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Introduction

These lecture notes are intended to offer complement to the first part
of STA3000. In designing this course we aimed at giving a modern
treatment of mathematical statistics. Thus, we discuss important
topics in theoretical statistics, like exponential families, statistical
decision theory, or empirical processes and develop basic intuition
behind what is multivariate statistics and what are its basic problems
and techniques.

These goals heavily affected the exposition. Our approach is to
use the multivariate notation whenever possible, to emphasize con-
nections to convex analysis, and to present some results in the high-
dimensional statistics. We will try to show that important of convex
analysis for statistical theory goes much beyond convex optimiza-
tion used for the maximum likelihood estimation or its regularized
versions.

The whole material is divided into twelve 3-hour lectures. The
notes contain more detailed material than presented in the lecture.
Preparing these lecture notes we benefited from several excellent
textbooks or lecture notes:

1. Robert W. Keener, Theoretical statistics.

2. Lehmann, Romano, Testing Statistical Hypotheses.

3. Sundberg, Statistical Modelling by Exponential Families.
4. Wainwright, High-dimensional statistics.

5. Martin, Lecture Notes on Advanced Statistical Theory.

6. Rigolett, High-dimensional Statistics.

7. van der Vaart, Asymptotic Statistics

Special thanks go to Morris Greenberg, Ichiro Hashimoto, Vishakh
Patel, Emily Somerset, Qiang Sun, Leonard Wang, and Zhenghang
Xu for helping me to improve the notes.
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1
Exponential families (2 weeks)

Exponential families were discussed briefly in the first semester. The
goal of this section is to provide a more detailed treatment of multi-
variate exponential families in connection with convexity, sufficiency,
and hypothesis testing. This chapter is mostly based on two books on
exponential families by Lawrence D. Brown' and by Rolf Sundberg

2, and on the lecture notes , Topics in Information Geometry” of our
colleague Ting-Kam Leonard Wong.

1.1 Definition and examples

Basic definition and univariate examples appeared in the first part of
the lecture. We focus on developing uniform notation in the multi-
variate case. Consider a random vector X = (X3, ..., X;;) with values
in the state space X C R™ equipped with a o-finite measure .3

Definition 1.1.1. A parametric statistical model for X is an exponential
family with canonical parameter vector @ = (61, ...,0;) and canonical
statistics t(x) = (t1(x), ..., t4(x)), if it admits a density f with respect to
uand f has the form

f(x;0) = h(x)exp {<B,t(x)> — A(G)}. (1.1)

Formally, we define X" as the smallest closed set satisfying Py(X €
X') = 1. This definition does not depend on the choice of 0 because
all Py have the same support.

Remark 1.1.2. For notational purposes it is often easier to subsume h(x)
into the underlying measure and use the formulation

f(x;0) = exp {<9,t(x)> - A(G)}. (1.2)

Another useful reformulation is when h(x) in (1.1) is itself a density. In this
case A(0) = 0.

* Lawrence D. Brown. Fundamentals
of statistical exponential families with
applications in statistical decision theory,
volume 9 of Institute of Mathematical
Statistics Lecture Notes—Monograph
Series. Institute of Mathematical
Statistics, Hayward, CA, 1986

> Rolf Sundberg. Statistical modelling
by exponential families, volume 12 of
Institute of Mathematical Statistics Text-
books. Cambridge University Press,
Cambridge, 2019

3 Typically the measure y is either the
counting measure or the Lebesgue
measure.
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Example 1.1.3 (Bernoulli variable and logistic regression). If X ~
Bern(p) with p € (0,1) we can write its distribution in the exponential
form. For x € {0,1} we have

Flaip) = (=)' = exp { g (2 ) +log(1 =)}

We have t(x) = x and the canonical parameter is the logit of p:

logit(p) = loglfp =0

We also have h(x) = 1 and A(8) = log(1 + €%). In logistic regression, we
model logit(p) as a linear function of regressors.

Example 1.1.4 (Univariate Gaussian). If X ~ N(u,0?) then

2 2 2
flx;u,0%) = ! ef(xzag) _ 1 _;7+%+%<10g(”17 _Lz),
V21o V21T

which can be written as a two dimensional exponential family with
2
x o1
t(x): <x,_2>, 6: <02,0—2>

2
hx) = ——,  A(8) = —% <log(92) - g;) .

