode estimator can be defined as

θ̂n = arg max 1
n

n

∑
i=1

mθ(Xi),

where mθ(x) = 1(|x − θ| ≤ 1). For this estimator, the asymptotic This is θ that contains the most of Xi’s
in its unit neighborhood.distribution is very complicated as we have

n1/3(θ̂n − θ) arg max
h∈R
{aZ(h)− bh2},

where Z is a standard two-sided Brownian motion starting from 0, and

a2 = p(θ0 + 1)− p(θ0 − 1) and b =
1
2
(p′(θ0 + 1)− p′(θ0 − 1)),

where p is the density function, unimodal, and symmetric.

4.3 Exercises

Exercise 4.3.1. In the binary classification problem in Section 4.1.1, show
that the Bayes classifier g0 given by

g0(x) =

1 if P(Y = 1|X = x) ≥ 1
2 ,

−1 otherwise

minimizes the misclassification probability R(g) over all measurable func-
tions g.
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Exercise 4.3.2. Show that the the statistics (4.8) does not depend on F0.
Hint: First assume that the CDF is continuous and strictly increasing. For
the general result use (3.24).



5
Concentration of measure (3 weeks)

In this chapter we are interested in bounding random fluctuations
of functions of many independent random variables. Variables
X, X1, . . . , Xn are independent and take values in some X . Let g :
X n → R and

Z = g(X1, . . . , Xn).

The function g can be quite complex. For example, as motivated in
the previous chapter, we could have

Z = ‖Pn −P‖F = sup
f∈F

∣∣∣∣∣ 1
n

n

∑
i=1

f (Xi)−E f (X)

∣∣∣∣∣ .

How large are “typical” deviations of Z from EZ? In particular, we
seek upper bounds for

P(Z ≥ EZ + t) and P(Z ≤ EZ− t)

for t > 0. When EZ is unknown, to obtain direct bounds on the
concentration of Z, explicit bounds on EZ will also be needed, which
will lead to more advanced considerations in Chapter 6.

There are various methods that include: martingales, information
theoretic and transportation methods, Talagrand’s induction method,
and logarithmic Sobolev inequalities. We will not get into too many
details here. We refer to two excellent books 1 and 2 for a thorough 1 Stéphane Boucheron, Gábor Lugosi,

and Pascal Massart. Concentration
inequalities: A nonasymptotic theory of
independence. Oxford University Press,
2013

2 Martin J. Wainwright. High-dimensional
statistics: A non-asymptotic viewpoint.
Cambridge University Press, Cam-
bridge, 2019

overview of the theory.

5.1 Basic inequalities

In this section we set up the scene for more advanced considerations
by recalling some basic probability inequalities. The simplest inequal-
ity is the Markov’s inequality.

Proposition 5.1.1 (Markov’s inequality). If Z ≥ 0 and t > 0 then ← Exercise 5.5.1

P(Z ≥ t) ≤ EZ
t

.
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Proof. We have

tP(Z ≥ t) = E[t1(Z ≥ t)] ≤ E[Z1(Z ≥ t)] ≤ EZ,

where the last inequality follows because Z ≥ 0.

Markov’s inequality with its elementary proof looks very inno-
cent. It is then surprising to see how many powerful results can be
obtained from it. We first show that, for distributions for which the
second moment exists, the Markov’s inequality implies the Cheby-
shev’s inequality.

Proposition 5.1.2 (Chebyshev’s inequality). For every t > 0 we have

P(|Z−EZ| ≥ t) = P((Z−EZ)2 ≥ t2) ≤ var(Z)
t2 .

More generally, if the corresponding
k-th moment exists for some k > 0 then

P(|Z−EZ| ≥ t) ≤ E(|Z−EZ|k)
tk

A particularly important instance is when Z is a sum of i.i.d. ran-
dom variables, Z = ∑n

i=1 Xi. Denote µ = EX, σ2 = var(X). In this
case var(Z) = nσ2 and we get

P(|
n

∑
i=1

Xi − nµ| ≥ t) ≤ nσ2

t2

or equivalently, denoting X̄n := 1
n ∑n

i=1 Xi,

P(|
√

n(X̄n − µ)| ≥ t) ≤ σ2

t2 .

This bound is however not very tight. Let U ∼ N(0, 1) and note that,
by the Central Limit Theorem,

lim
n→∞

P(|
√

n(X̄n − µ)| ≥ t) = 2P(U ≥ t
σ ) ≤

σ

t
e−t2/(2σ2),

where the last inequality is part of Exercise 5.5.2. In particular, at ← Exercise 5.5.2

least for very large n, we expect an exponential decrease in t2/σ2.
The trick to get the expected rate of decrease is to use the Markov’s

inequality in a more clever way.

Proposition 5.1.3 (Chernoff bounds). Suppose that the moment gener-
ating function of Z exists in some neighborhood (−b, b) of zero. Then for
every λ > 0 in this neighborhood

P(Z−EZ ≥ t) = P(eλ(Z−EZ) ≥ eλt) ≤ Eeλ(Z−EZ)

eλt .

In consequence,

log P(Z−EZ ≥ t) ≤ inf
λ∈[0,b)

{log Eeλ(Z−EZ) − λt}.
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Note that if M(λ) = Eeλ(Z−EZ) is the moment generating function
of Z−EZ then K(λ) = log M(λ) is the cumulant generating function.
We get

log Eeλ(Z−EZ) − λt = K(λ)− λt.

By Hölder’s inequality, K(λ) is a convex function function with the The convex conjugate to K(λ) is
K∗(t) = infλ∈R{K(λ) − λt} and we
get P(Z−EZ ≥ t) ≤ eK∗(t).

same proof as in Theorem 1.3.2. We will later discuss some tech-
niques to bound the moment generating function. ← Exercise 5.5.3

A useful observation is that, if X, X1, X2, . . . , Xn are i.i.d. then

P(X̄n − µ ≥ t) ≤ Eeλ(X̄n−µ)

eλt =

Ee
λ
n (X−EX)

e
λ
n t

n

.

Optimizing over λ is equivalent to optimizing over λ/n and so a
Chernoff bound on a single X, directly gives a Chernoff bound for an
average of its independent copies.

Example 5.1.4. Let Y, Y1, . . . , Yn be an i.d.d. sample such that Y = X2

with X ∼ N(0, 1). First note that

EeλY =


√

1
1−2λ for λ < 1

2 ,

+∞ otherwise.

Thus, for λ < 1/2,

P(Y− 1 ≥ t) ≤
√

1
1− 2λ

1
eλ(t+1)

.

The optimal λ∗ = 1
2

t
t+1 , which gives the Chernoff bound3 3 Plot this to see that this bound is

actually not that great for t ∈ (0, 5).

P(Y− 1 ≥ t) ≤
√

t + 1e−t/2

and consequently

P(Ȳn − 1 ≥ t) ≤ (t + 1)n/2e−nt/2.

It is convenient to have an explicit exponential bound for small t. In this
case we can use the fact that log(1 + t) − t ≤ −t2/4 for t ∈ [0, 1]4 to 4 To show that −t2/4− log(1 + t) + t ≥

0 for t ∈ [0, 1] we note that the left hand
side is zero for t = 0 and its derivative
is nonnegative for t ∈ [0, 1].

conclude that, for every t ∈ [0, 1],

P(Ȳn − 1 ≥ t) ≤ (t + 1)n/2e−nt/2 = e
n
2 (log(t+1)−t) ≤ e−nt2/8.

← Exercise 5.5.4
A simple yet powerful illustration of the Chernoff bounds in

Proposition 5.1.3 is given by following example.

Example 5.1.5 (Johnson-Lindenstrauss lemma). Let a1, . . . , an ∈ RD

and ε > 0. We are looking for a function f : RD → Rd with d < D such
that

(1− ε)‖ai − aj‖2 < ‖ f (ai)− f (aj)‖2 < (1 + ε)‖ai − aj‖2 (5.1)
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for all i, j = 1, . . . , n. Johnson-Lindenstrauss lemma states such an embed-
ding f exists if

d >
16
ε2 log n. (5.2)

(Note that the bound does not depend on D!) We present a probabilistic
proof of this fact and show that f can be taken as a linear function. In fact, if
we choose f at random, it works with positive probability. Let W ∈ Rd×D

be a random matrix such that the Wij are independent N(0, 1/d).
Take f (a) = Wa. Then, denoting bij := (ai − aj)/‖ai − aj‖, we can

rewrite (5.1) as
1− ε < ‖Wbij‖2 < 1 + ε.

or equivalently

max
i,j

∣∣∣‖Wbij‖2 − 1
∣∣∣ < ε. (5.3)

We first show that E‖Wbij‖2 = 1. Indeed, for any b ∈ RD,

E‖Wb‖2 = E(bᵀWᵀWb) = bᵀE(WᵀW)b = bᵀb = ‖b‖2. (5.4)

Since ‖bij‖ = 1 we get E‖Wbij‖2 = 1. To show (5.3) with positive
probability, it is equivalent to show that

P(max
i,j

∣∣∣‖Wbij‖2 − 1
∣∣∣ ≥ ε) < 1.

We next show that ‖Wbij‖2 can be written as 1
d ∑d

i=1 Z2
i with Zi ∼

N(0, 1). Indeed, for every b ∈ RD such that ‖b‖ = 1

‖Wb‖2 = (Wb)ᵀ(Wb) =
d

∑
i=1

(wᵀi b)2,

where w1, . . . , wd are the rows of W. Note that E(wᵀi b) = 0 and

E((wᵀi b)2) = b>E(wiwi)b =
1
d

b>b =
1
d

.

Thus, wᵀi b for i = 1, . . . , d are i.i.d. N(0, 1/d), we get

‖Wb‖2 − 1 =
1
d

d

∑
i=1

(Z2
i − 1),

where Zi are i.i.d. N(0, 1). By the calculations in Example 5.1.4 and by
(5.10), for every ε ≤ 1 we conclude that

P(|‖Wb‖2 − 1| ≥ ε) ≤ 2e−ε2d/8.

By the union bound

P(max
i,j
|‖Wbij‖2 − 1| > ε) ≤

(
n
2

)
P(|‖Wb‖2 − 1| > ε) ≤

(
n
2

)
2e−ε2d/8.
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It remains to check that if (5.2) holds then the right hand side is smaller
than 1. But this is clear. Rewrite (5.2) as dε2/8 > log n2 and get(

n
2

)
2e−ε2d/8 = elog(n(n−1))−ε2d/8 < elog(n(n−1))−log n2

=
n− 1

n
< 1.

Note that the proof is not constructive, as the linear map satisfying (5.1) is
not given explicitly.

5.2 Sub-gaussian and sub-exponential random variables

It is clear that if the values of Z concentrate, its variance must be
small. To establish concentration using the Chebyshev’s inequality
in Proposition 5.1.2 it is important to obtain good bounds on the
variance of Z. Similarly, in order to utilize the Chernoff bounds in
Proposition 5.1.3 we need to obtain good bounds for the moment
generating function. In this and in the next section we will focus on
this last task.

To motivate the next definition note that if X ∼ N(µ, σ2) then

Eeλ(X−µ) = eσ2λ2/2 for all λ ∈ R.

Substituting this into the Chernoff bound in Proposition 5.1.3 we
get

inf
λ≥0

{
log Eeλ(X−µ) − λt

}
= inf

λ≥0

{
λ2σ2

2
− λt

}
= − t2

2σ2 ,

which gives

P(X− µ ≥ t) ≤ e−t2/2σ2
for all t ≥ 0. (5.5)

In other words, for δ ∈ (0, 1),

P

(
X− µ ≥ σ

√
2 log( 1

δ )

)
≤ δ.

The same concentration bounds hold in much greater generality
for so called sub-Gaussian variables. ← Exercise 5.5.5

Definition 5.2.1. A variable X is sub-Gaussian (or σ-sub-Gaussian) if
there is σ > 0 such that

Eeλ(X−µ) ≤ eσ2λ2/2 for all λ ∈ R

or equivalently

KX(λ)− λµ ≤ σ2λ2/2 for all λ ∈ R, (5.6)

where KX is the cumulant generating function of X.

The following proposition shows that, if X takes values in a
bounded interval [a, b], then X is sub-Gaussian with σ = (b− a)/2.
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Proposition 5.2.2. Suppose that X has values in some bounded interval
[a, b]. Then Eeλ(X−EX) ≤ eλ2(b−a)2/8, that is, X is sub-Gaussian with
σ = (b− a)/2.

In the proof we will use the following simple result.

Lemma 5.2.3 (Popoviciu’s inequality). If X ∈ [a, b] then var(X) ≤(
b−a

2

)2
.

Proof. For every u ∈ R, E(X − u)2 = var(X) + (u − µ)2 and so
var(X) ≤ E(X− u)2. Take u = a+b

2 then

E(X−u)2 =
1
4

E(X− a+X− b)2 ≤ 1
4

E(X− a+ b−X)2 =

(
b− a

2

)2
.

Proof of Proposition 5.2.2. Suppose f is the density of X with respect
to the underlying measure µ. Consider the cumulant generating
function K(λ) = log EeλX and note that K(0) = 0, K′(0) = EX, and
K′′(0) = var(X). Directly by definition of K(λ)

f (x; λ) = f (x)eλx−K(λ)

defines a valid density function. Direct calculations (or Propo-
sition 1.3.4) show that the second derivative of K(λ) is the vari-
ance of the distribution with density eλx−K(λ) f (x)5. In particular, 5 Note that λ is a parameter describ-

ing an exponential family where f
corresponds to λ = 0.

K′′(λ) = Eλ[X2] − (Eλ[X])2, where Eλ[g(X)] = E[g(X) eλX

E[eλX ]
] =∫

R
g(x)eλx−K(λ) f (x)dx. By Lemma 5.2.3,

0 ≤ K′′(λ) = Eλ[X2]− (Eλ[X])2 ≤
(

b− a
2

)2
.

By the Taylor’s theorem, for every λ ∈ R

K(λ) = K(0) + K′(0)λ + K′′(θ)
λ2

2

for some θ between 0 and λ. Using what we know, we conclude that

K(λ)− λEX ≤
(

b− a
2

)2 λ2

2
for all λ ∈ R,

which is equivalent to the claimed inequality.
← Exercise 5.5.6

The following elementary result will be useful.

Lemma 5.2.4. Suppose that X = (X1, . . . , Xn) is a random vector such
that Xi is σi-sub-Gaussian for i = 1, . . . , n. If Xi are independent and
u ∈ Rn, then the random variable uᵀX is sub-Gaussian with parameter

σ =
√

σ2
1 u2

1 + . . . + σ2
nu2

n.
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Proof. Denote by µ the mean vector of EX. Equivalently we must
show KuᵀX(λ)− λuᵀµ ≤ σ2λ2/2. We have

KuᵀX(λ)−λuᵀµ =
n

∑
i=1

(
KXi (λui)− λuiµi

)
≤

n

∑
i=1

σ2
i λ2u2

i
2

= (
n

∑
i=1

σ2
i u2

i )
λ2

2
,

which completes the proof.

We list a couple of useful observations that follow directly from
Lemma 5.2.4. They show that the σ parameter behaves similarly to
the standard deviation.

Corollary 5.2.5. For a collection of independent σ-sub-Gaussian random
variables X1, . . . , Xn, their average X̄n is sub-Gaussian with parameter
σ/
√

n.

Corollary 5.2.6. If X is σ-sub-Gaussian, then aX + b (a ∈ R, b ∈ R) is
sub-Gaussian with parameter |a|σ. In particular, −X is σ-sub-Gaussian.

Corollary 5.2.7. If X = (X1, . . . , Xn) is a vector of independent random
variables such that each Xi is σ-sub-Gaussian, and ‖u‖ = 1, then uTX is
σ-sub-Gaussian.

Suppose that X is σ-sub-Gaussian. By Corollary 5.2.6, −X is also
σ-sub-Gaussian. Thus, on the top of (5.5) we also have

P(X− µ ≤ −t) ≤ e−t2/2σ2
for all t ≥ 0.

Using the union bound, we conclude the following result.

Corollary 5.2.8. For a σ-sub-Gaussian variable In other words, for δ ∈ (0, 1),

P

(
|X− µ| ≥ σ

√
2 log( 2

δ )

)
≤ δ.

The graph below shows the price
we are paying by decreasing δ ∈
(0, 0.1) (the x-axis) with respect to the
guaranteed bound (y-axis); σ = 1.

0

2
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6
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P
(X

>
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<
x

P(|X− µ| ≥ t) ≤ 2e−t2/2σ2
for all t ≥ 0.

The following result applies Chernoff bounds to a sequence of
sub-Gaussian variables.

Proposition 5.2.9 (Hoeffding inequality). If Xi are independent σi-sub-
Gaussian then for all t ≥ 0 we have

P (|X̄n −E(X̄n)| ≥ t) ≤ 2e−t2n2/(2 ∑i σ2
i )

Proof. By Lemma 5.2.4, X̄n is sub-Gaussian with parameter

σ =
1
n

√
n

∑
i=1

σ2
i .

Thus, the result follows by Corollary 5.2.8.

Remark 5.2.10. If σi = σ for all i we also note that the Hoeffding inequal-
ity implies

P
(∣∣√n(X̄n −E(X̄n))

∣∣ ≥ t
)
≤ 2e−t2/(2σ2).
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Example 5.2.11 (Sub-Gaussian sequence model). Consider independent
Y1, . . . , Yn that are σ-sub-Gaussian with means µi, where σ2 is known. Let
S ⊂ {1, . . . , n} be the support of the vector µ = (µ1, . . . , µn), that is,
µi 6= 0 for i ∈ S and µi = 0 for i /∈ S. One possible way of finding the zero
µi’s is by considering the LASSO estimator

µ̂ = arg min
µ

{
1
2‖Y− µ‖2 + λ

n

∑
i=1
|µi|
}

for a fixed λ ≥ 0. It is a simple exercise6 to show that 6 Check this!
In fact, our analysis applies to any
procedure based on thresholding.

µ̂i =


Yi − λ if Yi > λ,

0 if |Yi| ≤ λ,

Yi + λ if Yi < −λ.

.

To analyse this procedure we consider two types of errors

1. Type I: |Yi| > λ for i /∈ S, and

2. Type II: |Yi| ≤ λ for i ∈ S.

We would like to set the threshold λ to control the Family-wise Error Rate.
In other words, Z := maxi/∈S |Yi| ≤ λ with high probability. Let s be the
number of the nonzeros entries in µ then m0 := n − s is the number of
zeros. By the union bound and using the fact that each Yi for i /∈ S is mean
zero σ-sub-Gaussian

P(Z ≥ λ) ≤ ∑
i/∈S

P(|Yi| ≥ λ) ≤ 2m0e−λ2/2σ2
.

Suppose that λ = σ
√

2 log( 2m0
α ) for some α ∈ (0, 1) then P(Z ≥ λ) ≤ α,

which binds the family-wise error rate. Moreover, if λn = 2σ
√

log(m0),
then

P(Z ≥ λn) ≤
2

m0
,

which goes to zero as m0 grows to infinity (with n)7. Of course, in practice, 7 We could compare this procedure with
the Bonferroni and the Holm proce-
dures discussed earlier. Note that the
latter two have no theoretical guaran-
tees if the underlying distribution is not
Gaussian.

we also want λ to be as small as possible to reduce the type II error. We will
not discuss this issue here8.

8 Exercise: Analyze the type II error as a
function of µ∗ = mini∈S |µi |

Another general type of bound on the moment generating function
is the following.

Definition 5.2.12. A random variable with mean µ = EX is sub-
exponential if there are non-negative parameters ν, α such that

E(eλ(X−µ)) ≤ eν2λ2/2 for all |λ| < 1
α

.

This condition is rather mild and it is essentially equivalent with
the existence of the cumulant generating function in a neighbour-
hood of zero.
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Example 5.2.13. Let Z ∼ N(0, 1) and let X = Z2. For λ < 1/2, we have

E(eλ(X−1)) =
1√
2π

∫
R

eλ(z2−1)e−z2/2dz =

 e−λ√
1−2λ

if λ < 1
2 ,

+∞ if λ ≥ 1
2 .

.

In particular, since the moment generating function is not defined every-
where, X is not sub-Gaussian. With a bit of calculus we see however that

e−λ

√
1− 2λ

≤ e4λ2/2 for all |λ| < 1
4

and so X is sub-exponential with parameters (ν, α) = (2, 4).

With essentially the same proof, Lemma 5.2.4 generalizes to sub-
exponential variables.

Lemma 5.2.14. Suppose that X = (X1, . . . , Xn) is a random vector such
that Xi is (νi, αi)-sub-exponential for i = 1, . . . , n. If Xi are independent
and u ∈ Rn, then the random variable uᵀX is sub-exponential with parame-

ters ν =
√

ν2
1 u2

1 + . . . + ν2
nu2

n and α = maxi |ui|αi.

We obtain simple concentration inequalities for sub-exponential
variables.

Proposition 5.2.15. Suppose that X is sub-exponential with parameters
(ν, α) and t ≥ 0. Then

P(X− µ ≥ t) ≤

e−
t2

2ν2 if 0 ≤ t ≤ ν2

α ,

e−
t

2α if t > ν2

α .

and
0.0

0.5

1.0
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Figure 5.1: Illustration of the subex-
ponential bounds for ν = α = 1. The
blue line represents 2e−t2/2. The red
line represents 2e−t/2. In black their
pointwise maximum.

P(|X− µ| ≥ t) ≤

2e−
t2

2ν2 if 0 ≤ t ≤ ν2

α ,

2e−
t

2α if t > ν2

α .

Proof. Using the Chernoff bound we know that

P(X− µ ≥ t) ≤ inf
λ∈[0, 1

α )

{Eeλ(X−EX)e−λt} ≤ inf
λ∈[0, 1

α )

{eν2λ2/2−λt}.

The global optimum of eν2λ2/2−λt is λ∗ = t/ν2 ≥ 0. Thus, if t/ν2 <

1/α (equiv. ν2 > tα), we get the sub-Gaussian bound e−t2/(2ν2).
Otherwise, if ν2 ≤ tα, the infimum is obtained on the boundary
λ∗ = 1/α and it is equal to eν2/(2α2)−t/α. Note however that the fact
that ν2 ≤ tα, allows to bound this by e−t/(2α).