Then

IfXq,...,Xn ~ N(u,0?) are iid. then the joint distribution of this sample
X1 = (X3,..., Xn) is also Gaussian with the same canonical parameters
and the density

X1:;0) = ——me
(2m)n/2

and so it forms an exponential family with the same canonical parameter

and with the sufficient statistics (E X;, —% Y xlz) We know, of course,

that this distribution is the n-variate Gaussian with parameters ul and
2

ol,.

Consider the function
Z(0) := /Xh(x) exp {<B,t(x)>}y(dx), (1.3)

where we put Z(0) = +oo if this integral is infinite. Because f is a
density function, it follows that

A(0) = logZ(6).
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The function A(0) plays a special role in this theory and it has many
names: the log-partition function, Laplace transform, or the cumulant
function. We define the space of canonical parameters as

O = {#eR?: Z(h) < oo} (1.4)

It is implicit in (1.1) that 8 € ©. An exponential family model is then
specified by possibly constraining to @y C ©. The dimension d of 0 is
called the order of this exponential family.

Example 1.1.5. Consider the univariate Gaussian case in Example 1.1.4.
Since u € R, 0> > 0, the space of canonical parameters is @ = {(01,6,) :
6 € R,0, > 0}. Taking p = 0 corresponds to fixing a linear subspace
@02{9€®191:0}.

In our basic set-up both the parameters and the sufficient statistics
lie in R? but exactly the same definition can be provided for a gen-
eral d-dimensional vector space with a given inner product. The most
relevant example is when the underlying vector space is the space 5™
of all symmetric m X m matrices. Here the standard inner product is
given by (A, B) = tr(AB). Denote by S’/ the set of positive definite Show that tr(AB) = Y;; A;;B;;
matrices in S.

Example 1.1.6 (Centered multivariate Gaussian distribution). Con-
sider the m-variate Gaussian distribution with the zero mean vector and
covariance matrix . € S". Let K = £~1. The density with respect to the
Lebesgue measure is

f(x;K) = (27_[1>m/2 det(K) exp{—1xTKx}.

This is an exponential family with h(x) = W, A(K) = —1logdet(K).

Denoting t(x) = —ixxT € S™ we get

—IxTKx = tr(Kt(x)) = (K, t(x)).
< Exercise 1.9.1
Given a sample x1., = (x1,...,%,) from a distribution with density + Exercise 1.9.2

f(x;0), the log-likelihood function is

1 n
£,(0) = - Y log f(xi; 0).
i=1
Note that we normalize the log-likelihood by 7 to get the interpreta-
tion as the expectation of log f(x; 8) under the sample distribution.

Proposition 1.1.7 (The log-likelihood function). If x1.,, = (x1,...,%n) + Exercise 1.9.3
is a sample from the exponential family (1.1) then, denoting

1=

t(xi)/

_ 1
”n:;'

I
—

1

13
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the log-likelihood takes the form
0,(0) = (0,71,) — A(8) + (constant). (1.5)

In the statistical /ML practice we typically go the other way around.
We first define a suitable sufficient statistics that should contain all
the relevant information of the data. This choice defines then an ex-
ponential family.

Example 1.1.8 (Exponential random graph model). Each graph can

be associated to its adjacency matrix A € {0,1}"*". This is a symmetric
matrix with zeros on the diagonal and so each graph is an element x € X =
{0,1}@) with entries xjjfor 1 < i < j < n. For the simplest example,
consider t(x) = ¥;;xij € R, which is simply the number of edges of the
underlying graph. The corresponding exponential family has one parameter
0 and is of the form

f(x;0) = exp {9 Y xij— A((—))} S Heexif.
i<j i<j
In other words, each edge x;; is an independent Bernoulli variable with
the success probability p = €%/ (1 + %) and computing the normalizing
constant is easy. This is the famous Erdds-Renyi model. Other statistics of
the graph will give different exponential models.

Another model for binary variables that uses the graph structure is
the Ising model.

Example 1.1.9 (The Ising model). Let G be a graph over m nodes repre-
senting m binary random variables X; € {—1,1} fori =1,..., m. Consider
the model4

f(X,' 6) ¢4 exp{ Z Gijxixj}.

ijeG

Here computing the normalizing constant is generally hard. This and sim-
ilar examples motivated developing methods that do not rely on computing
this normalizing constant (e.g. variational inference).

There are many models with a given sufficient statistics. What is
then special about the exponential families? To answer this question
we need to develop more theory and we will see that this is con-
nected to maximizing the entropy; c.f. Theorem 1.6.5.

1.2 Basic results

We assume throughout that there is no hyperplane H = {x :
(a,t(x)) = c} such that Py(H) = 1. In other words, no entry
of the vector ¢ can be written as an affine combination of the re-
maining entries. Similarly, we assume that there is no hyperplane

4 The statistical interpretation of this
modelling construction in terms of
conditional independence comes from
the Hammersley-Clifford theorem.

+ Exercise 1.9.4
< Exercise 1.9.5

For example ((1,2), (x1,x2)) = x1 +
2x; = 1is a simple hyperplane in R2.
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{6 : (6, B) = c} containing ©. An exponential family (1.1) with these
two properties is called minimal. A canonical example of a family
that is not minimal appears for discrete data.

Example 1.2.1 (Bernoulli variable). The Bernoulli distribution in Ex-
ample 1.1.3 could be alternatively written in form of a two-dimensional
exponential family

p(x) = expilog(l1—p)l(x = 0) +log(p)l(x =1)}  forx € {0,1}
with t(x) = (1(x = 0),1(x = 1)), 6 = (log(1 — p),log(p)), A(8) = 0.
Clearly, this representation is not minimal as 1(x = 0) + 1(x = 1) = 1.
An easy fix is to define the new (minimal) sufficient statistics x = 1(x = 1)
and rewrite the above using the fact that 1(x = 0) = 1 — x. This gives the
representation in Example 1.1.3.

A slightly more complicated version of this example appears in
the vector case. But the idea is similar and the difficulty is purely
notational.

Example 1.2.2 (Binary vectors). Consider a binary vector X = (Xy,..., Xm)
with the probability distribution p(x) for x € X = {0,1}". As in the
Bernoulli case, we can write

p(x) = exp{(6,t(x))}  forxe X,

where 0,t(x) € RY. By this, we mean that 0 and t(x) are themselves
functions on X: 0(y) and t(x,y) fory € X, such that 6(y) = log p(y),
and

1 ifx=y,
0 otherwise.

txy) = lx=y) = {

The inner product in RY simply means

(6,t(x)) =} 8(y)t(xy)

yeX

However Yye v t(x) = 1 € RY so this representation is not minimal.
We reduce the dimension by rewriting

tH0) =1— Y t(x).
xeX~{0}

Show that this defines a minimal exponential family with ® = R¥ >0} and
canonical parameters 0(y) = log p(y) — log p(0) and

A(0) = log <1 iy e<eff<x>>o> ,
X#£0

where the inner product (-,-)o is defined in the space RY >0}, that is,

(6,t(x))o = )_ 0(y)t(xy).

y#0

15
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Making sure that there is no hyperplane containing ¢(X') can be
easily done by changing the sufficient statistics as in the examples
above>. By redefining © if necessary, we can also always without loss
assume that the canonical parameters are not contained in an affine
subspace.

Example 1.2.3 (Gaussian graphical models). Consider the centered
m-variate Gaussian model in Example 1.1.6 with the canonical parameter
K =%"1€ ®=S". Fixagraph G over m nodes and the subset

Qg = {KE@KUZOZfZJQG}

This linear constrain defines an exponential family with sufficient statistic
(— %xixj)ije(;. The corresponding model, is typically called the Gaussian
graphical model, which forms a popular dimension reduction technique. Its
relevance in practice comes from the fact that in the Gaussian distribution
Kij = 0 if and only X; is independent of X; given all the remaining variables
in the system.®

Remark 1.2.4. The rest of this section is not esssential if you skip Sec-
tion 1.4 and Section 1.5.

Definition 1.2.5. A minimal exponential family is called full if its parame-
ter space is maximal, that is, ©y equals the canonical space ©.

Some relevant examples of a non-full exponential family are when
the parameter space @ is a convex subset of ® (convex exponential
families) or when it forms a lower dimensional manifold (curved
exponential families). Note however that if this manifold is a linear
subspace we again get a full exponential family after a reparametriza-
tion.

Recall from the first semester that a statistic t(x) is sufficient for
0 if the conditional distribution of x given t(x) does not depend
on 0. Sufficiency of t(x) in exponential families can by argued by
Proposition 1.2.7 below or directly by Fisher-Neyman Factoriza-
tion Theorem, which states that t(x) is sufficient for 6 if and only if
p(x;0) = h(x)ge(t(x)) for some h, gg. Typically the canonical statis-
tics is also minimal sufficient, that is, for any other sufficient statistic
t'(x),

tx) =ty = tx)=t(y).