Lemma 5.2.14 and Proposition 5.2.15 give now a handful of useful
results. For example, if Xi are independent sub-exponential with
parameters (ν, α) then X̄n is sub-exponential with parameters ( ν√

n , α
n )

and so

P(|X̄n − µ| ≥ t) ≤

2e−
t2n
2ν2 if 0 ≤ t ≤ ν2

α ,

2e−
tn
2α if t > ν2

α .
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5.3 Martingale-based methods

We will now briefly discuss techniques related to martingale repre-
sentations. Recall the basic set-up of the martingale theory in Ap-
pendix C.2. Let X1, . . . , Xn be independent random variables and
Z = f (X1, . . . , Xn). Denote

Ei[·] = E[·|X1, . . . , Xi].

Thus E0Z = EZ and EnZ = Z. Moreover, if i < j then EiEjZ =

EjEiZ = EiZ. It is easy to see that Yk = EkZ forms a martingale
sequence if E|Z| < ∞. Indeed, by Jensen’s inequality

E(|EkZ|) ≤ EEk|Z| = E|Z| < ∞.

This is called the Doob’s martingale.
Writing

∆i = EiZ−Ei−1Z

we have

Z−EZ =
n

∑
i=1

∆i. (5.7)

This is the Doob martingale representation of Z. In particular, we
write Z − EZ = ∑n

i=1 ∆i, where ∆i for the corresponding Doob
martingale difference sequence.

Theorem 5.3.1. Let {∆i,Fi} be a martingale difference sequence as above
and suppose that Ek−1[eλ∆k ] ≤ eλ2ν2

k /2 almost surely for any |λ| < 1/αk (a
form of a sub-exponential condition). Then Z−EZ = ∑n

i=1 ∆i is subexpo-
nential with parameters (ν∗, α∗) = (‖ν‖, ‖α‖∞). In particular,

P(|Z−EZ| ≥ t) ≤

2e
− t2

2ν2∗ if 0 ≤ t ≤ ν2∗
α∗ ,

2e−
t

2α∗ if t > ν2∗
α∗ .

Proof. The first part can be directly shown by recursive conditioning.
Indeed, we first write

Eeλ(Z−EZ) = Eeλ ∑n
i=1 ∆i = EEn−1eλ ∑n

i=1 ∆i = Eeλ ∑n−1
i=1 ∆i En−1eλ∆n

and this is bounded for all |λ| < 1/αn by

eλ2ν2
n/2Eeλ ∑n−1

i=1 ∆i .

Proceeding in a similar fashion, we get the conclusion. The second of
the theorem part follows by the first part and Proposition 5.2.15.

A very useful version of this result is when each ∆i is bounded,
∆k ∈ [ak, bk], in which case it is also sub-Gaussian (also conditionally
on Fk−1).
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Definition 5.3.2. A function f : X n → R satisfies bounded differences
inequality, if there exist constants L1, . . . , Ln such that

| f (x)− f (x′)| ≤ Lk,

whenever x, x′ differ only in the k-th coordinate.

A canonical example of such a function is

f (x) =
n

∑
i=1

fi(xi),

where all fi are bounded functions.

Proposition 5.3.3 (Bounded differences inequality). Suppose that Z =

f (X1, . . . , Xn), where f satisfies the bounded differences inequality with
parameters L1, . . . , Ln and such that the random vector X = (X1, . . . , Xn)

has independent components. Then Z is sub-Gaussian with parameter

σ = 1
2

√
L2

1 + · · ·+ L2
n.

In particular, for all t ≥ 0

P(|Z−EZ| ≥ t) ≤ 2e−
t2

2σ2 = 2e
− 2t2

∑n
i=1 L2

i .

Proof. Fix i and take a look at ∆i. Let

ai := inf
x

E[Z|X1, . . . , Xi−1, x]−Ei−1Z

and
bi := sup

x
E[Z|X1, . . . , Xi−1, x]−Ei−1Z.

It is clear that ai ≤ ∆i ≤ bi almost surely. To use Proposition 5.2.2 we
need to bound bi − ai. For that, note first that

E[ f (X1, . . . , Xi, . . . , Xn)|X1, . . . , Xi−1, Xi = x] = E[ f (X1, . . . , x, . . . , Xn)|X1, . . . , Xi−1],

which follows by independence of all Xi’s (in both cases the integral
is with respect to the marginal distribution of (Xi+1, . . . , Xn)).

We have

bi − ai = sup
x

E[Z|X1, . . . , Xi−1, x]− inf
x

E[Z|X1, . . . , Xi−1, x]

≤ sup
x,y

∣∣∣E[Z|X1, . . . , Xi−1, x]−E[Z|X1, . . . , Xi−1, y]
∣∣∣

= sup
x,y

∣∣∣Ei−1[ f (X1, . . . , Xi−1, x, Xi+1, . . . , Xn)− f (X1, . . . , Xi−1, y, Xi+1, . . . , Xn)]
∣∣∣

≤ Li.

Since ∆i ∈ [ai, bi] and bi − ai ≤ Li, by Proposition 5.2.2,

Ei−1eλ∆i ≤ eλ2ν2
i /2, for νi = Li/2 and all λ ∈ R. (5.8)
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Now we can use Theorem 5.3.1 to conclude that Z−EZ (and so also

Z) is sub-Gaussian with parameter 1
2

√
L2

1 + . . . + L2
n. The probability

bound then follows from (5.5).

Remark 5.3.4. Note that there was an alternative route to simply observe
that | f (x) − f (y)| ≤ ∑k Lk for all x, y ∈ X n. In other words, Z is
bounded and so sub-Gaussian with parameter σ = ∑k Lk even without

assuming independence of X1, . . . , Xn. However, 1
2

√
∑k L2

k < ∑k Lk and
this difference can be critical.

Example 5.3.5 (Kernel density estimation). Let X1, . . . , Xn be i.i.d. real
samples drawn according to some density φ. The kernel density estimate is

φn(x) =
1

nh

n

∑
i=1

K
(

x− Xi
h

)
,

where h > 0, and K is a nonnegative “kernel”
∫

K = 1. The L1-error is

Z = f (X1, . . . , Xn) =
∫
X
|φn(x)− φ(x)|dx.

It is easy to see that, if X, X′ differ only in the i-th coordinate then

| f (X)− f (X′)| ≤ 1
nh

∫ ∣∣∣∣K( x− Xi
h

)
− K

(
x− X′i

h

)∣∣∣∣dx ≤ 2
n

.

By Proposition 5.3.3,

P(|Z−EZ| ≥ t) ≤ 2e−
t2n
2 for all t ≥ 0.

Note however that to analyze the quality of the kernel density estimator, we
need bounds on Z directly. For that we need to separately study EZ. 9 9 This is well studies in the literature.

See for example Section II.4.2 in .
P. P. B. Eggermont and V. N. LaRiccia.

Maximum penalized likelihood estimation.
Vol. I. Springer Series in Statistics.
Springer-Verlag, New York, 2001

Example 5.3.6 (Uniform deviations). Let A be a collection of measurable
subsets of X and let X, X1, . . . , Xn be random points drawn from X i.i.d.
Let

P(A) = P{X ∈ A} and Pn(A) =
1
n

n

∑
i=1

1{Xi ∈ A}.

Let Z = f (X1, . . . , Xn) = supA∈A |P(A)−Pn(A)|. If X, X′ differ only in
the i-th coordinate then, for every A ∈ A,∣∣∣|P(A)−Pn(A)|− |P(A)−P′n(A)|

∣∣∣ ≤ |Pn(A)−P′n(A)| = 1
n
|1{Xi ∈ A}−1{X′i ∈ A}| ≤ 1

n
.

We conclude that | f (X)− f (X′)| ≤ 1/n. By Proposition 5.3.3,

P(|Z−EZ| ≥ t) ≤ 2e−2t2n for all t ≥ 0.

This holds irrespective of the underlying distribution or richness of A. As in
the previous example, a major issue can be to understand better EZ.
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Example 5.3.7 (U-statistics). Let g : R2 → R be a symmetric function.
Given an i.i.d. sequence Xi of random variables, the quantity

Z :=
1
(n

2)
∑
i<j

g(Xi, Xj).

is known as a pairwise U-statistic. For instance, if g(s, t) = |s− t|, then U
is an unbiased estimator of the mean absolute pairwise deviation E(|X1 −
X2|). Suppose g is bounded, say ‖g‖∞ ≤ b. Writing Z =: f (X1, . . . , Xn).
For any two x, x′ ∈ Rn that differ only in the i-th coordinate we have

| f (x)− f (x′)| ≤ 1
(n

2)
∑
j 6=i
|g(xi, xj)− g(x′i , xj)| ≤

(n− 1)2b
(n

2)
=

4b
n

.

By Proposition 5.3.3,

P(|Z−EZ| ≥ t) ≤ 2e−
t2n
8b2 for all t ≥ 0.

In particular, Z is a consistent estimator of EZ = Eg(X1, X2).

The following example will become important later in the lecture.
This is also our first example for which the constants L1, . . . , Ln may
be different.

Example 5.3.8 (Rademacher complexity). Let ε = (ε1, . . . , εn) be a
vector of independent Rademacher random variables (values ±1 with equal
probability). Given a collection of vectors A ⊆ Rn, define the random
variable

Z(A) := sup
a∈A
〈a, ε〉.

The random variable Z = Z(A) measures the size of A in a certain sense,

Although we do not use it here, note
that Z(A) is a convex function of ε.

and its expectation R(A) is known as the Rademacher complexity of the
set A. Suppose A is bounded. We will use Proposition 5.3.3 to show that
Z = f (ε1, . . . , εn) is sub-Gaussian. Note that for every a ∈ A, if ε, ε′ differ
only in the i-th coordinate, then

〈a, ε〉− sup
b∈A
〈b, ε′〉 = inf

b∈A
(〈a, ε〉− 〈b, ε′〉) ≤ 〈a, ε〉− 〈a, ε′〉 = ai(εi− ε′i) ≤ 2|ai|.

Thus, we can take the supremum over a ∈ A to conclude that

f (ε)− f (ε′) = sup
a∈A
〈a, ε〉 − sup

b∈A
〈b, ε′〉 ≤ 2 sup

a∈A
|ai| =: Li.

The argument is symmetric if we swap ε and ε′ and so f satisfies the
bounded differences inequality. By Proposition 5.3.3, Z(A) is then sub-

Gaussian with parameter 2
√

∑i supa∈A a2
i . We remark that, using different

techniques, this sub-Gaussianity parameter can be reduced to supa∈A ‖a‖.
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An important application of this theory is for the variable Z =

‖Pn − P‖F , as defined in (4.1), at least in the case when F is uni-
formly bounded.

Theorem 5.3.9. Assume F is uniformly b-bounded, that is, ‖ f ‖∞ ≤ b for
all f ∈ F . We have

P(Z ≥ EZ + t) ≤ exp
{
− nt2

2b2

}
.

Proof. The function g(x1, . . . , xn) = sup f∈F
∣∣∣ 1

n ∑n
i=1 f (xi)−E f (X)

∣∣∣
satisfies the bounded difference property with Li =

2b
n .

5.4 Lipschitz functions of Gaussian variables

Recall that a function f : Rn → R is Lipschitz with parameter L if

| f (x)− f (y)| ≤ L‖x− y‖ for all x, y ∈ Rn.

Theorem 5.4.1. Let X = (X1, . . . , Xn) ∼ Nn(0, In) and let f : Rn → R

be Lipschitz with parameter L. Then the variable f (X) is L-sub-Gaussian, Note that the sub-Gaussian parameter
is completely dimension-free! For this
reason this result is sometimes referred
to as “Dimension Free Concentration
Inequality”.

and hence

P(| f (X)−E f (X)| ≥ t) ≤ 2e−
t2

2L2 for all t ≥ 0.

We will prove this result with a slightly worse constant and as-
suming differentiability (Lipschitz functions are differentiable almost
everywhere though). In this case ‖∇ f (x)‖ ≤ L for all x (easy exer-
cise, e.g. consider the directional derivative of f (x) in the direction
∇ f (x)).

Proof. We have f (X) − E f (X) = f (X) − EX′ f (X′), where X′ is an
independent copy of X. By the Jensen’s inequality

EXeλ( f (X)−EX′ f (X′)) ≤ EX,X′ e
λ( f (X)− f (X′)). (5.9)

Suppose f is differentiable then, by the fundamental theorem of
calculus,

f (X)− f (X′) =
∫ π/2

0

d
dθ f (X sin θ + X′ cos θ)dθ

=
∫ π/2

0

〈
∇ f (X sin θ + X′ cos θ), X cos θ − X′ sin θ

〉
dθ

Note that the variables Xθ := X sin θ + X′ cos θ and X′θ := X cos θ −
X′ sin θ are independent standard normal and so the distribution of
(X, X′) is the same as the distribution of (Xθ , X′θ). The right-hand
side in (5.9) can be rewritten as

EX,X′ e
λ
∫ π/2

0 〈∇ f (Xθ),X′θ〉dθ .
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If θ is a random variable uniformly distributed on (0, π
2 ) then∫ π/2

0
〈∇ f (Xθ), X′θ〉dθ =

π

2
Eθ〈∇ f (Xθ), X′θ〉.

Using the Jensen’s inequality again (and Fubini’s theorem), we get

EX,X′ e
λ
∫ π/2

0 〈∇ f (Xθ),X′θ〉dθ = EX,X′ e
λ

π
2 Eθ〈∇ f (Xθ),X′θ〉 ≤ EθEX,X′ e

λ
π
2 〈∇ f (Xθ),X′θ〉.

For any fixed θ, (Xθ , X′θ) has the same distribution as (X, X′). It then
follows that

EθEX,X′ e
λ

π
2 〈∇ f (Xθ),X′θ〉 = EθEX,X′ e

λ
π
2 〈∇ f (X),X′〉 = EX,X′ e

λ
π
2 〈∇ f (X),X′〉.

Note that for fixed X, the variable 〈∇ f (X), X′〉 is Gaussian with
mean zero and variance ‖∇ f (X)‖2 and hence

EX,X′ e
λ

π
2 〈∇ f (X),X′〉 ≤ EXeλ2π2‖∇ f (X)‖2/8 ≤ eλ2π2L2/8.

This calculation shows that

EXeλ( f (X)−EX′ f (X′)) ≤ eλ2π2L2/8

or, in other words, that f (X)−E f (X) is sub-Gaussian with parame-
ter σ = πL

2 , which is slightly more than the claimed L.

This result is useful for a broad range of problems.

Example 5.4.2 (χ2 concentration). For a given vector Z = (Z1, . . . , Zn)

of i.i.d. standard normal variables, we have Y := ∑n
i=1 Z2

i = ‖Z‖2 ∼ χ2
n.

The most direct way to obtain tail bounds on Y was given in Example 5.1.4.
Alternatively we can use Theorem 5.4.1. Define V =

√
Y/n = ‖Z‖/√n.

Since the Euclidean norm is a 1-Lipschitz function, we get

P(V −EV ≥ t) ≤ e−nt2/2.

To obtain bounds on Y−EY note that, by Jensen’s inequality,

E[V] ≤
√

E[V2] = 1.

Thus

P(V −EV ≥ t) ≥ P(V − 1 ≥ t) = P(Y/n ≥ (t + 1)2).

Putting everything together we conclude

P(Y/n ≥ (1 + t)2) ≤ e−nt2/2 for all t ≥ 0.

Example 5.4.3 (Order statistics). Given a random vector (X1, . . . , Xn),
its order statistics are obtained by reordering its entries in a non-decreasing
manner as

X(1) ≤ X(2) ≤ · · · ≤ X(n−1) ≤ X(n).
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As particular cases, we have X(n) = maxi Xi and X(1) = mini Xi. Given
another random vector (Y1, . . . , Yn), it can be shown that |X(k) − Y(k)| ≤
‖X − Y‖ for all k = 1, . . . , n10, so that each order statistic is a 1-Lipschitz 10 The fact that |Xk − Yk | ≤ ‖X − Y‖ for

every k is trivial. But this statement is
more subtle!

function. Consequently, when X is a standard Gaussian random vector,
Theorem 5.4.1 implies that

P(|X(i) −EX(i)| ≥ t) ≤ 2e−t2/2 for all t ≥ 0.

Example 5.4.4 (Singular values of Gaussian random matrices). For
n ≥ d, consider the matrix X ∈ Rn×d, and denote by

σ1(X) ≥ σ2(X) ≥ · · · ≥ σd(X) ≥ 0

the singular values of X. By Weyl’s theorem

max
i=1,...,d

|σi(X)− σi(Y)| ≤ ‖X − Y‖ ≤ ‖X − Y‖F.

In other words, each singular value σi(X) is a 1-Lipschitz function of X.
Suppose now that W is random with independent standard normal entries.
Theorem 5.4.1 implies that

P(|σi(W)−Eσi(W)| ≥ t) ≤ 2e−t2/2 for all t ≥ 0,

or in other words

P(|σi(
1√
n W)−Eσi(

1√
n W)| ≥ t) ≤ 2e−t2n/2 for all t ≥ 0.

If X has i.i.d. rows from Nd(0, Σ) then X = W
√

Σ and the sample covari-
ance satisfies

Σ̂ = 1
n XᵀX =

√
Σ( 1√

n W)ᵀ( 1√
n W)
√

Σ.

We can exploit this to obtain some bounds on ‖Σ̂− Σ‖ (see Chapter 6 in 11). 11 Martin J. Wainwright. High-
dimensional statistics: A non-asymptotic
viewpoint. Cambridge University Press,
Cambridge, 2019

Example 5.4.5 (Gaussian width). Let W = (W1, . . . , Wn) be the n-
dimensional standard Gaussian vector. Given a collection of vectors A ⊂
Rn, define the random variable

Z = Z(A) := sup
a∈A
〈a, W〉.

The variable Z is one way of measuring the size of the set A, which is
called the Gaussian width. We view Z as a function (w1, . . . , wn) 7→
f (w1, . . . , wn). Fixing a, we get

〈a, w〉 − 〈a, w′〉 ≤ ‖a‖‖w− w′‖ ≤ sup
a∈A
‖a‖‖w− w′‖.

Then
sup
a∈A
〈a, w〉 − sup

a∈A
〈a, w′〉 ≤ ‖a‖‖w− w′‖,
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and similarly

sup
a∈A
〈a, w′〉 − sup

a∈A
〈a, w〉 ≤ sup

a∈A
‖a‖‖w− w′‖.

Let D(A) := supa∈A ‖a‖. Thus f (w) is D(A)− Lipschitz and this

P(|Z−EZ| ≥ t) ≤ 2e
− t2

2D2(A) .

5.5 Exercises

Exercise 5.5.1. Provide a non-negative random variable for this the Markov
inequality holds as equality (for a fixed t). Is there a random variable for
which it holds as equality for every t ≥ 0?

Exercise 5.5.2. Show that for U ∼ N(0, 1) it holds that

P(U ≥ t) ≤ 1√
2π

1
t

e−t2/2.

Hint: If φ(u) is the density of U, show φ′(u) + uφ(u) = 0 for all u ∈ R.
Conclude that

∫ ∞
t φ(u)du ≤ 1

t φ(t).

Exercise 5.5.3. Show that in Proposition 5.1.3 the same way we get

log P(Z−EZ ≤ −t) ≤ inf
λ∈(−b,0]

{log Eeλ(Z−EZ) + λt}.

Conclude bounds on P(|Z−EZ| ≥ t).

Exercise 5.5.4. Use Exercise 5.5.3 to show that in the Example 5.1.4

P(Ȳn − 1 ≤ −t) ≤ (1− t)n/2ent/2.

Conclude for t ∈ [0, 1] that

P(|Ȳn − 1| ≥ t) ≤ 2e−nt2/8. (5.10)

Exercise 5.5.5. Use Exercise 5.5.3 to show that for all t ≥ 0

P(X− µ ≤ −t) ≤ e−t2/2σ2
and P(|X− µ| ≥ t) ≤ 2e−t2/2σ2

.

Exercise 5.5.6. Suppose X is σ-sub-Gaussian with mean µ. Show that
var(X) ≤ σ2.

Exercise 5.5.7. Suppose Xi, i = 1, ..., N are zero-mean σ-sub-gaussian
random variables (not neccessarily independent). Use Proposition 6.1.1 to
show that

P(max
i

Xi −E max
i

Xi ≥ t) ≤ e−t2/σ2
for t < 2σ

√
2 log N.





6
More advanced techniques (1-2 weeks)

6.1 Maximal inequalities

Lemma 5.2.4 and Lemma 5.2.14 provide concentration bounds on
linear combinations of sub-Gaussian or sub-exponential variables. In
many instances, we will be interested in controlling the maximum
over the parameters of such linear combinations. The main moti-
vation is in empirical risk minimization (see (2.1)) but many other
applications exist. The purpose of this section is to present such re-
sults.

We begin by the simplest case possible: the maximum over a finite
set.

Proposition 6.1.1. Suppose X1, . . . , XN are zero-mean σ-sub-Gaussian
then

E max
i=1,...,N

Xi ≤ σ
√

2 log N and E max
i=1,...,N

|Xi| ≤ σ
√

2 log(2N).

Moreover, for any t > 0

P( max
i=1,...,N

Xi ≥ t) ≤ Ne−t2/(2σ2)

P( max
i=1,...,N

|Xi| ≥ t) ≤ 2Ne−t2/(2σ2).
(6.1)

In other words, for δ ∈ (0, 1),

P

(
max

i
Xi ≥ σ

√
2 log( N

δ )

)
≤ δ.

Proof. Take λ > 0. Then we get

eλE maxi Xi
Jensen
≤ Eeλ maxi Xi = E max

i
eλXi

≤
N

∑
i=1

EeλXi ≤ Neσ2λ2/2.

By taking logs and optimizing with respect to λ we get that the opti-
mal λ =

√
2 log N/σ. Plugging this back, we obtain

E max
i

Xi ≤
log N

λ
+

σ2λ

2
≤ σ

√
2 log N.
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The analogous bound for the absolute values follows from the fact
that maxi |Xi| = max{X1,−X1, . . . , XN ,−XN}. Finally, the probability
bounds follow directly by the union bound and σ-sub-Gaussianity of
Xi.