Proposition 1.2.6 (Minimal sufficiency of t). In a full exponential family
the statistic t(x) is minimally sufficient for 6.

Proof. Consider any other sufficient statitsics t'. If t'(x) = t/(y) then
the factorization theorem shows that ;E; g;

the other hand

is independent of 6. On

;E;g; B ZE;;“P{W(X) —t(y)},

51If one coordinate of ¢(X') can be
written as an affine combination of

the others, we simply replace this
coordinate with this combination
obtaining a sufficient statistics with one
dimension lower. This process can be
repeated.

< Exercise 1.9.6

< Exercise 1.9.5

¢ Caroline Uhler. Gaussian graphical
models. In Handbook of Graphical Models,
pages 217-238. CRC Press, 2018

< Exercise 1.9.6
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which can be constant in 6 if and only if (6, t(x) — t(y)) is constant.
Because the family is full (in particular 6 is not contained in an affine
subspace), this happens if and only if t(x) = t(y). O

Note that in the proof we only used that 6 is not contained in an
affine space, so this result generalizes to curved exponential families.

Proposition 1.2.7 (Distribution of the sufficient statistic). Suppose
X has distribution in the exponential family (1.1). Then, under certain
regularity conditions, the distribution of t = t(X) is

f(£,0) = g(t) exp{(0, ) — A(6)},
where the structure function ¢(t) in the discrete case is

> h(x),

t(x)=t

(1.6)

g(t) =

and in the continuous case
2(t) = / h(x)dx.
t(x)=t

Example 1.2.8. Consider a centered Gaussian distribution with . € S"!.
Given a random sample X1, . .., Xy, from this distribution, the statistics
nj, := Y iy x;x] has the Wishart distribution.

1.3 Convexity and the MLE

Recall a basic version of the Holder’s inequality.

Proposition 1.3.1 (Holder’s inequality). If f, g are two functions on
a measurable space (X, ) then for every p,q € [1, 00| such that 1/p +
1/9 =1 we have

[ 15mseoian < ([ o) ([, st

Moreover, if p,q > 1 then (1.7) holds as equality if and only if | f|P and
|g|7 are linearly dependent in L' (X') meaning that there exist real numbers
a, B > 0 such that «|f|P = B|g|7 p-almost everywhere.

Here is an important fundamental fact about exponential families.

Theorem 1.3.2. For every exponential family (1.1) with ® defined in (1.4)
we have:

(i) © is a convex set and the function A(8) is convex on ©.
(i) Py, = Py, if and only if

A((1=21)01+A0,) = (1—A)A(6)) + AA(6y)  forall A € (0,1).

1/
rua)) "

In the discrete case the proof is elemen-
tary.

The last expression is written rather
informally. The integral is computed
with respect to the measure on the
set {x : t(x) = t} induced from the
Lebesgue measure. Here the proof is
non-trivial and we skip it.

(1.7)

L'(X) is the vector space of all func-
tions f on X’ with the property that
Iflli == [y |f(x)|p(dx) is finite. For-
mally, we identify two functions that
are equal almost surely.
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(iii) If the exponential family is minimal then A is strictly convex on © and
]Pgl #* ]sz lf@l # 6, € 0.

(iv) A is lower semi-continuous on R? and is continuous in the interior of
o.

Proof. (i) Let 61,0, € ©, A € (0,1) and denote 6, = (1 — A)601 + A65.
By the Holder’s inequality with p =1/(1 —A) and g = 1/A:

/ h(x ) u(dx)

_ /(h(x)e< 1,t(x)>) 1= (h(x)e<92,t(x)>)/\‘u(dx)

< ([ dx>)” (/ h<x>e<92f*<x>>u<dx>)A
VAQ)

) Z(62)7

Z(6,)

Taking the logs we get convexity of A. Now convexity of © follows
easily.
(ii) The Holder’s inequality above is strict unless

(6, — 03, t(x)) = const (nas.). (1.8)

This last assertion is equivalent to IPg, = PP, .

(iii) If (1.8) holds for some 61 # 6, then the exponential family is
not minimal.

(iv) By Fatou’s lemma Z(0) is lower semicontinuous and so A(0)
is lower semicontinuous. Any convex function defined and finite on a
convex set ® C R? must be continuous on the interior of ©. O

The following definition will be important in the rest of this chap-
ter.

Definition 1.3.3. A minimal exponential family is regular if its canonical
parameter space © is open.

In the finite discrete case we are always regular.