Figure 6.1 offers an illustration of Proposition 6.1.1. The blue curve
depicts a Monte Carlo estimate of the maximum of N standard nor-
mal variables (σ = 1) and its theoretical bound

√
2 log(N) is plotted

in red. The bound reveals the right rate. Note also that in Proposi-
tion 6.1.1 we did not require that Xi are independent!
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Figure 6.1: Illustration of the bound in
Proposition 6.1.1.
← Exercise 5.5.7

Let X = (X1, . . . , XN) be a vector of independent σ-sub-Gaussian
variables. It is often important to analyze suprema of random func-
tions over a general set A ⊆ RN :

sup
u∈A

u>X (6.2)

By Corollary 5.2.7, each u>X is σ‖u‖-sub-Gaussian. If A if finite, we
can use Proposition 6.1.1 to get

E max
u∈A

u>X ≤ σ diam(A)
√

2 log |A|,

where diam(A) = maxu∈A ‖u‖.
Sometimes, even if A is not finite, there is a trivial reduction to the

finite case. Suppose that P ⊆ Rd is a polytope, that is, a set of convex
combinations of some fixed points v1, . . . , vN . In this case we have

sup
u∈P

uᵀX = max
i=1,...,N

vᵀi X

and now we can use Proposition 6.1.1 to obtain bounds on E supu∈P uᵀX
and P(supu∈P uᵀX ≥ t). Of particular interest are polytopes that have
a small number of vertices. A primary example is the `1 ball of Rd

defined by

B1 = {x ∈ Rd :
d

∑
i=1
|xi| ≤ 1},

which has exactly 2d vertices.
If A is bounded, we still have a principled way to study the supre-

mum in (6.2). To simplify the discussion we first present the main
ideas in the specific case of the `2 ball

B2 = {x ∈ Rd :
d

∑
i=1

x2
i ≤ 1}.

The general idea is to cover B2 with a finite set of points such that
the maximum over this finite set is of the same order as the maxi-
mum over the entire ball.
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Definition 6.1.2. Fix K ⊂ Rd and ε > 0. A set N is called an ε-cover of
K, if N ⊆ K and for any z ∈ K, there exists x ∈ N such that ‖x− z‖ ≤ ε.

Definition 6.1.3. The ε-covering number of K is

N(ε, K) := inf{N ∈N : ∃ an ε-cover of K of size N}

Figure 6.2: ε-cover of a square. Here in
addition the points are at least ε apart
from each other. Source: Wikipedia.

The following lemma gives an upper bound on the size of the
smallest ε-cover of B2.

Lemma 6.1.4. Fix ε ∈ (0, 1). Then the unit Euclidean ball B2 has an
ε-cover N of cardinality |N | ≤ (3/ε)d.

Proof. Consider the following iterative construction of the ε-cover.
Choose x1 = 0. For any i ≥ 2, take xi to be any point in B2 such that
‖xi − xj‖ > ε for all j < i. If no such point exists, stop the procedure1. 1 The procedure needs to stop by

compactness of B2. If not, we would
have a sequence (xn) in B2, which
then would need to have a convergent
subsequence. This would contradict the
assumption that the elements of this
sequence are all at least ε apart.

This will create an ε-cover. We now control its size.
Since ‖x − y‖ > ε for all x, y ∈ N , the Euclidean balls of radius

ε/2 and centered at points of N are disjoint. Moreover,⋃
z∈N
{z + ε

2 B2} ⊂ (1 + ε
2 )B2.

Thus, measuring volumes, we get

vol((1 + ε
2 )B2) ≥ vol(

⋃
z∈N
{z + ε

2 B2}) = |N |vol( ε
2 B2)

or equivalently
(1 + ε

2 )
d ≥ |N |( ε

2 )
d,

which gives the following bound

|N | ≤ (1 + 2
ε )

d ≤ ( 3
ε )

d

Recall from Corollary 5.2.7 that if X = (X1, . . . , Xn) is a vector
of independent σ-sub-Gaussian random variables then for any unit
vector u the variable uᵀX is σ-sub-Gaussian. We can then introduce
the following general definition of sub-Gaussian vectors.

Definition 6.1.5. A random vector X is called σ-sub-Gaussian if uᵀX is
σ-sub-Gaussian for any unit vector u.

In this definition we do not require the
components of X to be independent

Theorem 6.1.6. Let X ∈ Rd be a mean-zero σ-sub-Gaussian vector. Then

E‖X‖ = E(max
u∈B2

uᵀX) ≤ 4σ
√

d.

Moreover, for any δ > 0, with probability 1− δ, it holds

‖X‖ ≤ 4σ
√

d + 2σ
√

2 log(1/δ).
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Proof. Let N be a 1/2-cover of B2 that satisfies |N | ≤ 6d. Next,
observe that for every u ∈ B2, there exists y ∈ N and h such that
‖h‖ ≤ 1/2 and u = y + h. Therefore,

max
u∈B2

uᵀX ≤ max
y∈N

yᵀX + max
h∈ 1

2 B2

hᵀX = max
y∈N

yᵀX +
1
2

max
h∈B2

hᵀX.

Therefore,
max
u∈B2

uᵀX ≤ 2 max
y∈N

yᵀX, (6.3)

and so, using Proposition 6.1.1,

E max
u∈B2

uᵀX ≤ 2E max
y∈N

yᵀX ≤ 2σ
√

2 log |N | ≤ 4σ
√

d.

The bound with high probability then follows because, using (6.3),

P(max
u∈B2

uᵀX ≥ t) ≤ P(2 max
y∈N

yᵀX ≥ t) ≤ |N |e−t2/(8σ2) ≤ 6de−t2/(8σ2).

Plugging t = 4σ
√

d + 2σ
√

2 log(1/δ) we verify the bound.
← Exercise 6.5.1

6.2 Rademacher complexity and bounds on suprema

In this section we are again concerned with the variable

Zn = sup
f∈F

∣∣∣∣∣ 1
n

n

∑
i=1

f (Xi)−E f (X)

∣∣∣∣∣ = ‖Pn −P‖F .

In Theorem 5.3.9, we showed that if F is uniformly b-bounded, we
get

P(Zn −EZn ≥ t) ≤ exp{− nt2

2b2 }. (6.4)

By setting δ = exp{− nt2

2b2 }, we get t =
√

2b2

n log( 1
δ ). In other words,

with probability at least 1− δ, we have

0 ≤ Zn ≤ EZn +

√
2b2

n
log(

1
δ
). (6.5)

The second term on the right diminishes to 0 at the order 1/
√

n.
Since EZ is unknown, we need to bound it. The three main tools
to construct such bounds are: symmetrization, discretization, and
chaining. We now discuss them in more detail.

Definition 6.2.1 (Rademacher Complexity). For a fixed collection xn
1 :=

{x1, x2, . . . , xn}, xi ∈ X , consider

F (xn
1 ) = {( f (x1), . . . , f (xn)) : f ∈ F} ⊆ Rn. (6.6)
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The empirical Rademacher complexity is defined as

Rn(F (xn
1 )/n) := Eε

[
sup
f∈F

1
n

∣∣∣∣∣ n

∑
i=1

εi f (xi)

∣∣∣∣∣
]

.

Taking expectation w.r.t. X1, X2, . . . , Xn, we obtain the Rademacher com-
plexity as

Rn(F ) := EXRn(F (Xn
1 )/n).

Consider the following basic bound.

Theorem 6.2.2 (Symmetrization). For any class of measurable functions
F , we have

E‖Pn −P‖F ≤ 2Rn(F ).

Proof. Suppose X′1, . . . , X′n are independent copies of X1, . . . , Xn. As a
result, we have

E‖Pn −P‖F = E sup
f∈F

∣∣∣∣∣ 1n n

∑
i=1

( f (Xi)−E f (Xi))

∣∣∣∣∣
= E sup

f∈F

∣∣∣∣∣ 1n n

∑
i=1

( f (Xi)−E f (X′i))

∣∣∣∣∣
(consider the convex function g(y1, . . . , yn) = sup f | 1n ∑i( f (xi)− yi)|)

Jensen
≤ E sup

f∈F

∣∣∣∣∣ 1n n

∑
i=1

( f (Xi)− f (X′i))

∣∣∣∣∣ .

We have f (Xi)− f (X′i)
d
= εi( f (Xi)− f (X′i)) for all i. This is why we

call this the symmetrization argument. Thus we obtain

E‖Pn −P‖F = E

(
sup
f∈F

∣∣∣∣∣ 1n n

∑
i=1

εi( f (Xi)− f (X′i))

∣∣∣∣∣
)

4
≤ 2E

(
sup
f∈F

∣∣∣∣∣ 1n n

∑
i=1

εi f (Xi)

∣∣∣∣∣
)

= 2Rn(F ).

As a corollary, using (6.5), we get the following important result.

Proposition 6.2.3. For any uniformly b-bounded class of functions F , any
positive integer n ≥ 1 and any scalar t ≥ 0, we have

‖Pn −P‖F ≤ 2Rn(F ) + t

with probability at least 1− exp(− nt2

2b2 ). Consequently, as long as Rn(F ) = Equivalently, ‖Pn −P‖F ≤ 2Rn(F ) +
b
√

2
n log( 1

δ ) with probability ≥ 1− δ.o(1), we have ‖Pn −P‖F → 0 almost surely (i.e. F is a Glivenko-Cantelli
class for any P).
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Proof. Let Zn := ‖Pn − P‖F . The first part follows directly from
the earlier result and Theorem 5.3.9. In particular, convergence in
probability of ‖Pn − P‖F to zero follows easily2. To get stronger 2 Recall that Zn

p→ 0 if ∀ε > 0 P(Zn >

ε) → 0. Moreover, Zn
a.s.→ 0 if P(Zn →

0) = 1.
almost sure convergence we employ the Borel-Cantelli lemma. By
basic calculus, we have3

3 Recall xn → 0 if and only if ∀N ≥ 1
∃n ≥ 1 s.t. ∀m ≥ n |xm| ≤ 1

N . Also,⋃
α∈A Eα = {x : ∃α s.t. x ∈ Eα} and⋂
α∈A Eα = {x : ∀α s.t. x ∈ Eα}, which

is why quantificator statements easily
translate to set operations as in (6.7).

{Zn → 0} =
∞⋂

N=1

∞⋃
n=1

⋂
m≥n
{Zm ≤

1
N
}. (6.7)

To prove almost sure convergence, we show that the complement of
the set in (6.7) has measure zero. For a fixed N let En = {Zn > 1

N }.
If n is large enough then 2Rn(F ) < 1

2N and so, for such n, taking

t = 1
2N we get P(En) = P(Zn > 1

N ) ≤ e−
n

2b2 N2 . This implies that

∑
n≥1

P(En) < ∞.

By the Borel-Cantelli lemma4, for every N ≥ 1, P(
⋃∞

n=1
⋂

m≥n{Zn ≤ 4 B-C states that if ∑n≥1 P(En) < ∞ then
P(
⋂

n≥1
⋃

m≥n Em) = 0.1
N }) = 1. Thus, in (6.7), we have a countable collection of measure 1

events. This implies that their intersection has measure 1 too, proving
P(Zn → 0) = 1.

To bound Rn(F ), we first fix x1, .., xn ∈ X and bound the em-
pirical Rademacher complexity Rn(F (xn

1 )/n). Second, if the upper
bound for Rn(F (xn

1 )/n) does not depend on x1, . . . , xn, then it auto-
matically becomes an upper bound for Rn(F ).

We now state a simple upper bound for Rn(A) = E[supa∈A
1
n ∑n

i=1 εiai]

if A ∈ Rn is a set with finite elements. As a corollary from Proposi-
tion 6.1.1 we get the following bound. ← Exercise 6.5.2

Proposition 6.2.4 (Discretization). Suppose A is a finite subset of Rn

with cardinality of |A|. Then Recall that if εi are independent 1-
sub-Gaussian then 1

n a>ε is 1
n ‖a‖-sub-

Gaussian.

Rn(A) = E max
a∈A

∣∣∣∣∣ 1n n

∑
i=1

εiai

∣∣∣∣∣ ≤ max
a∈A

√
1
n

n

∑
i=1

a2
i

√
2 log(2|A|)

n
.

In Section 6.3 we show that the finite case already leads to deep
and interesting results. Later, in Section 6.4 we show more general
techniques.

6.3 Polynomial discrimination and VC dimension

In Proposition 6.2.4 we showed how to bound the Rademacher com-
plexity for a finite set A. In this section we exploit this result.

Definition 6.3.1 (Boolean Class). We say F is a Boolean (function) class
if ∀ f ∈ F and ∀x ∈ X , f (x) ∈ {0, 1}.
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An important example is given by the binary classification dis-
cussed in Section 4.1.1 and the uniform empirical process.

Example 6.3.2 (Binary Classification). Consider a pair of random objects
(X, Y) having some joint distribution where X ∈ X , Y ∈ {0,+1}. A
classifier is a function g : X 7→ {0,+1} The error of the classifier is given
by

L(g) := P(g(X) 6= Y) = E1(g(X) 6= Y).

Thus, in binary classification problems, the functions of interest are of the
form 1(g(X) 6= Y), and {1(g(X) 6= Y) : g ∈ G} is a Boolean class for any
set of classifiers G.

Example 6.3.3 (Uniform Empirical Process). When deriving the asymp-
totic law of the empirical CFD, the function class of interest F = {1(−∞,t](·) :
t ∈ R} is a Boolean class.

Now, fix a Boolean class F and points {x1, · · · , xn} in X . Then
F (xn

1 ) defined in (6.6) is a finite set, contained in {0, 1}n, whose
cardinality is then at most 2n. Applying Proposition 6.2.4, to A =

F (xn
1 )/n we obtain

Rn(F (xn
1 )/n) = E max

f∈F
1
n

∣∣∣∣∣∑i
εi f (xi)

∣∣∣∣∣ ≤
√

2 log (2|F (xn
1 )|)

n
, (6.8)

since the first term in Proposition 6.2.4 equals to sup f∈F
√

∑n
i=1 f 2(xi)/n,

which is less than or equal to 1.
Of course, if |F (xn

1 )| ≈ 2n then the bound in (6.8) is not very
interesting. It becomes interesting, for example, when the cardinality
of the function class grows only as a polynomial function of n, as
formalized below.

Definition 6.3.4 (Polynomial Discrimination). The Boolean class F is
said to have polynomial discrimination if there exists a polynomial ρ(·) such
that for every positive integer n and every set of n points {x1, · · · , xn} , the
set F (xn

1 ) satisfies
|F (xn

1 )| ≤ ρ(n).

The significance of this property is that, together with inequal-
ity (6.8), it provides a straightforward approach to controlling the
Rademacher complexity, Rn(F ) = o(1). By Proposition 6.2.3 and
(6.8), we get the following result.

Proposition 6.3.5. If a Boolean class F has polynomial discrimination then
it is Glivenko-Cantelli class for any P. 5 5 c.f. Definition 4.1.2

The first important example is given by the empirical process.
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Proposition 6.3.6. The Boolean class F = {1{x ≤ t} : t ∈ R} satisfies
|F (xn

1 )| ≤ n + 1. In particular, it has polynomial discrimination and so F
is a Glivenko-Cantelli class for any P.

But how does one check if a given Boolean class F has polynomial
discrimination in general? One of the most popular approaches is to
use the Vapnik Chervonenkis dimension, or the VC dimension for
short. We have the following lemma.

Definition 6.3.7 (VC Dimension). The VC dimension VC(F ) of a class
of Boolean functions F on X is defined as the largest integer D such that
there exists a finite subset{x1, · · · , xD} of X satisfying F (xD

1 ) = {0, 1}D. Note that it always holds that F (xD
1 ) ⊆

{0, 1}D

Definition 6.3.8 (Shattering). A finite subset {x1, · · · , xm}⊂ X is said to
be shattered by Boolean class F if F (xm

1 ) = {0, 1}m, i.e.,
∣∣F (xm

1 )
∣∣ = 2m.

Remark 6.3.9. By the definitions of VC dimension and shattering, we know
the VC dimension is the largest integer n for which there is a n-point set
{x1, · · · , xn} which can be shattered by F .

Example 6.3.10. Let F be the set of indicator functions of the form 1(−∞,t](x)
on R. Then VC(F ) = 1. Indeed, if x1 < x2 then there is no f ∈ F for
which ( f (x1), f (x2)) = (1, 0). By the same argument, no bigger set of
points in R can be shuttered.

The next lemma shows that any class with finite VC dimension has
polynomial discrimination with degree of at most the VC dimension.

Lemma 6.3.11 (Sauer’s Lemma). Suppose VC(F ) = D, then for every
n ≥ 1 and every collection {x1, · · · , xn} of n points, we have

|F (xn
1 )| ≤

(
n
0

)
+

(
n
1

)
+ · · ·+

(
n
D

)
.

If k > n, we have (n
k) = 0, and if D ≤ n, we have

|F (xn
1 )| ≤

(
n
0

)
+

(
n
1

)
+ · · ·+

(
n
D

)
≤
( en

D

)D
.

Proof. See Proposition 4.18 of 6 for the detailed proof. 6 Martin J. Wainwright. High-dimensional
statistics: A non-asymptotic viewpoint.
Cambridge University Press, Cam-
bridge, 2019

As an immediate corollary, we get the following result.

Proposition 6.3.12. Suppose F is a Boolean class and VC(F ) ≤ D. Then
for n ≥ D, we have

Rn(F ) ≤ 2

√
D
n

log
( en

D

)
and so

E‖Pn −P‖F ≤ 4

√
D
n

log
( en

D

)
.
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Proof. Combined with VC lemma and our previous upper bound
(6.8), we can obtain that for n ≥ D

Rn(F ) ≤
√

2 log 2 + 2 log ( en
D )D

n
≤
√

2(D + 1) log ( en
D )

n
≤ 2

√
D log ( en

D )

n
,

where the second inequality follows because, for n ≥ D, we have
2 ≤ ( en

D ) and the last uses that D ≥ 1.

6.3.1 Binary classification revisited

Consider again the classification problem discussed in Section 4.1.1.
For a fixed family of classifiers C, we study supg∈C |Rn(g) − R(g)|,
where R(g) = P(g(X) 6= Y) and Rn(g) = 1

n ∑n
i=1 1(g(Xi) 6= Yi).

The study of this quantity is well motivated by (4.2) and (4.3). This
corresponds to ‖Pn − P‖F , where F is taken to be the class of all
functions 1(g(x) 6= y) as g varies over C (this class is uniformly
1-bounded), where the data are (Xi, Yi) instead of Xi. Using the
bounded differences inequality, Proposition 6.2.3, and Proposi-
tion 6.3.12, we get that with probability ≥ 1− δ

sup
g∈C
|Rn(g)−R(g)| = 2

√
VC(F )

n
log(

en
VC(F ) )+

√
2
n

log(
1
δ
) ≤ 2

√
VC(F ) log(n) + 1

n
+

√
2
n

log(
1
δ
).

To make these bounds efficient in a wide variety of examples, we
formulate a bunch of results.

Lemma 6.3.13. In the setting above, VC(F ) ≤ VC(C).

Proof. We want to show that if F can shatter (x1, y1), . . . , (xn, yn),
then C can shatter x1, . . . , xn. For this, let η1, . . . , ηn ∈ {0, 1}. We need
to obtain g ∈ C such that g(xi) = ηi for i = 1, . . . , n. Define

δi := ηi1{yi = 0}+ (1− ηi)1(yi = 1).

As F can shatter (x1, y1), . . . , (xn, yn), there exists f ∈ F , f (x, y) =

1(g(x) 6= y) for some g ∈ C such that f (xi, yi) = δi, i = 1, . . . , n. Then
g(xi) = ηi, for i = 1, . . . , n. This proves that C shatters x1, . . . , xn.

When the logistic function is used for this classification task, the
classifier is given by

g(x) = 1{h(x) ≥ 1
2}, h(x) =

1

1 + e−x>β

or equivalently

g(x) = 1{x>β ≥ 0}, β ∈ Rd.
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Proposition 6.3.14 (Finite-Dimensional Vector Spaces). Let V be a d-
dimensional vector space of real-valued functions on X .7 Let C := {1( f ≥ 7 For example, f = xᵀβ with β running

through Rd.0) : f ∈ V}. Then VC(C) ≤ d.

Proof. For any fixed collection {x1, · · · , xd+1} of d + 1 points. Con-
sider T = {( f (x1), · · · , f (xd+1)) : f ∈ V}, then T is a linear subspace
of Rd+1 with dimension at most d. Therefore, there exists a nonzero
vector y ∈ Rd+1 such that

d+1

∑
i=1

yi f (xi) = 0, for all f ∈ V . (6.9)

Without loss of generality, we assume that at least one yk is pos-
itive, k ∈ {1, 2, . . . , d + 1} (If not, we can let y′ = −y, then y′

satisfies both (6.9) and the assumption). Now suppose there exists
{x1, · · · , xd+1} shattered by C, meaning that each possible sign pat-
tern of ( f (x1), . . . , f (xd+1)) is possible. Then we can find a f ∈ V
such that

f (xi) ≥ 0, if yi ≤ 0,

f (xi) < 0, if yi > 0.

Thus we get ∑d+1
i=1 yi f (xi) < 0, which contradicts with (6.9).

Suppose now that a logistic classifier is considered and d is the
dimension of the input space. Using these results, we conclude that
with probability ≥ 1− δ

sup
g∈C
|Rn(g)− R(g)| ≤ 2

√
d(log(n) + 1)

n
+

√
2
n

log(
1
δ
).

6.4 Chaining

The situation like described in Section 6.3 is very special. Typically
we do not have that the functions f ∈ F all take values in a finite set.
In general, to exploit the discretization argument in Proposition 6.2.4
we need to work harder.

Suppose now that A ⊆ Rn is arbitrary. Let N = N(δ) be the δ-
covering number of A with respect to the norm ‖a‖n := ‖a‖/√n. A
naive approach for bounding Rn(A) is as follows. Fix a δ-covering
N of A and for every a denote by π(a) the closest point in N to a we
get

Rn(A) = E sup
u∈A

1
n

∣∣∣ε>u
∣∣∣ ≤ E[max

z∈N
1
n |ε>z|]+E[sup

u∈A

1
n |ε>(u−π(u))|] ≤

√
2 log(2N(δ))

n
sup
u∈A

‖u‖√
n
+ δ,

where the last inequality follows by Proposition 6.2.4 and the Cauchy-
Schwarz inequality. This inequality holds for every δ but N(δ) mono-
tonically increases as δ decreases.
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Get back to our problem of bounding the empirical Rademacher
complexity R(F (xn

1 )/n). In this section, we only assume that the
class F has a finite and integrable envelope function F: a function
such that | f (x)| ≤ F(x) < ∞, for every x and f ∈ F .

Consider now the L2(P)-norm, ‖ f ‖P,2 =
√

P| f |2. Given a sub-
set F of the L2(P)-space, we denote the δ-covering number by
N(δ,F , L2(P)). Note that

‖ f ‖Pn ,2 =

√
1
n

n

∑
i=1

f 2(Xi) and sup
f∈F
‖ f ‖Pn ,2 ≤ ‖F‖Pn ,2,

which is the same as ‖a‖n with a = ( f (X1), . . . , f (Xn)). In other
words, N(δ) for A = F (Xn

1 )/n above is the same as N(δ,F , L2(Pn)).
Thus,

Rn(F (Xn
1 )/n) ≤

√
2 log N(δ,F , L2(Pn))

n
‖F‖Pn ,2 + δ,

which implies

Rn(F (Xn
1 )/n) ≤

(√
2 log N(δ‖F‖Pn ,2,F , L2(Pn))

n
+ δ

)
‖F‖Pn ,2

≤
√2 log supQ N(δ‖F‖Q,2,F , L2(Q))

n
+ δ

 ‖F‖Pn ,2,

where the supremum is taken over all measures supported on a finite
set with n points8. From this, we can conclude the following result, 8 Note that this gives a trivial bound

on the Rademacher complexity
ER(F (Xn

1 /n)) because, by Jensen’s
inequality E‖F‖Pn ,2 ≤ ‖F‖P,2 and this
is the only term in the bound above that
depends on Xn

1 .

which we state without proof.

Theorem 6.4.1. Let F be a suitably measurable class of measurable func-
tions with supQ N(δ‖F‖L2(Q),F , L2(Q)) < ∞ for every δ > 0. If
EF(X) < ∞ then F is P-Glivenko-Cantelli.

A tighter bound on the Rademacher complexity can be obtained
using chaining.

Theorem 6.4.2 (Chaining). Suppose 0 ∈ A ⊆ Rn and let D :=
supa∈A ‖a‖/

√
n. Then

Rn(A) ≤ 16√
n

∫ D/2

0

√
log N(δ)dδ.

Proof. Let Am be a D/2m-covering of A with |Am| = N(D/2m). We
have A0 = {0}. For every m ≥ 0 let πm(a) denote the point in Am

that is the closest to a. Note that

1
n ε>a =

∞

∑
m=0

1
n ε>(πm+1(a)− πm(a)).
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By Proposition 6.2.4, we have

E[max
a∈A

1
n ε>(πm+1(a)− πm(a))] ≤

√
2 log(2|Am| · |Am+1|)

n
max
a∈A

‖πm+1(a)− πm(a)‖√
n

=

√
2 log(2|Am+1|2)

n
max
a∈A

‖πm+1(a)− a + a− πm(a)‖√
n

≤ 4
2m D

√
log(|Am+1|)

n

≤ 4
2m D

√
log(N(D/2m+1))

n
.

This assures that

E[sup
a∈A

1
n
|ε>a|] ≤

∞

∑
m=0

E[max
a∈A

1
n |ε>(πm+1(a)− πm(a)|]

≤ 4
∞

∑
m=0

D
2m

√
log N(D/2m+1)

n

≤ 16
∞

∑
m=0

D
2m+2

√
log N(D/2m+1)

n

≤ 16
∫ D/2

0

√
log N(δ)

n
dδ

as claimed.

 

A

5 someday

Figure 6.3: Illustration of the last bound
in the proof of Theorem 6.4.2.

Theorem 6.4.3. Suppose there exists a function F such that | f (x)| ≤ F(x)
for all f ∈ F . Then

E‖Pn−P‖F ≤ 8

√
E(F(X)2)

n

∫ 1

0

√
log sup

Q
N(δ‖F‖L2(Q),F , L2(Q))dδ,

where the supremum is taken over all measures supported on a finite set
with n points.

Proof. Consider a fixed sample (Xi)
n
i=1 with the underlying distribu-

tion Pn. Note that

sup
a∈F (Xn

1 )

√
1
n

n

∑
i=1

a2
i = sup

f∈F

√
1
n

n

∑
i=1

f (Xi)2 ≤
√

1
n

n

∑
i=1

F(Xi)2 =
√

PnF2

By Theorem 6.4.2, conditionally on (Xi)
n
i=1

E

[
sup
f∈F
| 1
n

n

∑
i=1

εi f (Xi)|
∣∣∣(Xi)

n
i=1

]
≤ 16√

n

∫ √Pn F2/2

0

√
log N(δ;F , L2(Pn))dδ

=
8√
n

√
PnF2

∫ 1

0

√
log N( δ

2

√
PnF2;F , L2(Pn))dδ

≤ 8√
n

√
PnF2

∫ 1

0
sup

Q

√
log N( δ

2‖F‖L2(Q);F , L2(Q))dδ.
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To get the desired bound we now take the expectation with respect to
(Xi)

n
i=1. By the Jensen inequality we get

E

√
PnF2

n
≤
√

EF2(X)

n
,

which gives the desired result.

We conclude stating the following result that shows that Proposi-
tion 6.3.12 can be strengthened.

Proposition 6.4.4. Suppose F is a Boolean class and VC(F ) ≤ D. Then
for any δ > 0, we have

sup
Q

N(δ,F , L2(Q)) ≤ (
c1

δ
)c2D,

where c1, c2 are some positive (universal) constants, and the supremum is
over all probability distributions over X . Consequently,

E‖Pn −P‖F ≤ c

√
D
n

for some universal constant c.

6.5 Exercises

Exercise 6.5.1. Let X ∈ Rn×d be a random matrix with i.i.d. entries that
are σ-sub-Gaussian. Denote by Sn−1 the unit sphere in Rn and by Bn

2 the
corresponding unit ball.

(i) Show that uTXv is a σ-sub-Gaussian random variable for any u ∈ Bn
2 ,

v ∈ Bd
2.

(ii) The operator norm ‖X‖ is defined as ‖X‖ := supv 6=0
‖Xv‖
‖v‖ . Show that

‖X‖ = max
u∈Sn−1

max
v∈Sd−1

uTXv = max
u∈Bn

2

max
v∈Bd

2

uTXv.

(iii) Using (i) and (ii), show that there exists a constant C > 0 such that
E‖X‖ ≤ C(

√
n +
√

d).

Exercise 6.5.2. Prove Proposition 6.2.4.
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Applications in statistics (1-2 weeks)

Please read Chapter 1 in 1 to build up some intuition for why high- 1 Martin J. Wainwright. High-dimensional
statistics: A non-asymptotic viewpoint.
Cambridge University Press, Cam-
bridge, 2019

dimensional statistics is important in general. In here we only focus
on a basic illustration for the results in the previous chapter. For
more details, see the lecture notes of Philippe Rigollet2, on which I 2 https://math.mit.edu/~rigollet/

PDFs/RigNotes17.pdfbased most of this chapter.

7.1 Sub-Gaussian sequence model with sparsity

Consider the Gaussian sequence model, that is, let

Xi = µi + εi, i = 1, . . . , d, (7.1)

where εi ∼ N(0, σ2). This is the same model as we considered in
Section 2.5 in our discussion of the Stein’s paradox. Occasionally, we
will also relax the assumption of Gaussianity of ε in which case we
refer to it a a sub-Gaussian sequence model.

Given a random sample X(1), . . . , X(n) ∈ Rd from model (7.1), we
can estimate µ by the sample mean Y = Xn = 1

n ∑n
j=1 X(j). Note that

EYi = µi and var(Yi) = σ2/n and thus, equivalently, we can consider
a Gaussian sequence model

Yi = µi + εi, i = 1, . . . , d,

where var(εi) = σ2/n or, more generally, a sub-Gaussian sequence
model for which εi is σ√

n -sub-Gaussian. We use the estimator µ̂ =

(Y1, . . . , Yd) with the risk3 3 This formula already appeared in
(2.11).

R(µ, µ̂) = E[
d

∑
i=1

ε2
i ] ≤

σ2d
n

.

To think about this as a high dimensional problem, we let d, n be

The inequality becomes equality in the
Gaussian case.

both large in which case µ̂ may not be a good estimator unless n� d.
In order to estimate µ in the high-dimensional setting we will re-

quire some additional structure on µ. In Section 2.5 we saw a simple

https://math.mit.edu/~rigollet/PDFs/RigNotes17.pdf
https://math.mit.edu/~rigollet/PDFs/RigNotes17.pdf
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example of how explicit bounds on the entries of µ can be exploited
by an estimator of the form CY with C diagonal.

Here we assume that µ is sparse or most of its entries are small.
In this case, a natural estimator is given by hard thresholding. Hard
thresholding gives the estimator

µ̂τ
i = Yi1(|Yi| ≥ τ) for all i = 1, . . . , d.

Equivalently, the thresholding estimator is a solution to the problem: In each ai the function is Y2
i if ai = 0

and (Yi − ai)
2 + τ2 otherwise. The

latter function is minimized at ai =
Yi with the optimal value τ2. Thus
the optimum of the whole function
depends on whether |Yi | ≥ τ or not.

µ̂τ = arg min
a∈R

{
‖Y− a‖2 + τ2

d

∑
i=1

1{ai 6= 0}
}

.

We will try to obtain risk bounds for hard thresholding. Note that,
by (6.1), with probability at least 1− δ, Recall: εi is σ√

n -sub-Gaussian.

max
i
|εi| ≤ σ

√
2 log(2d/δ)

n =: τ. (7.2)

The consequences of this inequality are two-fold. First, if µi = 0 then
|Yi| = |εi| ≤ τ with high probability. Thus, if we observe |Yi| � τ

then it must correspond to µi 6= 0. Second, if |Yi| ≤ τ then µi cannot
be too large because, by the triangle inequality,

|µi| ≤ |Yi|+ |εi| ≤ 2τ.

Therefore, we loose at most 2τ by taking µ̂τ
i = 0.

Proposition 7.1.1. Let µ̂2τ be the hard thresholding estimator with thresh-
old 2τ, where τ is defined in (7.2) Then, (7.2) implies that

‖µ̂2τ − µ‖2 ≤ 9
d

∑
i=1

min{µ2
i , τ2}. (7.3)

In particular, (7.3) holds with probability ≥ 1− δ.4 4 Recall that (7.3) depends on δ through
(7.2).

Proof. We condition on the high probability event (7.2), which we call
E in this proof. Fix index i and note that:

1. If |µi| ≤ τ then (given E ) |Yi| ≤ |µi| + |Yi − µi| ≤ 2τ and so
µ̂2τ

i = 0. In this case, (µi − µ̂2τ
i )2 = µ2

i .

2. If |µi| > 3τ then (given E ) |Yi| ≥ |µi| − |Yi − µi| > 2τ and so
µ̂2τ

i = Yi. In this case (µi − µ̂2τ
i )2 = ε2

i ≤ τ2.

3. If τ < |µi| ≤ 3τ, then

(µ̂2τ
i − µi)

2 = (Yi1(|Yi| ≥ 2τ)− µi)
2 = µ2

i 1(|Yi| < 2τ) + ε2
i 1(|Yi| ≥ 2τ) ≤ max{ε2

i , µ2
i } ≤ 9τ2.

Putting these together, we see that (7.2) implies (7.3).



applications in statistics (1-2 weeks) 139

The next theorem shows how this can be exploited. It is conve-
nient to have the following standard notation:

an . bn means an ≤ Cbn for some C > 0 and all n.

Theorem 7.1.2. Consider the same set-up as in Proposition 7.1.1. If (7.2)
holds, then the following statements hold:

(i) If ‖µ‖0 = s then Note that we do not bound the risk
but the conditional risk. But here the
event we condition on holds with
high probability (1− δ) so this is still
informative.

R(µ, µ̂2τ) ≤ 9sτ2 = 18σ2 s log(2d/δ)

n
. σ2 s log(d)

n
. (7.4)

(ii) If mini∈supp(µ) |µi| > 3τ, then

supp(µ̂2τ) = supp(µ). Thus we get some guarantees on
support recovery.

Equation (7.4) shows that in the sparse setting µ̂τ may be consis-
tent as long as s log(d)

n → 0, where s is the number of non-zero entries
of the vector µ. Quite surprisingly, this may happen even if d is expo-
nentially larger than n.

A natural question is whether sparsity is required for such a high-
dimensional consistency result. There are several examples showing
that this is not the case. To get a flavour of these results suppose that

‖µ‖1 ≤ R for some R ∈ R. Let τ = σ

√
log(2d/δ)

n as defined in (7.2). If
‖µ‖1 ≤ R, then the number of i such that |µi| > τ is at most R/τ. By
Theorem 7.1.1, under the event E defined in (7.2),

R(µ̂2τ , µ) ≤ 9
d

∑
i=1

min{µ2
i , τ2}

Thus, we can use the previous (conditional) risk bound to obtain:

R(µ̂2τ , µ) ≤ 9
d

∑
i=1

min{µ2
i , τ2}

= 9 ∑
i:|µi |>τ

τ2 + 9 ∑
i:|µi |≤τ

µ2
i

≤ 9R
τ

τ2 + 9 ∑
i:|µi |≤τ

µ2
i

≤ 9Rτ + 9τ ∑
i:|µi |≤τ

|µi|

≤ 18Rτ = 18Rσ

√
log(2d/δ)

n
.

Notice that the rate of convergence is
different from the sparse case, roughly
behaving as 1/

√
n instead of 1/n.

Nevertheless, this is still a strong, nice
and surprising result.
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7.2 Fixed design linear regression

Consider the standard linear regression problem More generally, we could consider a
feature map ψ : Rd → Rm and the
corresponding feature matrix Ψ ∈ Rn×d

whose rows are obtained by applying
ψ to the rows of X. The corresponding
model would be

y = Ψθ∗ + ε.

y = Xθ∗ + ε,

where X ∈ Rn×d is a fixed matrix, θ∗ ∈ Rd is a fixed vector and ε is
a random vector such that each εi is an independent random variable
with Eεi = 0, var(εi) = σ2. Given the data y, the least squares
estimator of θ∗ is obtained by minimizing

Mn(θ) =
1

2n

n

∑
i=1

(yi − xᵀi θ)2 =
1

2n
‖y− Xθ‖2 (7.5)

with respect to θ ∈ Rd. If rank(X) = d (in part. n ≥ d) then the
optimum exists and is unique. It is given by the well known formula

θ̄ = (XᵀX)−1Xᵀy.

If n < d then the optimum is attained over an affine subspace of
positive dimension and so it is not unique. It is then customary to fix

θ̄ = (XᵀX)+Xᵀy,

where A+ is the pseudo-inverse of A. In this case θ̄ minimizes the
norm over all the optimal points.

The quality of an estimator θ̂ is normally analysed in this context
based on the mean square error E‖θ̂ − θ∗‖2. For simplicity we will
first study the mean squared prediction error

MSE(Xθ̂) =
1
n
‖X(θ̂ − θ∗)‖2 = (θ̂ − θ∗)ᵀ( 1

n XᵀX)(θ̂ − θ∗). (7.6)

As we will see later, properly choosing the design also ensures that
‖θ̂ − θ∗‖2 is small as long as MSE(Xθ̂) is small.

We are now going to prove our first result on the finite sample
performance of the least squares estimator for fixed design.

Theorem 7.2.1. Assume that the linear model holds with ε which is σ-sub-
Gaussian. Then the least squares estimator θ̄ satisfies

E(MSE(Xθ̄)) =
1
n

E‖X(θ̄ − θ∗)‖2 ≤ 4σ2 r
n
. σ2 r

n
,

where r = rank(XᵀX). Moreover, for any δ ≥ 0, with probability at least
1− δ, it holds

MSE(Xθ̄) ≤ 32σ2 2r + log(1/δ)

n

Proof. By definition

‖y− Xθ̄‖2 ≤ ‖y− Xθ∗‖2 = ‖ε‖2. (7.7)
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Moreover, denoting ∆̄ = θ̄ − θ∗,

‖y− Xθ̄‖2 = ‖Xθ∗ + ε− Xθ̄‖2 = ‖X∆̄‖2 − 2εᵀX∆̄ + ‖ε‖2.

This, together with (7.7), allows us to conclude that

‖X∆̄‖2 ≤ 2εᵀX∆̄. (7.8)

Using the Cauchy-Schwarz inequality directly for the right-hand
side in (7.8) would be wasteful in the case when r � d. Instead,
let V = [v1 · · · vr] ∈ Rn×r be a matrix whose r columns form an
orthonormal basis of the column span of X. In particular, there exists
u such that X∆̄ = Vu and, denoting ε̃ = Vᵀε, we have

εᵀX∆̄ = εᵀVu = ε̃ᵀu ≤ ‖ε̃‖‖u‖ = ‖ε̃‖‖X∆̄‖,

where we used the fact that ‖Vu‖ = ‖u‖ as VTV = Ir. Using this
inequality in (7.8) gives that

‖X∆̄‖ ≤ 2‖ε̃‖ (7.9)

and so

E‖X(θ̄ − θ∗)‖2 ≤ 4E‖ε̃‖2 = 4
r

∑
i=1

Eε̃2
i ≤ 4rσ2,

where the last inequality follows from the fact that each entry ε̃i =

vᵀi ε is zero-mean σ-sub-Gaussian and Exercise 5.5.6. This concludes
the proof of the bound on E(MSE(Xθ̄)).

For the second statement note that, by (7.9),

P(MSE(Xθ̄) ≥ t) = P(‖X(θ̄− θ∗)‖2 ≥ nt) ≤ P(‖ε̃‖2 ≥ nt/4) = P(‖ε̃‖ ≥
√

nt/2).

Since ‖ε̃‖ = supu∈B2 uᵀε̃ we can use the last inequality in the proof of
Theorem 6.1.6 to conclude that

P(‖ε̃‖ ≥
√

nt/2) ≤ 6re−
nt

32σ2 .

Taking t = 32σ2 2r+log(1/δ)
n we verify that

P(MSE(Xθ̄) ≥ t) ≤ δ.

If r = d ≤ n then bounds on prediction errors give bounds on
‖θ̄ − θ∗‖2. In this case B = 1

n XᵀX has rank d and, using (7.6), we get

‖θ̄ − θ∗‖2 ≤ MSE(Xθ̄)

γmin(B)
, (7.10)

where γmin(B) is the minimal eigenvalue of B. Theorem 7.2.1 can
be therefore used to bound ‖θ̄ − θ∗‖2 directly. By contrast, in the
high dimensional setting B is not positive definite and we need more
structure.
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7.3 Constrained least squares estimator

Let K ⊆ Rd be a symmetric convex set5. If we knew a priori that 5 Symmetric means that K = −K.

θ∗ ∈ K, we may prefer a constrained least squares estimator θ̄K

defined by
θ̄K ∈ arg min

θ∈K
‖y− Xθ‖2.

The equivalent of inequality (7.8) still holds, that is, ‖X(θ̄K − θ∗)‖2 ≤
2ε>X(θ̄K − θ∗). Further,

‖X(θ̄K − θ∗)‖2 ≤ 2ε>X(θ̄K − θ∗) ≤ 2 sup
θ∈K−K

ε>Xθ,

where K − K = {x − y : x, y ∈ K}. It is easy to see that since K is
symmetric and convex K− K = 2K so that ← Exercise 7.6.1

2 sup
θ∈K−K

ε>Xθ = 4 sup
v∈XK

ε>v

where XK = {Xθ : θ ∈ K} ⊆ Rn. This is the measure of the size
of XK. If ε ∼ N(0, Id), the expected value of the above supremum is
called the Gaussian width of XK.

`1 constrained least squares Assume here that K = B1 is the unit `1

ball of Rd. Recall that it has exactly 2d vertices ±e1, . . . ,±ed, where ei

is the i-th canonical unit vector. It implies that the set XB1 is also
a polytope with at most 2d vertices that are contained in the set
{−X1, X1, . . . , Xd, Xd}, where Xi is the i-th column of X.

Theorem 7.3.1. Suppose θ∗ ∈ B1. Moreover, assume the conditions of The-
orem 7.2.1 and that the columns of X are normalized so that maxi ‖Xi‖ ≤√

n. Then the constrained least squares estimator θ̄B1 satisfies

E[MSE(Xθ̄B1)] =
1
n

E‖X(θ̄B1 − θ∗)‖2 . σ

√
log d

n
.

Moreover, for any δ ∈ (0, 1), with probability 1− δ, it holds

MSE(Xθ̄B1) . σ

√
log(d/δ)

n
.

Proof. From the considerations preceding the theorem, we got that

‖X(θ̄B1 − θ∗)‖2 ≤ 4 sup
v∈XB1

ε>v.

Moreover, because XB1 is a polytope, we have

sup
v∈XB1

ε>v = max
i=1,...,d

|ε>Xi|.

Since ε is σ-sub-Gaussian6, then for any column Xi such that ‖Xi‖ ≤ 6 Recall this multivariate definition
given before Theorem 6.1.6.
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√
n, the random variable ε>Xi is (

√
nσ)-sub-Gaussian. Therefore,

applying Proposition 6.1.1, we get

E sup
v∈XB1

ε>v ≤ σ
√

2n log(2d),

which gives the claimed bound on E[MSE(Xθ̄B1)]. Again by Proposi-
tion 6.1.1 we get that, for any t > 0

P(‖X(θ̄B1 − θ∗)‖2 ≥ 4t) ≤ P( sup
v∈XB1

ε>v ≥ t) ≤ 2de−t2/(2σ2n).