Most of the exponential families you will ever encounter are reg-
ular. But ©® does not need to be always open. An instance of a non-
regular exponential family is given by the inverse Gaussian”.

Proposition 1.3.4. In a regular exponential family, A(0) is smooth and

VA(0) = Eg(t(X)) =: u(0) (1.9)

V2A(0) = varg(t(X)) =: V(0). (1.10)

Taking higher derivatives, we obtain higher cumulants of t(X).

For the definitions and basic results see
Section A.2.2.

< Exercise B.2.10

< Exercise 1.9.7

7 See Section 3.2.1 in Rolf Sundberg’s
book



EXPONENTIAL FAMILIES (2 WEEKS) 19

Proof. Note that
K(s) := A(6g+s)— A(6y) = 10g1E906(s,t(x)),

which shows that K(s) is the cumulant generating function of t(X)
with respect to the distribution IPg,. Since 0y is an interior point of ©,
K(s) is well-defined in a neighbourhood of zero and so all cumulants

exist (see, for example, p. 267 in 8). Using the chain rule, we get 8 Patrick Billingsley. Convergence of
that, for any r > 1, the r-th order derivatives satisfy V/K(s) = probability measures. John Wiley & Sons,
2013

VgA(8p + s), where the notation V" is hopefully intuitive and it
denotes a d x - - - x d array with the (iy, ..., i,)-th entry:

J J
r . . = r . . =
(VeK(0))i,..i, dsi, -~ s, K(0), (VoA(00))i,.i, 36;, - - 00, A(69)
By taking s = 0, we obtain
ViK(0) = VpA(6y), (1.11)

The expression on the left in (1.11) gives precisely the r-th order
cumulants of t(X). If » = 1 this is Eg, (t(X)) and if r = 2 then this is
varg, (t(X)). O

If A(0) is smooth then log f(x;0) = (6, t(x)) — A(0) is smooth too.
In this case the Fisher information matrix satisfies

1(0) := —Eg(Vilog f(x;0)) = V3A(0).
Note that the observed information
J(6) :== —V5lu(6) = 1(6)

and so, in particular, it does not depend on the data. We obtain the
following result.

Proposition 1.3.5. In a reqular exponential family, the log-likelihood
function, given in (1.5), is a smooth and strictly concave function of the
canonical parameter 6. The score function U (0) = V{,(0) satisfies

uee) = p, —u(6)

and the observed information J(0) equals the expected (Fisher) information
1(0), and they are both given by the variance of t,

Recall that X is formally defined as the support of Py. Define K to
be the convex hull of the image t(X'):

K := conv(t(&X)). (1.12)
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For example, for the multivariate Gaussian distribution in Exam-
ple 1.1.6, x € R" and so t(x) = —3xx' is a rank-one negative
semi-definite matrix. In this case, the convex hull of all such matrices,
namely K, is the cone of all negative semidefinite matrices.

The next results offers an alternative parametrization for the expo-

nential model.
Proposition 1.3.6. In a minimal reqular exponential family:
(i) The mapping u : R? — R? given by 0 — V A(8) is one-to-one on ©.

(i) The log-likelihood function with data g € K has a maximum in © if
and only if i € u(®) and then the maximum 6 is given uniquely as

0= (n)
(iii) u(®) = int(KC) and so in particular 1u(©) is open.

Proof. (i) By Theorem 1.3.2, minimality implies that A is strictly con-
vex. Thus, for every m € RY, the function (8, m) — A() is strictly
concave. In particular, it has at most one stationary point in ©, that
is, at most one 8 € © such m = VA(0).

(ii) This is just (i) rephrased.

(iii) To get the first inclusion u(©) C int(K), we first show that
#(®) C K, where the latter denotes the closure of K. For every
0 € Oand foreveryc € R, if thereexistsu € R? such that
(u,t(X)) < c almost surely (t(X') is contained in the given half-space)
then (u,[Eg(t(X))) < c for every 8 € ©. This implies that if a half-
space H contains K then it also contains y(®). The intersection of
all such halfplanes is equal to K; this is a standard application of the
Hyperplane Separation Theorem B.1.3. This shows that (@) C K. To
prove that 4(®) C int(K), we argue by contradiction. Suppose that
#(6p) for some 6y € O lies in the boundary of K, 9K = K \ int(K).
Then, again by the Hyperplane Separation Theorem, there exists a
closed halfplane H = {u : (u,u) < c} such that int() C H but
#(6p) € 0H. In particular,

Z = <u,t(X)—y(60)> < 0 almost surely.