From this we conclude7 7 Recall from (7.6) that MSE(Xθ̂) =
1
n ‖X(θ̂ − θ∗)‖2.

P(MSE(Xθ̂) ≥ t) ≤ 2de−nt2/(32σ2).

To conclude the proof, we find t such that

2de−nt2/(32σ2) ≤ δ ⇔ t2 ≥ 32σ2 log(2d)
n

+ 32σ2 log(1/δ)

n
.

Note that the proof of Theorem 7.2.1 also applies to θ̄B1 so that θ̄B1 ← Exercise 7.6.2

benefits from the best of both rates

E[MSE(Xθ̄B1)] . min{ r
n ,
√

log d
n }.

This is called an elbow effect. The elbow takes place around r '√
n log d.

7.4 LASSO regression

The focus of this section is on the situation when the true parameter
vector θ∗ is sparse. In this case, even if n < d it may be possible to
control the error of recovering θ∗. Building upon (7.5), we consider
the regularized estimator

θ̂ := arg min
θ∈Rd

{
1

2n‖y− Xθ‖2 + λ‖θ‖1

}
, (7.11)

where λ ≥ 0 is a fixed penalty parameter. This is called the LASSO
regression problem.

The LASSO regression problem is a convex problem but it is not
differentiable. By standard convex duality theory assures that, for

Although the optimum is not given
in a closed form, there is a simple
numerical algorithm that can be used
for optimization. The algorithm relies
on the observation that if d = 1 then
the optimum is given in a closed form.
Using this fact, we can run a coordinate
descent algorithm where at each step
we update one coordinate of θ keeping
the other coordinates fixed.

any given λ ≥ 0, the LASSO problem (7.11) is equivalent to the
constrained problem

minimize 1
2n‖y− Xθ‖2 subject to ‖θ‖1 ≤ R (7.12)

for some R ≥ 0. This observation aids some intuition behind what
the LASSO estimator is actually doing (contemplate the side figure).
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There are three main problems related with the analysis of the
LASSO estimator. One focuses on ‖θ̂− θ∗‖ to establish high-dimensional
consistency. The other focuses on the prediction performance ‖X(θ̂ −
θ∗)‖ as analysed for the least squares estimator in the previous sec-
tion. Finally, we can study how the LASSO regression in recovering
the true support of θ∗. Below we briefly focus on the first and the
last.

7.4.1 High-dimensional consistency

Recall that Mn(θ) = 1
2n‖y − Xθ‖2. In the discussion surrounding

(7.10) we argued that if the spectrum of 1
n XᵀX (and so the Hessian of

Mn(θ)) is bounded away from zero, a bound on the predictive error
provide bounds on MSE(θ̄). Considering the dual problem (7.12)
with R satisfying ‖θ∗‖1 ≤ R, we could conclude something similar
for the LASSO estimator. In the high-dimensional setting 1

n XᵀX is
not positive definite. However, using the fact that θ∗ is sparse, we
need enough of curvature of Mn only in some directions.

The Hessian matrix ∇2Mn(θ) = 1
n XᵀX is positive definite with

minimal eigenvalue at least κ if

1
n

∆ᵀXᵀX∆ =
1
n
‖X∆‖2 ≥ κ‖∆‖2 for all ∆ ∈ Rd.

As we said, if n < d, there is no κ > 0 for which this condition holds.
Instead, for any S ⊆ {1, . . . , d} and α > 0 define

Cα(S) := {∆ ∈ Rd : ‖∆‖1 ≤ (1 + α)‖∆S‖1}.

Large portion of ‖∆‖1 is due to ∆S. In
other words ‖∆Sc‖1 ≤ α‖∆S‖1

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5
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x

y

Region |y| <= |x|/2

Figure 7.1: Suppose that d = 2, θ =
(x, y), S = {1}, and α = 1

4 . Then
Cα(S) = {(x, y) : |y| ≤ 1

2 |x|}.

We say that the matrix X satisfies the restricted eigenvalue (RE)
condition over S with parameters (κ, α) if

1
n
‖X∆‖2 ≥ κ‖∆‖2 for all ∆ ∈ Cα(S).

Suppose that:

(A1) The vector θ∗ is supported on a subset S ⊆ {1, . . . , d} with
|S| = s.

(A2) The design matrix satisfies the restricted eigenvalue condition
over S with parameters (κ, 3).

Theorem 7.4.1. Under assumptions (A1) and (A2) any solution of (7.11)
for λn ≥ 2‖Xᵀε

n ‖∞ we have

‖θ̂n − θ∗‖ ≤ 3
κ

√
sλn.
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Proof. We first show that, if λn ≥ 2‖Xᵀε
n ‖∞ then the error ∆̂ = θ̂ − θ∗

belongs to C3(S). Let L(θ; λn) =
1

2n‖y− Xθ‖2 + λn‖θ‖1. We have

L(θ̂; λn) ≤ L(θ∗; λn) =
1

2n
‖ε‖2 + λn‖θ∗‖1.

With ∆̂ = θ̂ − θ∗ we get

‖y− X θ̂‖2 = ‖y− Xθ∗ − X∆̂‖2 = ‖ε− X∆̂‖2.

We can use it in the previous expression to conclude

0 ≤ 1
2n
‖X∆̂‖2 ≤ 1

n
εᵀX∆̂ + λn

(
‖θ∗‖1 − ‖θ̂‖1

)
. (7.13)

Since θ∗ is S-sparse, we can write

‖θ∗‖1 − ‖θ̂‖1 = ‖θ∗S‖1 − ‖θ∗S + ∆̂S‖1 − ‖∆̂Sc‖1.

Substituting this into (7.13) gives

0 ≤ 1
n
‖X∆̂‖2 ≤ 2

n
εᵀX∆̂ + 2λn

(
‖θ∗S‖1 − ‖θ∗S + ∆̂S‖1 − ‖∆̂Sc‖1

)
≤ 2

∥∥∥∥Xᵀε
n

∥∥∥∥
∞
‖∆̂‖1 + 2λn

(
‖∆̂S‖1 − ‖∆̂Sc‖1

)
≤ λn

(
3‖∆̂S‖1 − ‖∆̂Sc‖1

)
,

where the last inequality follows from the choice of λn. The fact that
3‖∆̂S‖1 − ‖∆̂Sc‖1 ≥ 0 establishes that ∆̂ ∈ C3(S) so that the RE
condition can be applied. Doing so, we conclude that

κ‖∆̂‖2 ≤ 1
n
‖X∆̂‖2 ≤ λn

(
3‖∆̂S‖1 − ‖∆̂Sc‖1

)
≤ 3λn‖∆̂S‖1.

Since ‖∆̂S‖1 ≤
√

s‖∆̂S‖ ≤
√

s‖∆̂‖, the conclusion follows.

We now show how this result can be applied in the classical lin-
ear Gaussian model for which the noise vector ε has i.i.d. N(0, σ2)

entries. More generally, the same calculation applies when ε is σ-sub-
Gaussian.

In addition, we assume that X satisfies the RE condition and that it
is C-column normalized, meaning that8 8 Exercise 7.6.3 partially motivates this

assumption.
← Exercise 7.6.3max

j
‖X j‖ ≤ C

√
n,

where X j denotes the columns of X. With this set-up, the random
variable ‖ 1

n Xᵀε‖∞ corresponds to the absolute maximum of d zero
mean Gaussian variables, each with variance at most C2σ2/n. Conse-
quently from standard sub-Gaussian tail bounds in Proposition 6.1.1

P
(
‖ 1

n Xᵀε‖∞ ≥ t
)
≤ 2de−

nt2

2C2σ2 .
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Plugging, t = Cσ

(√
2 log d

n + δ

)
we easily verify that

P

(
‖ 1

n Xᵀε‖∞ ≥ Cσ

(√
2 log d

n
+ δ

))
≤ 2e−nδ2/2 for all δ > 0.

Consequently, if we set

λn = 2Cσ(

√
2 log d

n
+ δ)

then Theorem 7.4.1 implies that

‖θ̂ − θ∗‖ ≤ 6Cσ

κ

√
s

{√
2 log d

n
+ δ

}

with probability at least 1− 2e−nδ2/2.

7.4.2 Model recovery consistency

Here we again focus on the deterministic design. For variable selec-
tion consistency the restricted eigenvalue condition is replaced by a
closely related condition.

(A3) Lower eigenvalue: The smallest eigenvalue of the sample co-
variance submatrix indexed by S is bounded below

γmin(
1
n

XᵀSXS) ≥ cmin > 0.

(A4) Mutual incoherence: There exists α ∈ [0, 1) such that

max
j∈Sc
‖(XᵀSXS)

−1XᵀSXj‖1 ≤ α.

Note that condition (A3) is rather mild and it is required to get iden-
titifiability even if S is known in advance. The second condition is
more subtle and roughly it says that no variables in Sc are too cor-
related with the support variables. This is form of orthogonality
((XᵀSXS)

−1XᵀSXj is a projection of Xj on the span of XS), which is actu-
ally unlikely to hold in big datasets.

Recall that for a vector w ∈ Rd, ‖w‖∞ = maxi |wi|. If W ∈ Rk×l is a
matrix then ‖W‖∞ = maxi=1,...,k ‖Wi‖1, where Wi is the i-th row of W.

Theorem 7.4.2. Consider an S-sparse linear regression model for which the
design matrix satisfies conditions (A3) and (A4). If

λn ≥
2

1− α

∥∥∥∥ 1
n

XᵀSc

(
In − XS(X

ᵀ
SXS)

−1XᵀS
)

ε

∥∥∥∥
∞

,

then θ̂ has the following properties:
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(a) Uniqueness: There is a unique optimal solution θ̂.

(b) No false inclusion: This solution has its support set Ŝ contained within
the true support set S.

(c) `∞-bounds: The error ∆̂ satisfies

‖∆̂S‖∞ ≤ ‖(XᵀSXS)
−1XᵀSε‖∞ + ‖( 1

n XᵀSXS)
−1‖∞λn =: B(λn, X).

(d) No false exclusion: The lasso includes all i ∈ S such that |θ∗i | >
B(λn, X), and hence is variable selection consistent if mini∈S |θ∗i | >
B(λn, X).

Corollary 7.4.3. Consider the S-sparse linear model based on a noise vector
ε with zero-mean i.i.d. σ-sub-Gaussian entries, and a deterministic design
matrix X that satisfies (A3) and (A4), as well as the C-column normaliza-
tion condition. The LASSO estimator with

λn =
2Cσ

1− α

{√
2 log(d− s)

n
+ δ

}

for some δ > 0. Then θ̂ is unique with its support contained within S (no
type I errors), and satisfies the `∞-error bound

‖∆̂S‖∞ ≤
σ√
cmin

{√
2 log s

n
+ δ

}
+ ‖( 1

n XᵀSXS)
−1‖∞λn

all with probability at least 1− 4e−nδ2/2.

Both results are left without a proof, see Chapter 7 in 9 for details. 9 Martin J. Wainwright. High-dimensional
statistics: A non-asymptotic viewpoint.
Cambridge University Press, Cam-
bridge, 20197.5 Random matrices

7.5.1 Spectral norm of sub-Gaussian random matrices

Let A ∈ Rm×n, then ‖A‖ = max‖x‖≤1 ‖Ax‖ is called the operator
norm of A. Using the variational characterization of the norm, we get

‖A‖ = max
‖x‖≤1,‖y‖≤1

y>Ax.

Lemma 7.5.1. Let N be an ε-covering of Bn
2 . Then

max
x∈N
‖Ax‖ ≤ ‖A‖ ≤ 1

1− ε
max
x∈N
‖Ax‖.

If, in addition,M is an ε-covering of Bm
2 then

max
x∈N ,y∈M

y>Ax ≤ ‖A‖ ≤ 1
1− 2ε

max
x∈N ,y∈M

y>Ax.
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Proof. For the first statement – we used this argument already in the
proof of Theorem 6.1.6. For the second statement, use the fact that
‖Ax‖ = max‖y‖≤1 y>Ax and that (1− ε)2 ≥ 1− 2ε.

Proposition 7.5.2. Let A ∈ Rm×n be a random matrix with independent,
mean zero, σ-sub-Gaussian entries. Then, for all t ≥ 0

‖A‖ ≤ 5σ(
√

m +
√

n + t)

with probability ≥ 1− e−t2
.

Proof. First, consider 1
4 -coveringsM,N of Bm

2 and Bn
2 . By Lemma 6.1.4,

we can assume |M| ≤ 12m and |N | ≤ 12n. By Lemma 7.5.1,
‖A‖ ≤ 2 maxy∈M,x∈N y>Ax. By Lemma 5.2.4, each y>Ax is σ-sub-
Gaussian. By the union bound we conclude

P(‖A‖ ≥ u) ≤ P( max
y∈M,x∈N

y>Ax ≥ u
2 ) ≤ 12n+me−

u2

8σ2 .

Take u∗ = 5σ(
√

m +
√

n + t). Then

P(‖A‖ ≥ u∗) ≤ 12m+ne−
25
8 (m+n+t2) ≤ e−t2

.

We note also that E‖A‖ ≤ 5σ(
√

m +
√

n). This follows from
Proposition 6.1.1. Indeed,

E‖A‖ ≤ 2E[ max
y∈M,x∈N

y>Ax] ≤ 2σ
√

2 log 12m+n ≤ 5σ
√

m + n,

from which the conclusion follows.

7.5.2 Recovering communities in the stochastic block model

We consider a basic version of the stochastic block model. This is a This section is adapted from:
Roman Vershynin. High-dimensional

probability: An Introduction with Ap-
plications in Data Science, volume 47.
Cambridge University Press, 2018

model for random graphs on n nodes, which are divided into two
equal-sized communities. The model comes with two parameters 0 <

q < p < 1. Each edge i − j appears independently with probability
p if i, j are in the same community and q if they are in two different
communities.

We represent a graph with an adjacency matrix A ∈ {0, 1}n×n,
where

P(Aij = 1) = EAij =

p if i, j lie in the same community,

q if i, j lie in different communities.

If the vertices are ordered so that the first n/2 belong to the first
community then EA has a simple block structure

EA =

[
p11> q11>

q11> p11>

]
=

[
1 0
0 1

] [
p q
q p

] [
1> 0>

0> 1>

]
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where 0, 1 ∈ Rn/2 are vector of zeros and ones. Denote

u1 =

[
1
1

]
, u2 =

[
1
−1

]
, v1 = 1√

n u1, v2 = 1√
n u2,

where v1, v2 are the normalized versions of u1, u2 with ‖v1‖ = ‖v2‖ =
1. It is then easy to check that

EAv1 = n p+q
2 v1 and EAv2 = n p−q

2 v2.

In other words, u1, u2 are the eigenvectors of EA with eigenvalues
λ1 = n p+q

2 and λ2 = n p−q
2 respectively. Since EA has rank 2, all other

eigenvalues are zero.
Consider now situation when we observe A but the community

structure is unknown. If we observed EA, we could compute the
eigenvector corresponding to the second largest eigenvalue and then
we could assign vertices to communities according to whether the
corresponding entry in this eigenvector is positive or negative. A
natural question is what happens if we do the same on the observed
matrix A.

By the Weyl’s theorem we know that for any two symmetric ma-
trices maxi |λi(S) − λi(T)| ≤ ‖S − T‖. We have a similar result for
eigenvectors.

Theorem 7.5.3 (Davis-Kahan). If S, T are symmetric n× n matrices. Fix
i and suppose minj 6=i |λi(S)− λj(S)| = δ > 0 then

sin (∠{vi(S), vi(T)}) ≤
2‖S− T‖

δ
.

Note that the sine of an angle being small means that the angle
between vi(S) and vi(T) is either close to 0 or close to π. We can
always find θ ∈ {−1, 1} such that the angle between vi(S) and θvi(T)
is close to zero.

Proposition 7.5.4. With the same assumption as in Theorem 7.5.3, there
exists θ ∈ {−1, 1} such that

‖vi(S)− θvi(T)‖ ≤
23/2‖S− T‖

δ
.

Proof. Let u = vi(S), v = θvi(T), where θ is fixed so that u>v ≥ 0.
Note that ‖u‖ = ‖v‖ = 1 and ‖u− v‖2 = 2(1− u>v). Moreover, using
the formula cos(∠(u, v)) = u>v we get

sin2(∠(u, v)) = 1− (u>v)2 ≥ 1− u>v = 1
2‖u− v‖2.

By Theorem 7.5.3, we then conclude

‖u− v‖2 ≤ 2 sin2(∠(u, v)) ≤ 8‖S− T‖
δ2 ,

from which the result follows.
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We are going to use this result with S = EA and T = A. To use the
David-Kahan theorem, we first check that λ2 (the second eigenvalue
of EA) is well-separated from the rest of the spectrum, that is, from
λ1 and 0. We have

δ = min{λ1 − λ2, λ2 − 0} = n min{ p−q
2 , q} =: nµ.

In SBM Aij’s are independent. Since |Aij − EAij| ≤ 1, it follows
that Aij −EAij are independent 1-sub-Gaussian random variables. It
follows that

‖A−EA‖ ≤ 10(
√

n + t)

with probability ≥ 1 − e−t2
. By Proposition 7.5.4, there exists θ ∈

{−1, 1} such that

‖vi(EA)− θvi(A)‖ ≤ 23/2‖A−EA‖
δ

≤ 5 · 25/2

µ

(
t
n
+

1√
n

)
with probability ≥ 1− e−t2

. Take t =
√

n to conclude that

‖vi(EA)− θvi(A)‖ ≤ C
µ
√

n
(C := 5 · 27/2)

with probability ≥ 1− e−n.
Let ui =

√
nvi. Note that the entries of ui(EA) are ±1, so if

signs of ui(EA) and θui(A) do not agree, they constribute > 1 to
‖ui(EA)− ui(A)‖2. We know that, with high probability,

‖ui(EA)− θui(A)‖2 ≤ C2

µ2

and so there cannot be more than C2

µ2 (a constant) of entries that con-
tribute more than 1!

We conclude that, with high probability, we can correctly classify
all but finite number of vertices. We formulate this as a theorem.

Theorem 7.5.5 (Spectral clustering for SBMs). Let A ∼ SBM(n, p, q)
with p > q and min{t f racp− q2, q} =: µ > 0. Then with probability
≥ 1− e−n the spectral clustering algorithm identifies communities of A
correctly up to C2/µ2 misspecified vertices.

7.5.3 Covariance matrix estimation

The basic problem can be formulated as follows. Suppose X ∈ Rn×d

such that each row xi is i.i.d. Nd(0, Σ). The sample covariance matrix
is defined as

Σ̂n =
1
n

n

∑
i=1

xix
ᵀ
i =

1
n

XᵀX.
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This is a random positive semi-definite matrix whose expectation
satisfies

EΣ̂n =
1
n

n

∑
i=1

Exix
ᵀ
i = Σ.

The question we ask is how Σ̂n concentrates around Σ. Ideally, we
would also like to relax the Gaussianity assumption.

Concentration can be measured in various norms. If we use the
operator norm, the general idea is to use the following variational
representation: If Q ∈ Sd then

‖Q‖ = sup
‖v‖=1

|vᵀQv|.

Thus

‖Σ̂n − Σ‖ = sup
‖v‖=1

|vᵀΣ̂nv− vᵀΣv| = sup
‖v‖=1

∣∣∣∣∣ 1n n

∑
i=1

(vᵀxi)
2 − vᵀΣv

∣∣∣∣∣ .

Let F be the class of functions f (x) = (vᵀx)2 for ‖v‖ = 1. Since
E f (x) = vTΣv, we can rewrite

‖Σ̂n − Σ‖ = sup
f∈F

∣∣∣∣∣ 1n n

∑
i=1

f (xi)−E f (X)

∣∣∣∣∣ .

Note that the spectrum of Σ̂n is directly related to the spectrum of
X. We have

γmax(Σ̂n) = γmax(
1
n XᵀX) = (σmax(

1√
n X))2

and
γmin(Σ̂n) = γmin(

1
n XᵀX) = (σmin(

1√
n X))2.

Since singular values are continuous functions of its matrix argu-
ment, we then expect that

σmax(
1√
n X) =

√
γmin(Σ̂n) ≈

√
γmin(Σ) = γmin(

√
Σ).

Indeed, we have the following result.

Theorem 7.5.6 (The Gaussian case). Suppose X ∈ Rn×d such that each
row xi is i.i.d. from Nd(0, Σ). Then for every δ > 0

P

(
σmax(

1√
n X)) ≥ (1 + δ)γmax(

√
Σ) +

√
tr(Σ)

n

)
≤ e−nδ2/2

and, if n ≥ d, we also have

P

(
σmin(

1√
n X) ≤ (1− δ)γmin(

√
Σ)−

√
tr(Σ)

n

)
≤ e−nδ2/2
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Proof. The proof, as many results of that form has two step. First we
show that σmax(

1√
n X)) concentrates around its expectation. Second,

we provide bounds on this expectation that allow us to conclude the
given formulas.

Step I: We can write X = W
√

Σ, where W has i.i.d. standard
normal rows. The first part can be shown as in Example 5.4.4. By
Weyl’s theorem W 7→ σmax(

1√
n W
√

Σ) is Lipschitz with parameter

L = 1√
n‖
√

Σ‖. By Theorem 5.4.1

P(σmax(
1√
n X) ≥ Eσmax(

1√
n X)) + t) ≤ e−nt2/(2‖Σ‖).

Taking t =
√
‖Σ‖δ,

P(σmax(
1√
n X) ≥ Eσmax(

1√
n X)) +

√
‖Σ‖δ) ≤ e−nδ2/2.

Preparing for the second part of the proof, note that if we could show

that E(σmax(
1√
n X)) ≤

√
‖Σ‖+

√
tr(Σ)

n , we would be done.

Step II: We want to show that E(σmax(
1√
n X)) ≤

√
‖Σ‖+

√
tr(Σ)

n .
We use the following variational characterization

σmax(
1√
n X) = max

‖u‖=1
max
‖v‖=1

uᵀ( 1√
n X)v.

Let Sn−1 ⊂ Rn be the set of vectors with unit norm. Consider the
zero-mean Gaussian process

Zu,v := uᵀ( 1√
n X)v for (u, v) ∈ Sn−1 × Sd−1.

Consider the induced metric on Sn−1 × Sd−1

d((u, v), (u′, v′)) :=
√

E(Zu,v − Zu′ ,v′)2.

We have

E(Zu,v − Zu′ ,v′)
2 ≤ ‖Σ‖‖u− u′‖2 + ‖v− v′‖2

Σ.

We construct another Gaussian process Yu,v, whose covariance func-
tion is equal to this right-hand side.

7.6 Exercises

Exercise 7.6.1. Show that if K ⊂ Rd is convex and symmetric (K = −K)
then K− K = {x− y : x, y ∈ K} is equal to 2K = {2x : x ∈ K}.

Exercise 7.6.2. Show that the proof of Theorem 7.2.1 applies to the estima-
tor θ̄B1 .
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Exercise 7.6.3. Suppose X ∈ Rn×d is a design matrix, whose rows are
independent observations of a d-variate mean zero distribution for which
all marginal distributions are σ-sub-Gaussian. Show that that, for every
j, the j column Xj of X satisfies ‖Xj‖ ≤ 4σ

√
n + t with probability ≥

1− e−t2/(8σ2).
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Some topics from the first
semester





8
Classical large sample theory

This section will be mostly based on a few chapters from 1. We will 1 A. W. van der Vaart. Asymptotic
statistics, volume 3 of Cambridge Series
in Statistical and Probabilistic Mathe-
matics. Cambridge University Press,
Cambridge, 1998

be relying on basic definitions and results on convergence in proba-
bility theory.

8.1 Preliminaries

We consider vectors with values in X ⊆ Rm. The set X forms a met-
ric space with the induced metric d(x, y) = ‖x − y‖ (but any other
equivalent metric is fine). The inequality x ≤ y is meant coordi-
natewise. Many of the results discussed here can be generalized to
arbitrary measure spaces with the underlying Borel measure (open
sets are measurable).

Recall that a sequence of random vectors Xn converges in distribu-
tion to X, denotes Xn  X, if

P(Xn ≤ x) → P(X ≤ x),

for every point x for which the limit CDF x 7→ P(X ≤ x) is contin-
uous. Convergence in distribution is often called the weak conver-

gence. Moreover, Xn converges to X in probability, denoted Xn
p→ X,

if for all ε > 0
P(d(Xn, X) > ε) → 0.

You have studied various equivalent formulations of weak conver-
gence. The one useful for us is given in item (iv) in the next lemma.

Lemma 8.1.1 (Portmanteau Lemma). We have Xn  X if and only if
any of the following conditions holds:

(i) E f (Xn)→ E f (X) for all bounded, continuous functions f ,

(ii) E f (Xn)→ E f (X) for all bounded, Lipschitz functions f ,

(iii) lim inf E f (Xn) ≥ E f (X) for all nonnegative, continuous functions f ,
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(iv) lim inf P(Xn ∈ U) ≥ P(X ∈ U) for every open set U ⊆ X ,

(v) lim sup P(Xn ∈ B) ≤ P(X ∈ B) for every closed set B ⊆ X ,

Proof. See Lemma 2.2 in 2. 2 A. W. van der Vaart. Asymptotic
statistics, volume 3 of Cambridge Series
in Statistical and Probabilistic Mathe-
matics. Cambridge University Press,
Cambridge, 1998

The following result should be also known.

Theorem 8.1.2 (Continuous mapping). Let g : X → Rm be continuous.

(i) If Xn  X then g(Xn) g(X).

(ii) If Xn
p→ X then g(Xn)

p→ g(X).

Proof. (i). Let U ⊆ Rm be an open set. Since g is continuous, g−1(U)

is open in X . By Portmanteau lemma,

lim inf P(g(Xn) ∈ U) = lim inf P(Xn ∈ g−1(U))

≥ P(X ∈ g−1(U)) = P(g(X) ∈ U).

Using the Portmanteau lemma again, we conclude that g(Xn)  
g(X).

(ii). Fix ε > 0. For each δ > 0 let Bδ be the set of x for which
there exists y with d(x, y) < δ, but d(g(x), g(y)) > ε. If X /∈ Bδ and
d(g(Xn), g(X)) > ε, then d(Xn, X) ≥ δ. Consequently,

P (d(g(Xn), g(X)) > ε) ≤ P(X ∈ Bδ) + P(d(Xn, X) ≥ δ).

The second term on the right converges to zero as n → ∞ for every
fixed δ > 0. Because Bδ ∩ X ↓ ∅ by continuity of g, the first term
converges to zero as δ→ 0.

It is important to remember basic relations between different no-
tions of convergence.

Theorem 8.1.3. Let Xn, X and Yn be random vectors. Then

(i) Xn
p→ X implies Xn  X.

(ii) Xn
p→ c for c ∈ R if and only if Xn  c.

(iii) if Xn  X and d(Xn, Yn)
p→ 0, then Yn  X.

Moreover, if Xn  X and Yn → c then

(iv) Xn + Yn  X + c,

(v) XnYn  cX.

(vi) Y−1
n Xn  c−1X provided c 6= 0.

The second part of the theorem is called the Slutsky lemma. For a
proof see Theorem 2.7 and Lemma 2.8 in 3. 3 A. W. van der Vaart. Asymptotic

statistics, volume 3 of Cambridge Series
in Statistical and Probabilistic Mathe-
matics. Cambridge University Press,
Cambridge, 1998

← Exercise ??
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Example 8.1.4 (t-statistic). Say (Xn) is a series of i.i.d. random variables
with EXi = µ and var(Xi) = σ2. Let X̄n = 1

n ∑i Xi and let

S2
n =

1
n

n

∑
i=1

(X2
i − X̄2

n).

Then

tn−1 :=
X̄n − µ

Sn

√
n− 1  N(0, 1).

To prove this, note that by CLT we have
√

n(X̄n − µ)  N(0, σ2). Also,
by the law of large numbers X̄n

p→ µ and 1
n ∑ X2

i
p→ EX2

i = σ2 + µ2. By

the continuous mapping theorem X̄2
n

p→ µ2, which together with the Slutsky
lemma implies that

S2
n =

1
n

n

∑
i=1

X2
i − X̄2

n  (σ2 + µ2)− µ2 = σ2.

Hence, we have√
n− 1

n

√
n(X̄n − µ)

Sn
 

1
σ

N(0, σ2) = N(0, 1).

We say that Xn is bounded in probability if for every ε > 0 there
exists M ∈ R such that

sup
n

P(‖Xn‖ > M) < ε.

By Prohorov’s theorem if Xn  X for some X then it is bounded in
probability (prove it!). Conversely, if Xn is bounded in probability
then for some subsequence Xnk we have Xnk → X for some X.

We now introduce a special notation. Write Xn = oP(1) if Xn
p→ 0

and Xn = OP(1) if Xn is bounded in probability. More generally, ← Exercise 8.6.2

Xn = oP(Rn) means Xn = YnRn and Yn = oP(1),

Xn = OP(Rn) means Xn = YnRn and Yn = OP(1).

Remark 8.1.5. It is clear that Xn = oP(1) implies Xn = OP(1). Indeed, fix
ε > 0, if Xn = oP(1) then, for any M0 > 0, there exist N ∈ N such that
P(‖Xn‖ > M0) < ε for all n 6= N. Let M1, . . . , MN−1 be any numbers
such that P(‖Xn‖ > Mn) < ε. Taking M := max{M0, M1, . . . , MN−1}
we get that P(‖Xn‖ > M) < ε for all n ∈N.

← Exercise 8.6.3
← Exercise 8.6.4The following result allows us to effectively work with Taylor

series expansions.

Lemma 8.1.6. Let R : X → R be a continuous function and let Xn be a
sequence of random vectors with values in X and such that Xn = oP(1).
Then, for every p > 0,
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(i) if R(h) = o(‖h‖p) as h→ 0, then R(Xn) = oP(‖Xn‖p),

(ii) if R(h) = O(‖h‖p) as h→ 0, then R(Xn) = OP(‖Xn‖p).

Proof. Define g(h) as g(h) = R(h)/‖h‖p for h 6= 0 and g(0) = 0. Then
R(Xn) = g(Xn)‖Xn‖p.

(i) By assumption, g is continuous at zero, and so it is continuous ev-

erywhere. By the continuous mapping theorem, g(Xn)
p→ g(0) =

0.

(ii) By assumption, there exists M0 and δ > 0 such that |g(h)| ≤ M0

whenever ‖h‖ ≤ δ. Thus, for every n, P(|g(Xn)| > M0) ≤
P(‖Xn‖ > δ) → 0, and so the sequence g(Xn) is bounded in prob-
ability by exactly the same argument as we used in Remark 8.1.5.

8.2 Delta Method

Suppose an estimator Tn for a parameter θ is available but the quan-
tity of interest is φ(θ) for some known function φ. It is natural to use
the plug-in estimator φ(Tn). For example, if Tn is the MLE for θ then
φ(Tn) is the MLE for φ(θ). But how do the asymptotic properties of
φ(Tn) follow those of Tn?

The continuous-mapping theorem implies that if Tn is consistent
for θ and φ is continuous, then φ(Tn) is consistent for φ(θ). Here we
show that a much stronger statement is true if φ is differentiable: if√

n(Tn − θ)  T then
√

n(φ(Tn)− φ(θ))  φ′θ(T), where φ′θ is the
linear mapping representing the derivative of φ at θ (cf. Section A.3).
In particular, asymptotic normality is preserved as a linear transfor-
mation of a Gaussian vector is Gaussian.

Theorem 8.2.1. Let U ⊂ Rk open and let φ : U → Rm be a map
differentiable at θ ∈ U. Let Tn be random vectors taking values in U. If
rn(Tn − θ)  T for numbers rn → ∞, then rn(φ(Tn)− φ(θ))  φ′θ(T).
Moreover, the difference between rn(φ(Tn) − φ(θ)) and φ′θ(rn(Tn − θ))

converges to zero in probability.

Proof. Because rn(Tn − θ) converges in distribution, we have rn(Tn −
θ) = OP(1) and so Tn − θ = oP(1). By differentiability of φ, R(h) =

φ(θ + h)− φ(θ)− φ′(h) satisfies R(h) = o(‖h‖) as h→ 0. Lemma 8.1.6
allows to replace the fixed h by a random sequence and gives

φ(Tn)− φ(θ)− φ′θ(Tn − θ) ≡ R(Tn − θ) = oP(‖Tn − θ‖).

Multiply this with rn and note that oP(rn‖Tn − θ‖) = oP(1) because
rn(Tn − θ) = OP(1). This gives the last statement of the theorem. Be-
cause linear maps are continuous, the continuous mapping theorem
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gives that φ′θ(rn(Tn − θ))  φ′θ(T). By the Theorem 8.1.3(iii) we get
that rn(φ(Tn)− φ(θ)) has the same weak limit.

Some basic examples of that you saw in the first semester.

Example 8.2.2. The delta method may be useful in a wide range of sce-
narios. For example, suppose that we want to obtain asymptotic confi-
dence intervals for some parameter but the asymptotic distribution de-
pends on θ. More concretely, suppose X1, . . . , Xn are i.i.d. Poiss(θ). Then√

n(X̄n − θ)  N(0, θ). By the delta method
√

n( f (X̄n) − f (θ))  
N(0, ( f ′(θ)2θ)). If we solve for f ′(θ) = C/

√
θ we get f (θ) =

√
θ,

C = 1/2 and then

√
n(
√

X̄n −
√

θ) N(0,
1
4
).

Therefore we can easily construct the asymptotic confidence interval for
√

θ

as
√

X̄n ± zα/2
4
√

n . This example easily generalizes.
← Exercise 8.6.5

As an important application of the delta method we show that
the MLE in the exponential family has an asymptotically Gaussian
distribution. Recall that in the exponential family (1.1) it holds that

Eθ(t(X)) = µ(θ) = ∇A(θ), varθ(t(X)) = V(θ) = ∇2 A(θ).

Suppose that the random sample X1, . . . , Xn is generated from Pθ0 .
Denote tn = 1

n ∑n
i=1 t(Xi). By the central limit theorem, it follows that

√
n∇`n(θ0) =

√
n(tn − µ(θ0))  Nd(0, V(θ0)). (8.1)

Using the delta method we conclude.

Theorem 8.2.3. The MLE θ̂n in the exponential family (1.1) based on the
sample X1, . . . , Xn satisfies

√
n(θ̂− θ0) N(0, V−1(θ0)).

Proof. As noted above
√

n(tn − µ(θ0))  N(0, V(θ0)). The delta
method, applied with φ = µ−1, implies that

√
n(θ̂n − θ0) also

converges in distribution to a Gaussian distribution. The fact that
θ̂n = µ−1(tn) is part of Proposition 1.3.6. The Jacobian of µ−1 at
µ(θ0) is the inverse of the Jacobian of µ at θ0, which is equal to
∇2 A(θ0) = V(θ0). Thus, φ′

µ(θ0)
(T) = V−1(θ0) · T. Now it is

straightforward to check that the asymptotic covariance matrix is
V−1(θ0).

With small amount of extra work, this result can be generalized
to curved exponential families for which the canonical parameter θ

is parametrized in a smooth way by a lower dimensional parameters
τ. Denote by τ̂ the MLE in this smaller model and assume that the
sample is generated from the parameter θ0 = θ(τ0) corresponding to
τ0. Taking the first-order expansion around τ0 gives ← Exercise 8.6.6
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0 = ∇τ`n(θ(τ̂n)) = ∇τ`n(θ(τ0))+∇2
τ`n(θ(τ0))(τ̂n−τ0)+ oP(‖τ0− τ̂n‖).

Multiply now this equation by
√

n and use Exercise 8.6.6 to conclude
that

−∇2
τ`n(θ(τ0)) ·

√
n(τ̂n − τ0) =

√
n∇τ`n(θ(τ0)) + oP(1). (8.2)

By the chain rule, ∇τ`n(θ(τ0)) = ( ∂θ
∂τ (τ0))

T∇`n(θ(τ0)), and so,
using (8.1), we get

√
n∇τ`n(θ(τ0))  N

(
0, ( ∂θ

∂τ (τ0))
T ·V(θ0) · ∂θ

∂τ (τ0)
)

.

By Slutsky Lemma (Theorem 8.1.3(iv)), the left-side expression in
(8.2) also converges in distribution to the same Gaussian. By Exer-
cise 8.6.7 we conclude that

√
n(τ̂n − τ0) is asymptotically normal ← Exercise 8.6.7

with mean zero and the covariance matrix equal to the inverse of the
Fisher information matrix ∂θ

∂τ (τ0)
T ·V(θ0) · ∂θ

∂τ (τ0).

8.3 M-estimators

In this chapter X1, . . . , Xn are i.i.d. P where P ∈ P , with P = {Pθ :
θ ∈ Θ} such that

1. Θ ⊂ Rd open,

2. densities of Pθ are p(·, θ), θ ∈ Θ.

M-estimators were defined and discussed in Section 4.1.2. In this
section we discuss basic asymptotics of this class of estimators.

8.3.1 Consistency

In order to develop some general asymptotic theory of M-estimators
we start by discussing their consistency. Under minor conditions the
law of large numbers will give us that

Mn(θ)
p→ M(θ) for every θ, (8.3)

where M(θ) = Emθ(X). It is reasonable to expect that the sequence
of maximizers θ̂n of Mn converges in probability to the maximizer of
M. However, pointwise convergence in (8.3) is too weak because θ̂n

depends on the whole function θ 7→ Mn(θ). We present approach
based on the assumption of the uniform convergence of Mn to M:

‖Mn −M‖∞
p→ 0, where

‖Mn −M‖∞ := sup
θ∈Θ
|Mn(θ)−M(θ)| .
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Theorem 8.3.1. Let {Mn} be a sequence of random functions, continuous
on Θ. Say ‖Mn − M‖∞

p→ 0, where M is some non-random continuous
function on Θ. Then

1. If Tn
p→ T∗ then Mn(Tn)

p→ M(T∗).

2. If t∗ = arg max M(t) uniquely and Tn ∈ arg max Mn(t), then Tn
p→

t∗.

Proof. 1. By the triangle inequality

|Mn(Tn)−M(T∗)| ≤ |Mn(Tn)−M(Tn)|+ |M(Tn)−M(T∗)|.

The second term on the right goes to zero in probability by the con-
tinuous mapping theorem. The first term goes to zero by the uniform
converge hypothesis in the theorem because |Mn(Tn) − M(Tn)| ≤
‖Mn −M‖∞

p→ 0. We conclude that |Mn(Tn)−M(T∗)| p→ 0 or, equiv-

alently Mn(Tn)
p→ M(T∗). 2. For some ε > 0 , let Kε = K ∩ (Bε(t∗))

c,
where Bε(t∗) is a ball of radius ε around t∗. Let m = M(t∗) and let
mε = supt∈Kε

M(t). Since t∗ is unique δ := m − mε > 0. From
uniform convergence, there is some N s.t. for all n > N we have
‖Mn −M‖∞ < δ

2 . We can therefore infer the following:

sup
t∈Kε

Mn(t) < sup
t∈Kε

M(t) +
δ

2
= mε +

δ

2
= m− δ

2

and

Mn(Tn) = max
t∈K

Mn(t) ≥ Mn(t∗) > M(t∗)− δ

2
= m− δ

2
.

By these two inequalities we get that Tn /∈ Kε, and thus Tn ∈ Bε(t∗).
Hence, ‖Mn − M‖∞ < δ ⇒ ‖Tn − t∗‖ < ε ⇒ P(‖Tn − t∗‖ > ε) ≤
P(‖Mn −M‖∞) > δ

2 ) ⇒ Tn
p→ t∗.

The assumption of uniform convergence holds for the log-likelihood
function in exponential families but is typically too strong, especially
when Θ is not compact.

Example 8.3.2. Consider the problem of estimating the variance using the
sample variance s2

n = 1
n ∑i x2

i . This corresponds to optimizing the function

Mn(σ) = log σ +
s2

n
2σ2

with M(σ) = log σ +
σ2

0
2σ2 , where σ2

0 is the variance of the sample. Note that
|Mn(σ)−M(σ)| is unbounded for σ > 0. Nevertheless, consistency follows
directly by the law of large numbers.
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Under some regularity conditions it is possible to get a fairly uni-
versal approach that does not require uniform convergence. Suppose
that mθ(x) is twice continuously differentiable with respect to θ on
the open parameters set Θ and consider a Taylor series expansion
of ∇Mn at the true data generating θ0. Since Θ is open then the M-
estimator θ̂n satisfies ∇Mn(θ̂n) = 0 and so

0 = ∇Mn(θ0) +∇2Mn(θ̃n)(θ̂n − θ0), (8.4)

where θ̃n lies between θ̂n and θ0. By the law of large numbers, as long
as Eθ0∇mθ0(X) < ∞,

∇Mn(θ0)
p→ Eθ0∇Mn(θ0).

To establish consistency of θ̂n using (8.4) it suffices to have that: ← Exercise 8.6.8

(i) Eθ0∇Mn(θ0) = 0 and

(ii) (∇2Mn(θ̃n))−1 = OP(1).

In Exercise 8.6.8 we show that (i) holds when mθ(x) = − log pθ(x)
(MLE) as well as mθ(x) = ‖θ − δ(X)‖2, where δ(X) is an unbiased es-
timator of the parameter θ. More generally, (i) holds if θ0 minimizes
the function θ 7→ Eθ0 mθ(X). Thus, typically (ii) remains the main
regularity assumption that needs to be checked in order to establish
consistency.

8.3.2 Asymptotic normality

We will now discuss asymptotic normality of M-estimators assuming
that θ̂n is a consistent estimator and Θ ⊆ Rd is open. If ψθ in (4.5)
is twice differentiable then there is a standard approach for prov-
ing asymptotic normality based on the Taylor series expansion. As
earlier, suppose that

Ψn(θ) =
1
n

n

∑
i=1

ψθ(Xi), Ψ(θ) = Eψθ(X) = EΨn(θ)

and assume that θ̂
p→ θ0, where

Ψn(θ̂n) = 0, Ψ(θ0) = 0.

Taylor’s theorem gives

0 = Ψn(θ̂n) = Ψn(θ0) +∇Ψn(θ0)(θ̂n − θ0) + Rn,

where Rn = oP(‖θ̂n − θ0‖). In other words,

∇Ψn(θ0)
√

n(θ̂n − θ0) = −
√

nΨn(θ0)−
√

nRn,
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By the central limit theorem, as long as, B(θ0) := EΨθ0(X)Ψᵀθ0
(X)

has finite entries,

−
√

nΨn(θ̂n)  N(0, B(θ0)).

By the law of large numbers, as long as xA(θ0) := E∇ψθ0(X) has
finite entries, then

∇Ψn(θ0)
p→ A(θ0)

Under suitable regularity conditions
√

nRn = oP(1), in which case we
can use the Slutsky lemma to conclude that

√
n(θ̂n − θ0)  N(0, A(θ0)

−1B(θ0)A(θ0)
−ᵀ). (8.5)

The conditions that assure that
√

nRn = oP(1) may be complicated in
general. However, they will hold if Ψn is sufficiently smooth.

A special case of interest is the maximum likelihood estimator. In
this case ψθ(x) = ∇ log pθ(x) and so

Eψθ(X) = E∇`n(θ), E∇ψθ(X) = E∇2`n(θ).

Under some regularity conditions the maximum likelihood estima-
tor is consistent and asymptotically normal: as in (8.5), with

A(θ0) = −Eθ0 [∇2`n(θ0)] and B(θ0) = Eθ0 [∇`n(θ0)∇`n(θ0)
ᵀ] .

In this case B(θ0) is the variance of the score also known as the Fisher
information matrix. If log pθ(x) is twice continuously differentiable,
we can write

∇2 log pθ(X) =
1

pθ(X)
∇2 pθ(X)− (∇ log pθ(X))(∇ log pθ(X))T .