Note however that, since Egt(X) = 1(0), Eg,Z = 0, which implies
that Z = 0 IPg,-almost surely. This however contradicts minimality of
the exponential family. We conclude that #(®) C int(K).

It remains to show that the opposite inclusion int(K) C u(©) also
holds. We again argue by contradiction. Let ty € int(K) \ y(©) then
the equation ty = VA(60) has no solution, or equivalently, the log-
likelihood function £(8) = (6,ty) — A(0) is not bounded above on ©.
To get a contradiction, fix any 6y € ©® and consider half-lines

L, := {6) =069+ Au:A >0}

< Exercise B.1.4
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Now L, can be either not entirely contained in ® (case 1) or it can
be contained in ® (case 2). We will show that over each L, the value
of —¢(8,) goes to infinity as A — oo (in case 1) or as we approach
the boundary of ® (in case 2). In consequence, maximizing ¢ over ©
can be reduced to a compact subset {6 : £(6) > £(6))} and thus the
optimum must exist. But then it must be of the form ty = VA(8)
leading to a contradiction.

Case 1: Since the half-line L, is not contained in ©, for some A
the point 8, lies on the boundary of @. Since ® is open, A(6,,) = c©
and hence £(0,,) = —oo. Thus —£(6,) — co as A — A,.

Case 2: In this case we can take A — co without leaving ®. We will
still show that —¢(6,) — oo. Note that

o6 _ Z(B/\)ef(efl,t[)) _ /Xh(x)e/wu,t(x)fto)e(ﬂg,t(x)ftom(dx).

Denote the integrand by I(A). Define

Ay = {xeX: (ut(x)—ty) >0},
Ay = {xeX: (ut(x)—ty) =0},
A = {xeX: (ut(x)—ty) <0},

and note that A, Ay, A_ form a partition of X. The integrand I(A) is
always non-negative and it is increasing in A on A, constant on Ay,
and decreasing on A_. The monotone convergence theorem assures that
we can pass with the limit of A inside the integral, namely

li I(A —
Jim f (M)pu(dx) =0,

: _ 0y,t(x)—ty
/\15130 " I(A)pu(dx) = /Ao e{P0tx)—t) 4 (dx) < oo,
and

)}grolo . I(A)p(dx) = oo.
Unless A has measure zero, we conclude that lim) 4, et = o
or equivalently lim) _,,, —£(6,) = .

To conclude the proof, it remains to show that A has positive
measure. If the measure is zero, (u,t(x)) < (u,tg) forallx € X.
We will again show that there must be equality, which contradicts
minimality. This is where we use the fact that tg is an interior point
of K. Let x; € X and consider the half-line from t(x;) through to.

If this half-line crosses t(X') at some other point t(x;) after crossing
tp, we can write ty as a convex combination of t(x;) and t(x;), which
implies that (u,t(x1)) = (u,t(xz2)) = (u,ty). If this half-line does
not contain any other point in t(X’), this whole half-line must be
contained in int(KC). Take any other point t(x;) € int(K) on the half-
line after crossing to. By definition t(x,) is a convex combination of
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some finitely many points in t(X'), which allows as to write t as a
convex combination of t(x1) and some other points in t(X). We again
conclude that (u,t(x1)) = (u,to). In this way we showed that for an
arbitrary x € X, (u,t(x)) = (u, to), which contradicts the minimality
of our exponential family. O

Proposition 1.3.6 shows that u can be used as an alternative
parametrization of the exponential family. For example, in the mean
zero Gaussian distribution the mean parametrization is given by the
covariance matrix & (or more precisely by —1). In the next section,
we discuss a whole range of suitable parametrizations.

1.4 Marginal and conditional distributions™

We will consider partitioning of the sufficient statistics t into # and
v, t = (u,v) with the corresponding partition of 8 = (6,,6,) and
u = (p,, m,). We consider two basic examples.

Example 1.4.1. We have shown that X ~ N(u,0) forms an exponential
family with t(x) = (x,=x*/2), 0 = (&, L) and p = (u,—5(p* +
0?)). Given a sample x; for i — 1,...,n, we get an exponential family
with the same canonical parameter and the sufficient statistics t(xq.,) =
(X xi, — % ¥ x2) and the mean parameter (ny, — % (u? + )). Here we

could take u(x) = ¥; x; and v(x) = —3 ¥; x? or the other way around.