Since

Eθ
1

pθ(X)
∇2 pθ(X) =

∫
∇2 pθ(x)dx = ∇2

∫
pθ(x)dx = 0,

we conclude that in this case A(θ) = B(θ) and so the MLE θ̂n satisfies

√
n(θ̂n − θ0)  N(0, B(θ0)

−1). (8.6)

It is of considerable interest to establish asymptotic normality
also in the case when Ψn is not twice differentiable. But we will not
discuss this case in more detail here. ← Exercise 8.6.9

8.4 Generalized likelihood ratio test

The tests in Chapter 3 have strong optimality properties but require
conditions on the densities for the data and the form of the hypothe-
ses that are rather special and can fail for many natural models.
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By contrast, the generalized likelihood ratio test introduced in this
chapter requires little structure, but it does not have exact optimality
properties. Use of this test is justified by large sample theory.

Let the data X1, . . . , Xn be i.i.d. with common density pθ for θ ∈ Θ.
We want to test H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1, where Θ0 ⊂ Θ1 ⊆ Θ.
Note that the hypotheses are nested.

A sensible extension of the idea behind the likelihood ratio test, as
discussed in Proposition 3.1.1, is to base a test on the log-likelihood
ratio

λn = λn(X1, . . . , Xn) = log
supθ∈Θ1

∏n
i=1 pθ(Xi)

supθ∈Θ0
∏n

i=1 pθ(Xi)
.

As before, the null hypothesis is rejected for large values of the statis-
tic. Let `n(θ) = 1

n ∑i log pθ(Xi) be the log-likelihood function and
suppose both suprema are attained. If θ̂n is the optimum over Θ1 and
θ̂n,0 is the optimum over Θ0 then

λn = n(`n(θ̂n)− `n(θ̂n,0)).

We next give an example that can be viewed as the limiting situa-
tion for which the approximation is exact:

Example 8.4.1 (The Gaussian sequence model). Let Y1, . . . , Yn be
independent with Yi ∼ N(µi, σ2

0 ) where σ0 is known. In other words,

Y = (Y1, . . . , Yn) ∼ Nn(µ, σ2
0 In).

This model is sometimes called the Gaussian sequence model and will be one
of the important examples in our discussion of high-dimensional problems.
We are now interested in testing whether µ = (µ1, . . . , µn) is a member of
a q-dimensional linear subspace L0 ⊂ Rn, versus the alternative that µ ∈
Lr L0 where L is an r-dimensional linear subspace of Rd and L0 ⊂ L,
r > q.

Transform to canonical form by setting U = QY , where Q ∈ Rn×n is
an orthogonal matrix with the first q rows spanning L0 and the first r rows
spanning L. By construction, U ∼ Nn(Qµ, σ2

0 In), where the mean vector
η = Qµ satisfies ηi = 0 for i ≥ q + 1, . . . , n under H0, and ηi = 0 for
i ≥ r + 1, . . . , n under H1.

Set θi = ηi/σ0, i = 1, . . . , r and Xi = Ui/σ0, i = 1, . . . , n. Then
X ∼ N(θ, In). Moreover, the hypothesis H0 is equivalent to H0 : θi = 0 for
i ≥ q + 1, and the alternative is H1 : θi = 0 for i ≥ r + 1. The log-likelihood
for X ∼ N(θ, In) is

`(θ) = −1
2

log(2π)− 1
2
‖x− θ‖2,

and so arg maxθ∈Θ `(θ; x) = arg minθ∈Θ ‖x− θ‖2. Under H0,

2λ = 2(`(θ̂)− `(θ̂0)) =
r

∑
i=q+1

X2
i ∼ χ2

r−q.
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It is a remarkable fact that χ2
r−1 holds as an approximation to the

null distribution of 2λn quite generally when the hypothesis is a
q-dimensional submanifold of an r-dimensional parameter space.
Some of the sufficient regularity conditions under which this holds
were briefly discussed in Section 8.3.1 (e.g. Θ open, log pθ(x) twice
continuously differentiable with respect to θ, some conditions on the
behavior of the hessian ∇2`n around θ0 ∈ Θ0).

Theorem 8.4.2 (Wilk’s theorem). Consider testing H0 : θ ∈ Θ0 versus
H1 : θ ∈ Θ1, where Θ0 ⊂ Θ1 ⊆ Θ and Θ0, Θ1 are manifolds of dimension
q and r respectively. Under the same conditions guaranteeing asymptotic
normality of the two MLEs, we have under the null hypothesis,

2λn  χ2
r−q.

Sketch of the proof. For simplicity, we assume that Θ1 = Θ. Let θ̂0,n be
the MLE over Θ0 and θ̂n be the MLE over Θ. Directly by definition

2λn = 2n(`n(θ̂n)− `n(θ̂0,n)).

Applying the first order Taylor expansion of `n at θ̂n, and using the
fact that ∇`n(θ̂n) = 0, we find that

`n(θ̂n)− `n(θ̂0,n) = −1
2
(θ̂n − θ̂0,n)

ᵀ∇2
θ`n(θ̃n)(θ̂n − θ̂0,n),

where θ̃n = lies between θ̂0,n and θ̂n. By asymptotic normality θ̂0,n
p→

θ0 and θ̂n
p→ θ0 and so also θ̃n

p→ θ0. Hence, we argue that

−∇2
θ`n(θ̃n)

p→ −E[∇2
θ`n(θ0)] = I(θ0).

(This statement is actually a bit subtle and may require some further
regularity assumptions.) Therefore

2n(`n(θ̂n)− `n(θ̂0,n)) =
√

n(θ̂n − θ̂0,n)
ᵀ
(
−∇2

θ`n(θ̃n)
)√

n(θ̂n − θ̂0,n).

In the case when r = d, θ̂0,n = θ0 since there is no maximization and
then √

n(θ̂n − θ0)  N(0, I(θ0)
−1)

from the asymptotic normality of the MLE. Now putting together the
pieces:

√
n(θ̂n − θ0)

ᵀ
(
− 1

n
∇2

θ`n(θ̃n)

)√
n(θ̂n − θ0)  

d

∑
i=1

Z2
i = χ2

d,

where Zi ∼ N(0, 1). The case when r < d does not give much more
insight, but a lot more algebra.
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Example 8.4.3 (Exponential families). Suppose that the observations are
sampled from a density pθ in the d-dimensional regular exponential family

pθ(x) = h(x)e〈θ,t(x)〉−A(θ).

Let Θ ⊆ Rd be the canonical parameter space, and consider testing a null
hypothesis Θ0 ⊂ Θ versus its complement. The log-likelihood ratio statistic
is given by

λn = n sup
θ∈Θ

inf
θ∈Θ0

(〈θ − θ0, t̄n〉 − A(θ) + A(θ0)) .

Note that the Kullback-Leibler divergence of the measures Pθ0 and Pθ is
equal to

K(θ, θ0) = Eθ log
pθ

pθ0

= 〈θ − θ0, Eθt(X)〉 − A(θ) + A(θ0).

If the maximum likelihood estimator θ̂ ∈ Θ exists, then Eθ̂(t(X)) = t̄n

by Proposition 1.3.6. Comparing the two preceding displays, we see that the
likelihood ratio statistic can be written as

λn = n inf
θ0∈Θ0

K(θ̂, θ0).

This formula can be used to study the asymptotic properties of the likelihood
ratio statistic directly.

8.5 Limits of Bayesian procedures

In this section θ will denote a random parameter rather than a vector.
If θ possesses a density π, then the density of the posterior distribu-
tion of θ is given by Bayes’ formula

π(θ|X1, . . . , Xn) =
∏n

i=1 p(Xi|θ)π(θ)∫
∏n

i=1 p(Xi|θ)π(θ)dθ
(8.7)

which is a random kernel in the same sense as randomized decision
rules; c.f. Definition 2.2.1. This expression may define a probability
density even if π is not a probability density itself. A prior distribu-
tion with infinite mass is called improper.

We pose the question, under what conditions are Bayes methods
asymptotically consistent/efficient. We start with an example.

Example 8.5.1. X ∼ Bin(n, θ) with prior θ ∼ Beta(a, b), that is, π(θ) =
Γ(a)Γ(b)
Γ(a+b) θa−1(1− θ)b−1. Since the posterior satisfies

π(θ|x) ∝ θa+x−1(1− θ)b+n−x−1,

it must be equal to Beta(a + x, b + n− x). Since the mean in Beta(a, b) is
a

a+b , the Bayes estimate under the squared lossx (c.f. Proposition 2.3.5) is:

δn
a,b = E(θ|x) =

a + x
a + b + n

.
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If we assume that the true value of θ is θ0,

√
n(δn

a,b − θ0) =
√

n
(

X
n
− θ0

)
+

√
n

a + b + n

(
a− (a + b)

X
n

)
.

Note that
√

n(X
n − θ0) N(0, θ0(1− θ0)) since X

n is MLE of θ and
√

n
a+b+n (a− (a + b)X

n )
p→ 0.

Therefore the Bayes estimate is asymptotically consistent and efficient for all
a and b.

Bernstein-von Mises theorem theorem guarantees that the random
kernel π(θ|X1, . . . , Xn) in (8.7) is “close” to N(θ̂n, (nI(θ0))

−1), where
θ̂n is the MLE and θ0 is the true value.

Theorem 8.5.2 (Bernstein-von Mises). Assume that the prior density π

is continuous and strictly positive and the standard regularity conditions for
asymptotic normality of the MLE θ̂n hold. Then the conditional density of√

n(θ− θ̂n) given X1, . . . , Xn converges to the PDF of N(0, (I(θ0))
−1).

Proof. (Proof sketch, see Section 5.5 in 4 for details) Condition on 4 Peter J. Bickel and Kjell A. Doksum.
Mathematical statistics—basic ideas and
selected topics. Vol. 1. Texts in Statistical
Science Series. CRC Press, Boca Raton,
FL, second edition, 2015

X1, . . . , Xn. Let v =
√

n(θ − θ̂n) so that θ = θ̂n + v/
√

n. Denote

f (v) = π(π̂n +
v√
n |X1, . . . , Xn)

so that

log f (v) = const + n`n(θ̂n +
v√
n ) + log π(θ̂n +

v√
n ). (8.8)

Using the second order expansion of `n(θ̂n + v√
n ) around θ̂n and

using the fact that ∇`n(θ̂n) = 0 we get

n`n(θ̂n +
v√
n ) = n`n(θ̂n) +

1
2

vT∇2`n(θ̃n)v,

where θ̃n = θ̂n +
tv√

n for t ∈ (0, 1). Plugging this to (8.8) gives

log f (v) = const +
1
2

vT∇2`n(θ̂n +
tv√

n )v + log π(θ̂n +
v√
n ). (8.9)

This holds for any fixed v ∈ Rd and so, by (8.9), the conditional
distribution of v =

√
n(θ− θ̂n) is proportional to

π(θ̂n +
v√
n ) exp{−1

2
vT(−∇2`n(θ̂n +

tv√
n ))v}.

Since θ̂n converges in probability to θ0, v/
√

n converges to zero and
under appropriate uniformity conditions, −∇2`n(θn + tv/

√
n) con-

verges to I(θ0). Therefore, expression (8.9) after normalizing con-
verges to the density of N(0, (I(θ0))

−1).
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8.6 Exercises

Exercise 8.6.1. Say Xn  X ∈ Rd and Yn  c ∈ Rk (constant)
and let f : Rd × Rk → Rm continuous almost everywhere. Show that
f (Xn, Yn) f (X, c).

Exercise 8.6.2. Argue that Xn
p→ X if and only if d(Xn, X) = oP(1).

Exercise 8.6.3. Show that:

oP(1) + oP(1) = oP(1)

oP(1) + OP(1) = OP(1)

oP(1)OP(1) = oP(1)

(1 + oP(1))−1 = OP(1)

oP(Rn) = RnoP(1)

OP(Rn) = RnOP(1)

oP(OP(1)) = oP(1).

Exercise 8.6.4. Let (Xn) be a random sequence in Rm. Show that Xn =

op(1) if and only if each coordinate sequence is oP(1).

Exercise 8.6.5. Let X1, . . . , Xn be i.i.d. EXi = µ, var(Xi) = 1. Find
constants such that rn(X̄2

n − an) converges in distribution when µ = 0 and
when µ 6= 0.

Exercise 8.6.6. Show that
√

n(τ̂n − τ0) = OP(1). Conclude that τ̂n
p→

τ0.

Exercise 8.6.7. Show that in exponential families

−∇2
τ`n(θ(τ0))

p→ ∂θ
∂τ (τ0))

T ·V(θ0) · ∂θ
∂τ (τ0).

Exercise 8.6.8. Show that (i) in the bottom of Section 8.3.1 holds when
mθ(x) = − log pθ(x) (MLE) as well as mθ(x) = ‖θ− δ(X)‖2, where δ(X)

is an unbiased estimator of the parameter θ.

Exercise 8.6.9. Let X1, . . . , Xn be a random sample from N(µ, 1), where it
is known that µ ≥ 0. Show that the MLE is not asymptotically normal un-
der µ = 0. Why does this not contradict our result on asymptotic normality
of the MLE?



Part IV

Mathematical appendix





A
Real Analysis

The Advanced Theory of Statistics is a technical subject. It is then im-
portant to actively look for high-level insights. This allows not only
to understand the material better but also to see how the presented
results may be generalized. Part of the goal of this lecture is to help
students look for such insights.

In this appendix we briefly cover some fundamental concepts
that help to understand many parts of theoretical statistics. These
are: differentiation in vector spaces and convexity. This exposition
assumes certain level of mathematical maturity on the level of a basic
real analysis course. For more details, we refer to

https://pzwiernik.github.io/docs/RealAnalysisNotes.pdf.

A.1 Vector spaces

A set V is a vector space if (i) 0 lies in V (ii) for any two x, y ∈ V also
x + y ∈ V, (iii) if x ∈ V and λ ∈ R then λ · x lies in V. A general
abstract definition of a vector space is more complicated because
it needs to explain what we mean by 0 and what we mean by the
algebraic operations + and ·. Here however, we always work with
variations of the following three examples (Examples A.1.1-A.1.4),
where all these objects are naturally defined.

Example A.1.1 (The Euclidean space Rd). The real space Rd with ele-
ments x = (x1, . . . , xd), xi ∈ R, is an example of a vector space. We define
the standard inner product as

〈x, y〉 := x1y1 + · · ·+ xdyd for all x, y ∈ Rd.

The vector space Rd equipped with the induced norm ‖x‖ :=
√
〈x, x〉 is

called the Euclidean space. Every subset of Rd given by linear equations
also forms a vector space with the induced norm.

In general, an inner product on a vector space V is a function from

https://pzwiernik.github.io/docs/RealAnalysisNotes.pdf
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V × V to R that must satisfy the following three conditions for all
x, y, z ∈ V

1. 〈x, y〉 = 〈y, x〉 (symmetry)

2. 〈αx + βy, z〉 = α〈x, z〉+ β〈y, z〉 (linearity in the first argument)

3. 〈x, x〉 ≥ 0 and is zero only if x = 0. (positive definiteness)

The inner product space induces a norm in the standard way

‖x‖ :=
√
〈x, x〉

but not all norms are obtained in this way. Every vector space with a
given norm becomes a metric space with distance function satisfying

d(x, y) := ‖x− y‖ for x, y ∈ V.

Example A.1.2 (The space of m × n matrices). The space Rm×n of all
real m× n matrices also forms a vector space. The standard inner product is

〈A, B〉 =
m

∑
i=1

n

∑
j=1

AijBij = tr(ABᵀ) for all A, B ∈ Rm×n.

The induced norm is the Frobenius norm ‖A‖F :=
√
〈A, A〉 but for matri-

ces we typically work with the operator norm instead

‖A‖ := max
‖x‖=1

‖Ax‖.

A special case is the vector space Sm of all m× m symmetric matrices with
the inner product induced from Rm×m:

Sm = {A ∈ Rm×m : A = AT}.
Exercise A.1.3. Show that tr(ABᵀ) = ∑m

i=1 ∑n
j=1 AijBij for all A, B ∈

Rm×n.

All finite dimensional vector spaces are similar and behave like the
Euclidean space Rd. In particular, defining a metric space structure
is straightforward. In more complicated situations we may need to
work a bit extra. Consider the following important example.

Example A.1.4 (L2 functions). The set of all measurable functions
f : X → R on some set X also forms a vector space with addition de-
fined pointwise (why? what is the zero of this vector space?). The natural
candidate for an inner product, namely

〈 f , g〉 :=
∫
X

f (x)g(x)dµ

does not need to satisfy positive definitedness and it may not be a well-
defined function to R.

Instead, we will work in a smaller functional space L2(X ) of all mea-
surable functions satisfying

∫
f 2(x)dµ < +∞, where two functions are

identified if they differ on a subset of measure zero. In this space, 〈 f , g〉
defines a valid inner product.
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A.2 Continuity and semicontinuity

A.2.1 Continuity

Continuity is one of the most fundamental concepts of real analysis.

Definition A.2.1. If f : X → Y is a mapping between metric spaces then
f is continuous at x ∈ X if for every sequence (xn) in X , xn → x implies
f (xn)→ f (x). We say that f is continuous if it is continuous at every x.

Proposition A.2.2. Composition of continuous functions is continuous.

Proof. Follows easily from the definition. We leave the details as an
exercise.

There are various equivalent definitions of continuity and it is
important to be aware of them. The sequential definition is typically
the easiest both conceptually and operationally. However, in this
course we will also be using two other definitions, which we discuss
next.

The standard way of defining continuous functions is, so called,
(ε, δ)-condition.

Theorem A.2.3. A function f : X → Y is continuous at x if and only if

∀ε > 0 ∃δ > 0
(

d(x, y) < δ ⇒ d( f (x), f (y)) < ε
)

.

Another important reformulation of continuity builds on the con-
cept of preimage. Let f : X → Y be given. The preimage of a set
V ⊂ Y is

f−1(V) := {x ∈ X : f (x) ∈ V}. (A.1)

For example, if f : R2 → R is defined by f (x, y) = x2 + y2 + 2 then
the preimage of the interval [3, 6] is the annulus in the plane with
inner radius 1 and outer radius 2.

Theorem A.2.4. A function f : X → Y is continuous if and only if the
preimage f−1(V) of any open set V ⊂ Y is open in X .

A.2.2 Semicontinuity and Fatou’s lemma

A closely related notion to continuity of a function is that of semicon-
tinuity. Recall that R = [−∞,+∞] is the set of extended real numbers
with the usual definition of algebraic operations that incorporate the
two extra “numbers” −∞,+∞. Let X be any metric space.

Definition A.2.5. A function f : X → R is lower semicontinuous at p
if, for ε > 0, p is an interior point of {x : f (x) > f (p)− ε}. Similarly, f
is upper semicontinuous at p ∈ X if, for every real ε > 0, p is an interior
point of the set {x : f (x) < f (p) + ε}.
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Recall that for a real sequence (sn)n∈N the set E of subsequential
limits is the set of s ∈ R such that some subsequence of (sn) con-
verges to s. We define lim infn→∞ sn = inf E and lim supn→∞ sn =

sup E. This definition can be extended to functional limits. Consider
all sequences xn → p and the corresponding converging subse-
quences f (xnk ). Then lim infx→p f (x) is the inferior of the set of all
such subsequential limits. The upper functional limit lim supx→p f (x)
is defined analogously.

There are important alternative ways to formulate semi-continuity.

Exercise A.2.6. Show that f : X → R is lower semicontinuous at p ∈ X
if and only if lim infx→p f (x) ≥ f (p). Similarly, f : X → R is upper
semicontinuous at p ∈ X if and only if lim supx→p f (x) ≤ f (p).

This exercise immediately gives us the following result.

Theorem A.2.7. A function f : X → R is continuous at p if and only if it
is both upper and lower semicontinuous at p.

We say that a function is lower (upper) semicontinuous if it is
lower (upper) semicontinuous at every point p ∈ X .

Exercise A.2.8. Show that f : X → R is lower semicontinuous if and
only if {x : f (x) > y} is open for every y ∈ R, or equivalently, when
{x : f (x) ≤ y} is closed.

Lower semi-continuity1 is an essential concept in convex analysis. 1 For more on semicontinuity see
https://pzwiernik.github.io/docs/

RealAnalysisNotes.pdf.
In probability it appears, for example, in the Fatou’s lemma, which
we will use in later chapters.

Theorem A.2.9 (Fatou’s Lemma). Given a measure space (X ,F , µ) and
a set U ∈ F , let { fn} be a sequence of measurable nonnegative functions
fn : U → [0,+∞]. Define the function f : U → [0, ∞] by setting

f (x) = lim inf
n→∞

fn(x) for all x ∈ U.

Then f is measurable, and also∫
U

f dµ ≤ lim inf
n→∞

∫
U

fn(x)dµ,

where the integrals may be infinite.

In particular, this last statement is saying that Z( f ) =
∫
X f dµ

is lower semicontinuous. Namely, for every measurable f and a se-
quence fn that converges pointwise to f (limn fn(x) = f (x) for all
x ∈ X ),

Z( f ) ≤ lim inf
n

Z( fn)

(c.f Exercise A.2.6).

https://pzwiernik.github.io/docs/RealAnalysisNotes.pdf
https://pzwiernik.github.io/docs/RealAnalysisNotes.pdf
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A.3 Differentiation

Given a function f : V → R, from a vector space V, we may be
interested in a local behaviour of f around some point a ∈ V. The
fundamental tool is given by the directional derivative. If u is a vector
in V, then the directional derivative of f at a ∈ V in the direction
u ∈ V is

Du f (a) := lim
t→0

f (a + tu)− f (a)
t

. (A.2)

If the directional derivative Du f (a) exists, it depends only on the
behaviour of f in a small open neighbourhood U ⊂ V of a and so the
function does not need to be defined over the whole V. The sign of
the derivative has an important interpretation: if Du f (a) > 0 then the
value of the function increases as we move infinitesimally from a in
the direction u.

Remark A.3.1. In infinite dimensional spaces the directional derivative is
typically called the Gateaux derivative.

If f : V → R is differentiable at a the directional derivarives exist
and then

f (a + tu) = f (a) + t Du f (a) + r(tu),

where the remainder r satisfies limt→0
r(tu)

t = 0 (in other words
r(tu) = o(t)). This gives a simple “algebraic” way of computing the
directional derivatives. Before we give some examples, we note that
with a choice of an inner product on V, we get

Du f (a) = 〈∇ f (a), u〉, (A.3)

where ∇ f (a) ∈ V denotes the gradient of f at a. ‘

Exercise A.3.2. Use the Cauchy-Schwarz inequality and (A.3) to show that
∇ f (a) is the direction of the steepest increase of f locally around a.

Example A.3.3. Let f : Rd → R be given by f (x) = xᵀAx for A ∈ Sd.
Then

f (x + tu)− f (x) = t(uᵀAx + xᵀAu) + o(t),

which gives that Du f (x) = uᵀAx + xᵀAu = 〈2Ax, u〉 and so ∇ f (x) =

2Ax.

Example A.3.4. Let f : Rn×n → R be defined by f (A) = tr(A2). Then

f (A + tU)− f (A) = t(tr(UA) + tr(AU)) + o(t),

which gives that DU f (A) = 2tr(UA) = 〈2Aᵀ, U〉 and so ∇ f (A) = 2Aᵀ.

A slightly more involved matrix example is given as an exercise.
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Exercise A.3.5. Consider the function f (Σ) = log det(Σ) defined for all
Σ ∈ Sm that are positive definite. Find the gradient of this function (it is
an element of Sm). Hint: Computing DU f (Σ) consider the eigenvalues of
Σ−1/2UΣ−1/2.

We also have an infinite-dimensional example.

Example A.3.6. Let f : L2(R) → R be defined by f (ϕ) =
∫

ϕ2(x)dx =

‖ϕ‖2 then, for every u ∈ L2(R),

f (ϕ + tu)− f (ϕ) = 2t
∫

ϕ(x)u(x)dx + o(t),

which gives that Du f (ϕ) = 2
∫

ϕ(x)u(x)dx = 2〈ϕ, u〉 and so ∇ f (ϕ) =

2ϕ.

The infinite dimensional case is extremely important in semipara-
metric and nonparametric statistics but it also appears in the theory
of optimal statistical procedures. This may require a bit more care-
ful treatment but we will introduce relevant concepts of functional
analysis along the way. The message we tried to convey above is that
very often it is useful to think about this inifite dimensional case as a
special case of the standard analysis on Rd.

To conclude this section we generalize (A.3) by defining the
derivative as a linear map.

Definition A.3.7. Suppose U is open in Rn, f : U → Rm. The function
f is differentiable at a ∈ U with derivative f ′a if f ′a : Rn → Rm is a linear
function and

f (a + h) = f (a) + f ′a(h) + r(h),

where the remainder r(h) satisfies

lim
h→0n

r(h)
‖h‖ = 0m.

If f is differentiable at every a ∈ U, we say that f is differentiable in U.

Exercise A.3.8. Check if the above examples are differentiable.

Proposition A.3.9. Let f : U → Rm, where U is an open subset in Rn, be
differentiable at a ∈ U. If u ∈ Rn then

Du f (a) = f ′a(u).

Proof. Since f ′a exists

f (a + tu)− f (a) = f ′a(tu) + r(tu)

with r(tu)
t → 0 as t → 0. Dividing by t and taking the limit, we get

that
f ′a(u) = lim

t→0

f (a+tu)− f (a)
t = Du f (a).
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Exercise A.3.10. Given the same set-up as in Proposition A.3.9, show
that f ′a(u) = J f (a) · u, where J f (a) is the Jacobian of f at a, that is
J f (a) ∈ Rm×n and its (i, j)-th entry is ∂

∂xj
fi.





B
Convex Analysis

B.1 Convexity and hyperplane separation

Let V be a vector space. Recall that a set C ⊆ V is convex if for any
two points x, y ∈ C and for all λ ∈ (0, 1)

zλ := (1− λ)x + λy ∈ C.

The point zλ can be rewritten as zλ = x + λ(y − x) so, as λ varies
from 0 to 1, zλ moves from x to y along the segment joining x and
y. This gives a geometric interpretation of convex sets: for any two
points in the set, the segment between these two points is contained
in the set.

Given a non-empty subset C ⊂ Rk we define the distance to C
function dC : Rk → R by

dC(x) := inf
y∈C
‖x− y‖.

This function is well defined because for every x ∈ Rk the set {‖x−
y‖ : y ∈ C} ⊂ R is bounded from below (by zero) and so its
infimum is well-defined. The following result is fundamental for
many applications of convex analysis.

Theorem B.1.1 (Minimum distance to a set). (1) Let E, F ⊂ Rk. Then
dF : E → R is Lipschitz continuous function with constant 1 (in
particular, it is continuous).

(2) If F is closed, then

∀x ∈ E ∃y ∈ F such that dF(x) = ‖x− y‖.

(3) If F is also convex, for every x such y is unique in F.

Proof. (1) Let x1, x2 ∈ E. By the triangle inequality, ‖x1 − y‖ ≤
‖x1 − x2‖+ ‖x2 − y‖. If y ∈ F then dF(x1) ≤ ‖x1 − y‖ and so

dF(x1) ≤ ‖x1 − x2‖+ ‖x2 − y‖.
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Since the inequality holds for every y ∈ F. Take infimum over all
y ∈ F to get that dF(x1) ≤ ‖x1 − x2‖ + dF(x2). In the same way,
starting with ‖x2− y‖ ≤ ‖x1− x2‖+ ‖x1− y‖, conclude that dF(x2) ≤
‖x1 − x2‖ + dF(x1). It follows that |dF(x1) − dF(x2)| ≤ ‖x1 − x2‖,
which implies Lipschitz continuity of dF.

(2) Let x ∈ E and fix y0 ∈ F. We have dF(x) ≤ ‖x− y0‖ = r. Define
F̃ = F ∩ Nr(x), where Nr(x) is the closed ball of radius r around
x. Since F is closed and Nr(x) is compact, F̃ is also compact. Since
‖x − y‖ is a continuous function of y, there exists y1 ∈ F̃ such that
infy∈F ‖x− y‖ = ‖x− y1‖.

(3) Let y1 and y2 in F be such that ‖x− y1‖ = ‖x− y2‖ = dF(x).
Define p = y2 − y1 and h : [0, 1] → R by h(λ) = ‖x − y1 − λp‖2.
We have h(0) = h(1) and also, because F is convex, y1 + λp ∈ F for
λ ∈ [0, 1] and so h is minimized at λ = 0 and λ = 1. Since h(λ) is a
quadratic function with nonnegative coefficient ‖y1 − y2‖2 of λ2, this
is only possible if y1 = y2.

Proposition B.1.2. Let E, F ⊂ Rk with F closed and convex. Let g : E →
F be given by g(x) = arg infy∈F ‖x− y‖. Then g is a well-defined and

‖g(x2)− g(x1)‖ ≤ ‖x2 − x1‖ for all x1, x2 ∈ E. (B.1)

In particular, g is a continuous function.

Proof. Because F is closed and convex, Theorem B.1.1 assures that g
is a well-defined function, that is, for each x ∈ E there is a unique
y ∈ F such that g(x) = y. To show (B.1), take p = g(x2) − g(x1);

x1

x2

g(x1)

g(x2)

p

⟨p, z − g(x1)⟩ = 0

⟨p, z − g(x2)⟩ = 0

Figure B.1: Illustration of the proof of
Proposition B.1.2

c.f. Figure B.1. The set of points g(x1) + tp for t ∈ [0, 1] lies in F, by
convexity, and so

h(t) = ‖x1 − g(x1)− tp‖2

has a minimum at t = 0. This is a quadratic function in t with a
strictly positive coefficient of t2. The only way for such a function to
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have a minimum at t = 0 is that its derivative at t = 0 is nonnegative,
or, in other words, the coefficient of t is nonnegative. This coefficient
is −2〈p, x1 − g(x1)〉, which implies that 〈p, x1 − g(x1)〉 ≤ 0. In a sim-
ilar way, we show that 〈p, x2 − g(x2)〉 ≥ 0. But these two inequalities
imply that

〈p, x2 − x1〉 ≥ 〈p, g(x2)− g(x1)〉 = ‖p‖2.

The Cauchy-Schwarz inequality gives that 〈p, x2 − x1〉 ≤ ‖p‖‖x2 −
x1‖. This implies that ‖p‖ ≤ ‖x2 − x1‖, which is precisely (B.1).

We say that two sets A, B ⊂ Rk are separated by a hyperplane if
there exists p 6= 0k and c ∈ R such that for every x ∈ A, y ∈ B we
have 〈p, x〉 ≤ c ≤ 〈p, y〉. The separation is strict if the inequalities can
be made strict. The following theorem is one of the most important
results of convex geometry.

Theorem B.1.3 (Hyperplane Separation Theorem). Let C and K be dis-
joint non-empty convex sets in Rk. Then they are separated by a hyperplane.
Let C be closed and K compact. Then C and K are strictly separated by a
hyperplane.

Note that compactness of K in the second part of Theorem B.1.3 is
necessary. For example A = {x ∈ R2 : x1 ≤ 0}, B = {x ∈ R2 : x1 >

0, x2 ≥ 1/x1} are closed but not strictly separated.

Proof. We prove the second part of the theorem leaving the first part
as an exercise. By Theorem B.1.1, dC(x) is a continuous real-valued
function on K and so it achieves its minimum. Call it x0 ∈ K. By
Theorem B.1.1(c) there is exactly one y0 ∈ C such that dC(x0) =

‖x0 − y0‖. Set p = x0 − y0. Then p 6= 0k and 0 < ‖p‖2 = 〈p, x0 − y0〉
so

〈p, x0〉 > 〈p, y0〉
so it suffices to show that 〈p, x〉 ≥ 〈p, x0〉 for every x ∈ K and
〈p, y〉 ≤ 〈p, y0〉 for all y ∈ C. We show the second, the first is similar
and follows from convexity. Let y ∈ C and set yλ = (1− λ)y0 + λy.
Then

x0 − yλ = x0 − y0 − λ(y− y0) = p− λ(y− y0)

and so

‖x0 − yλ‖2 = ‖p− λ(y− y0)‖2 =

= λ2‖y− y0‖2 − 2λ〈p, y− y0〉+ ‖p‖2.

This is a quadratic function of λ that achieves its minimum at λ = 0
(by construction!). This implies that the derivative of this function
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at zero must be nonnegative. This derivative is equal to the coeffi-
cient of λ which is 2〈p, y0 − y〉. This implies that 〈p, y〉 ≤ 〈p, y0〉 as
claimed.

Exercise B.1.4. Show that each closed convex set is an intersection of closed
half-spaces.

B.2 Convex functions and optimization

A function f defined on a convex set C ⊆ V with values in R is
convex if

f ((1− λ)x + λy) ≤ (1−λ) f (x)+λ f (y) for all x 6= y ∈ C, λ ∈ (0, 1).

Moreover, f is strictly convex if the inequality is always strict. A
function f is (strictly) concave if − f is (strictly) convex.

Exercise B.2.1. Let Sm
+ be the set of all symmetric m× m that are positive

definite. Show that the following functions are convex:

(a) f : Rd → R defined by f (x) = ‖x‖2.

(b) f : Sm
+ → R defined by f (Σ) = − log det(Σ).

(c) L : L2(R)→ R defined by L( f ) =
∫ ∞
−∞ f 2(x)dx.

Are they strictly convex?

We now discuss the most important features of convex function.
Note that we never assume that V is a finite-dimensional space.

Proposition B.2.2. If f : C → R is convex and L ⊂ V is a linear subspace
then f restricted to C ∩ L is also convex.

Proof. This follows directly from the definition.

Theorem B.2.3 (Jensen’s inequality). Suppose f : C → R is a convex
function and let X be a random variable with P(X ∈ C) = 1 and EX < ∞.
Then f (E(X)) ≤ E( f (X)). If f is strictly convex then the inequality is
strict unless X is constant almost surely.

Proposition B.2.4. If a is a local optimum of a convex function f , then f is
a global optimum.

Proof. We argue by contradiction. If x, y are two local optima with
f (x) < f (y) (y is local but not global) then, for every λ ∈ (0, 1),
f (zλ) < f (y). This contradicts local optimality of y.

Proposition B.2.5. Let g : C ×A → R be such that g(x, α) is convex in
x ∈ C for every fixed α. Then the function

f (x) := sup
α∈A

g(x, α)

(defined as the pointwise supremum) is a convex function.
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Proof. Exercise.

Example B.2.6 (Fenchel conjugate). Let f (x) be a convex function on C.
Then the function

g(x, y) = 〈x, y〉 − f (x)

is concave in x and linear (and so also convex) in y. Using Proposition B.2.5
we get

f ∗(y) = sup
x∈C
{〈x, y〉 − f (x)}

is a convex function. The function f ∗ is called the Fenchel conjugate of f .
Note that the Fenchel inequality follows easily:

f (x) + f ∗(y) ≥ 〈x, y〉 for all x, y.

For a simple example, take f (x) = x2.

Proposition B.2.4 suggests that optimizing convex functions is
much easier than optimizing general functions. However, the study
of local behaviour of convex functions is easy also for a different
reason. Define a one-sided directional derivative

D+
u f (a) = lim

t→0+

f (a + tu)− f (a)
t

. (B.2)

If the directional derivative Du f (a) in (A.2) exists then the one-sided
derivative exists and they are equal. But there are important exam-
ples when the directional derivative does not exist but the one-sided
derivative does.

Exercise B.2.7. Show that at the origin none of the directional derivatives
of f (x) = ‖x‖1 exists but all the one-sided derivatives do.

The importance of one-sided directional derivatives comes from
the fact that if D+

u f (a) is positive then the function is increasing
when we move infinitesimally from a in the direction u. This can be
used to easily provide necessary conditions for a local optimum even
in the constrained setting.

Theorem B.2.8. Let f : C → R ∪ {∞} be convex, and let x, y ∈ dom( f ).
Then for every zλ = (1− λ)x + λy, λ ∈ (0, 1), the one-sided derivative
D+

x−y f (zλ) exists and is an increasing function of λ.

We claim that this result is true also over infinite-dimensional
spaces. Our proof of Theorem B.2.8 starts with the following lemma.

Lemma B.2.9. Let ϕ : [0, 1] → R be convex. Consider the “chords”
0 ≤ p < q < 1, and 0 < s < t ≤ 1, with p ≤ s and q ≤ t. Then

ϕ(q)− ϕ(p)
q− p

≤ ϕ(t)− ϕ(s)
t− s

.
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Proof. Since p < q ≤ t, then

q =
t− q
t− p

p +
q− p
t− p

t

is a convex combination of p and t, so the convexity of ϕ gives

ϕ(q) ≤ t− q
t− p

ϕ(p) +
q− p
t− p

ϕ(t).

This is equivalent to

ϕ(q)− ϕ(p)
q− p

≤ ϕ(t)− ϕ(p)
t− p

. (B.3)

Now, apply this inequality to the function ψ(λ) = ϕ(1− λ) and the
points 1− t < 1− s ≤ 1− p. The result may be rewritten as

ϕ(t)− ϕ(p)
t− p

≤ ϕ(t)− ϕ(s)
t− s

.

Together with (B.3), this is the required inequality.

Proof of Theorem B.2.8. Let ϕ(λ) = f (zλ) and apply Lemma B.2.9 for
the points p = s = λ < q ≤ t to obtain

ϕ(q)− ϕ(λ)

q− λ
≤ ϕ(t)− ϕ(λ)

t− λ
.

It follows that ψ(q) = (ϕ(q)− ϕ(λ))/(q− λ) is an increasing function
of q, q > λ. Note that

ψ(q) = t−1{ f (zλ + t(x− y))− f (zλ)}, t = q− λ.

Applying Lemma B.2.9 to the points p < s = q = λ < t shows that

ψ(p) =
ϕ(λ)− ϕ(p)

λ− p
≤ ϕ(t)− ϕ(λ)

t− λ
= ψ(t).

Hence, ψ(t) is increasing and bounded below to t > λ, and thus,

lim
t→λ+

ψ(t)

exists. Equivalently the one-sided derivative D+
x−y(zλ) exists for

λ ∈ (0, 1). By taking limits in the inequality in Lemma B.2.9, namely
q → p+, t → s+, we see that ϕ′(p) ≤ ϕ′(s) (one-sided derivatives)
for almost all p and s with p ≤ s. Thus D+

x−y(zλ) is an increasing
function of λ.

Exercise B.2.10. Show that any convex function defined and finite on a
convex set C must be continuous on its interior. Although this result is
general, for simplicity, you can focus on its one-dimensional version.
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We now informally state an important result, which gives a fun-
damental understanding of a large family of optimization problems.
Often we optimize a function over a convex set C given by bunch
of linear constraints together with inequality constraints gi(x) ≤ 0
for i ∈ I with gi convex. If the functions gi are all continuously
differentiable and all one-sided derivatives in (B.2) exist then a is a
local minimum of f if and only if D+

u f (a) ≥ 0 for all u such that
Dugi(a) ≤ 0 for all i such that gi(a) = 0 (active constraints).





C
Probability

C.1 Continuity of probability

In what follows we fix a probabiliy space (Ω,B, P). If An is a se-
quence of events then we say that (An) increases to A if An ⊆ An+1

for all n ∈N and A =
⋃

n≥1 An.

Proposition C.1.1. If (An) is a sequence of events increasing to A, then

lim
n→∞

P(An) = P(A).

Proof. Clearly An = An ∩ An+1 for all n ∈ N. Let A0 = ∅, C1 = A1,
and define Cn+1 = An+1 r An. Notice that C1, C2, . . . are disjoint with

n⋃
j=1

Cj = An and
∞⋃

j=1

Cj =
∞⋃

j=1

Aj = A.

Using the fact that P is countably additive, we conclude

P(A) = P(
∞⋃

j=1

Cj) =
∞

∑
j=1

P(Cj) = lim
n→∞

n

∑
j=1

P(Cj) = lim
n→∞

P(
n⋃

j=1

Cj) = lim
n→∞

P(An).

This immediately gives the following result.

Proposition C.1.2. Both the CDF F(t) = P(X ≤ t) of X and its survival
function G(t) = P(X > t) are right-continuous.

Proof. Let (tn) be any monotone sequence such that tn > t and
tn → t. Then the events An = {X > tn} satisfy An ⊆ An+1 for all
n ∈ N. Since

⋃
n∈N An = {X > t} we have that (An) increases to

{X > t}. By Proposition C.1.1,

lim
n→∞

P(X > tn) = P(X > t).
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Since tn is otherwise arbitrary, we conclude limx→t+ G(x) = G(t)
and so the survival function is right-continuous. The claim for the
CDF follows immediately as

lim
x→t+

F(x) = lim
x→t+

(1− G(x)) = 1− lim
x→t+

G(x) = 1− G(t) = F(t).

Remark C.1.3. Using the same approach we can show that the functions
P(X < t) and P(X ≥ t) are left-continuous. We leave it as an exercise.

C.2 Martingales

Let X1, . . . , Xn be independent random variables with values in X .
Let {Fk}∞

k=1 be a sequence of σ-fields, Fk = σ(X1, . . . , Xk). Let
{Yk}∞

k=1 be a sequence of variables such that Yk is Fk-measurable
(we say that {Yk}∞

k=1 is adapted to the filtration Fk = σ(X1, . . . , Xk)).

Definition C.2.1. Given a sequence {Yk}∞
k=1 adapted to the filtration

Fk = σ(X1, . . . , Xk), the pair {(Yk,Fk)}∞
k=1 is a martingale if, for all

k ≥ 1,
E(|Yk|) < ∞ and E[Yk+1|Fk] = Yk.

Example C.2.2 (Simple random walk). A particle jumps either one step
to the right or one step to the left with the corresponding probabilities p and
q = 1− p. Assume that the subsequent moves are independent of each other.
Define Sn = X1 + . . . + Xn. It is clear that E|Sn| ≤ n and

E[Sn+1|X1, . . . , Xn] = Sn + (p− q),

and so Yn = Sn − n(p− q) defined a martingale with respect to X.

Example C.2.3 (Likelihood ratio). Let p1, p0 be two mutually absolutely
continuous densities, and let X1, X2, . . . be an i.i.d. sequence from p0. For
each k ∈ N let Yk = ∏k

i=1
p1(Xi)
p0(Xi)

be the likelihood ratio based on the first
k samples (c.f (3.15)). Then the sequence is a martingale with respect to
{Xk}∞

k=1. Indeed,

E[Yk+1|Fk] = E

[
p1(Xk+1
p0(Xk+1)

] k

∏
i=1

p1(Xi)

p0(Xi)
= Yk,

using the fact that E[
p1(Xk+1
p0(Xk+1)

] = 1.

There are many cases of interest in which the martingale condi-
tion E(Yk+1|Fk

) = Yk does not hold, being replaced instead by an
inequality: E(Yk+1|Fk) ≥ Yk for all k, or by E(Yk+1|Fk) ≤ Yk for all k.
Sequences satisfying such inequalities have many of the properties of
martingales. Recall x+ = max{0, x} and x− = −min{0, x}.
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Definition C.2.4. Given a sequence {Yk}∞
k=1 adapted to the filtration

Fk = σ(X1, . . . , Xk), the pair {(Yk,Fk)}∞
k=1 is a submartingale if, for all

k ≥ 1,
E(Y+

k ) < ∞ and E[Yk+1|Fk] ≥ Yk,

or a supermartingale if, for all k ≥ 1,

E(Y−k ) < ∞ and E[Yk+1|Fk] ≤ Yk,

We call the pair {(Sk,Fk)}∞
k=1 predictable if Sk+1 is Fk-measurable

for all k. We call a predictable process {(Sk,Fk)}∞
k=1 increasing if

S1 = 0 and P(Sk+1 ≥ Sk) = 1 for all k.

Theorem C.2.5 (Doob decomposition). A submartingale Yk with finite
means may be expressed in the form

Yk = Mk + Sk,

where Mk is a martingale and Sk is an increasing predictable process. This
decomposition is unique.

A closely related notion to martingales is that of a martingale
difference sequence, which is an adapted sequence {∆k,Fk}∞

k=1 such
that for all k ≥ 1,

E|∆k| ≤ ∞ and E(∆k+1|Fk) = 0.

If {Yk} is a martingale then ∆k = Yk − Yk−1 is a martingale dif-
ference sequence. In our case, this easily follows from the fact that
Ek(Ek+1(Z)) = EkZ.
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