Example 1.4.2. In the multivariate Gaussian case we have shown that
t(x) = —4xx',0 = K, p = —1%. Fixany subset E C {(i,i) : i =
1,....m}U{(i,j) : 1 < i < j < m}. This corresponds to fixing
some entries of a symmetric matrix. We could take u = —%(xix]-)ije £ and
v = — 3 (%;X))ijgE-

Recall the formula for the distribution of t(X) as given in Proposi-
tion 1.2.7.

Proposition 1.4.3 (Marginal distribution). In a reqular exponential
family with t = (u,v) and 0 = (0, 0,) the marginal model for u is a
reqular exponential family for each given 6, depending on 6, but with the
same parameter space for its mean value parameter p,,.

Proof. The marginal distribution for u is obtained by integrating v
out:

fw;0) = /g(u,v) exp {<6u,u> + (0y,0) — A(Bu,ﬂv)}dv

exp {(Bu,u> — A(Bu,ﬂv)} (/ <(u, ) exp{(ﬂv,w}dv) .

For any fixed 0, this has the form of a regular exponential family.
This exponential family has canonical parameter 6, but the space of
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canonical parameters will typically depend on 6, (it is an intersection
of ® with 8, = fixed). However, by Proposition 1.3.6, the mean
parameter space is always the same and equal to the interior of the
convex hull of u(X"), which is equal to the projection of 1(©®) on the
u coordinates (i.e. y,,). O

Proposition 1.4.4 (Conditional distribution). With the same setting
as in Proposition 1.4.3, the conditional model for x given u (and thus also
for v given u) is a reqular exponential family with canonical statistics v.
The conditional model depends on u but with one and the same canonical
parameter 0, as in the joint model.

Proof. We have

flu,x0) _ h(x)exp{(6y,0(x)}
fw;0) [ g(u,0)exp{(6y,v(x)}dv

For the fixed value of u, the expression in the denominator does not

f(x|u;0) =

depend on x but only on 6, and so it represents the normalizing con-
stant of this distribution. Note f(x|u; 0) is defined only for those x
for which t(x) = (u(x),v(x)) € t(&X'), and thus the space of suffi-
cient statistics depends on u. However, the canonical parameter is

the same, 0, in the projection ®, of ® on the coordinates 6,. To get
f(v|u; 6) we only substitute /(x) for g(u, v) above but otherwise the
argument is the same. O

Explicit calculations with these marginal and conditional distri-
butions are typically hard but the two results above are important in
guiding our analysis.

Example 1.4.5. Consider the univariate Gaussian example discussed in
Example 1.4.1 and the induced distribution of the sample x1.,. Let u =

Yixjandv = —1% Y x% and recall that the distribution has canonical
1

7

a noncentral x? and does not in general form an exponential family unless

parameters ( ). The marginal distribution of ¥_; x? is proportional to
we fix the value of % Next, consider instead its conditional distribution
given Y ; x; = nx. This may appear quite complicated but Proposition 1.4.4
suggests that it may be still tractable. Given X, Y_; x? differs only by an
additive constant from Zx? —nx? = (n —1)s?, where we used the standard
notation

L S22 (1.13)

n-13

$? =

Thus, it is enough to characterize the distribution of (n — 1)s* given %. It
is well-known that s? is independent of %, and that the distribution of (n — + Exercise 1.9.8
1)s? is proportional (by 02) to a (central) x> . From the explicit form of
a x? it is easily seen that the conditional distribution forms an exponential

family.

23
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As a corollary of the above two results we obtain a useful result
on a range of possible alternative parametrizations. For a given split
t = (u,v) consider the vector (p,,, 0,) with u, € 11,(©) and 6, € O,.
Here by ©, we denote the projection of ® on the coordinates 0, and
by 11, (®) we mean the projection of (@) on the coordinates p,,.

Proposition 1.4.6. The mixed parametrization (pu,,, 0,) is a valid parametriza-

tion with the parameter space y, (©) x @, (variational independence!). The
Fisher information for (u,,, 0) is

(Zu) ! 0

00 = |00 ()

where ¥ = var(t) and ¥, = var(u). The same formula holds for the
observed information in the MLE, ] (ji,,, 05).

Proof. Fix an exponential family with canonical statistics t(x) and
canonical parameter 8 € ©®. By Proposition 1.2.7, the distribution

of t(X) is an exponential family with the same canonical parameter.
This distribution is uniquely defined by the marginal distribution of
u and the conditional distribution of v given u. The latter forms an
exponential family with canonical parameter 8, € ©, by Proposi-
tion 1.4.4. Now fix 6,, which corresponds to fixing the conditional
distribution of v given u. By Proposition 1.4.3, the marginal distri-
bution of u is an exponential family with the mean parameter p,. By
Proposition 1.3.6 the range of this mean parameter is the interior of
the convex hull of #(X) (independent on 6,). This is precisely the
projection of #(®) on p,, and this shows that the map 6 — (u,, 6,)
is one-to-one with range y, (©) x ©,. For the proof of the second
statement see 9. O

Example 1.4.7. Consider the multivariate Gaussian distribution in Exam-
ple 1.1.6 with m = 2. We have K = >~ 1 that is,

K1 Ko
Ko K

1
C InZo — ¥,

Y X2
X1 Xn

K =

The canonical parameters are (Ky1, Kop, K1p) and the mean parameters

are — % (211, X0, X12). The constraints on the canonical parameters are
Ki1 > 0, Ky»p > 0, K11Kp > K%z (namely, K is positive definite). The
constraints on the mean parameter follow from the constraints on L: X1 >
0,Zyp > 0, 211X > 2%2 (X is positive definite). Consider a mixed
parametrization (—%%11, — %02, K12). The projection p, (@) is simply
(—00,0)2. The projection, @, is the whole real line R (irrespective of the
value of Ky we can set Kq1, Koo big enough for K to be positive definite).

< Exercise 1.9.8

9 Rolf Sundberg. Statistical modelling
by exponential families, volume 12 of
Institute of Mathematical Statistics Text-
books. Cambridge University Press,
Cambridge, 2019

< Exercise 1.9.9

< Exercise 1.9.10
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By Proposition 1.4.6, for every choice of 17 > 0,Xp > 0and Kip € R,

there will be a unique positive definite matrix ¥ with the prescribed diagonal
_ 1
L1105,
be checked directly. To compute the corresponding X1, we need to solve the

entries Xq1, X and such that — 212 = Kqo. In this case, this can

quadratic equation
K1223 — 12 — KpZnZy = 0.

There are two real solutions but only one of them, namely,

1—4/1+ 2K%2211222
Y =

2K1p

results in a positive definite X.

1.5 Conditional inference for canonical parameter*

Suppose ¥ is the parameter of interest, where (A, 3) is a transfor-
mation of 0. For simplicity we focus on the case when ¢ = 0, and

A = p, is regarded as nuisance parameter. As shown in Proposi-
tion 1.4.6, A = pu, = Eg(u) is the preferable nuisance parameter
(rather than 6,), since 8, and u,, are variation independent and infor-
mation orthogonal.

Proposition 1.5.1 (Conditionality principle for full families). Statistical
inference about the canonical parameter component 6, in presence of the
nuisance parameter A = p,, = Eg(u) should be made conditional on u, that
is, the conditional model for x or v given u.

This is only a recommendation so rather than providing a formal
proof we motivate this statement informally.

Motivation. The likelihood for (p,,, 8,) factorizes as

L(p,, 00;t) = Li(p,, 00;u)Lr(0y;0|u) (1.14)

where the two parameters are variation independent. In some cases
L; depends only on g, in which case

L(p,, 00;t) = L1(p,;u)L2(0y;0|u).

Then it is clear that there is no information about 0, in the first factor
L; and the argument for the principle is compelling.

However, even when L; depends on 6y, there is really no informa-
tion about 8, in u. Indeed, note first that u and p,, have the same di-
mension, and that u serves as an estimator (the MLE) of u,, whatever
is the value of 6,. This means that the information in u about(p,,, 6,)
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is totally consumed in the estimation of p,,. Furthermore, the esti-
mated value of y,, does not provide any information about 8,, and p,,
would not do so even if it were known, due to the variation indepen-
dence between p,, and 0,. Thus, the first factor L contributes only
information about p,,. O

Example 1.5.2 (Conditional independence for a Gaussian sample).
Suppose we want to make inference about o2, or o. Then we are led to con-
sider the conditional distribution of Y_; x2, given X, that depends on o alone
(c.f. Example 1.4.5 and Proposition 1.4.4 ). The marginal distribution of

X depends on both y and o2, so the joint and conditional likelihoods are
different functions of o>.

As we have seen in Example 1.4.5, in the conditional approach n%? is a
constant, and after subtraction of this empirical constant from ) ; xl.2 we are
led to the use of the statistic s*>. Now, we already know that % and s? are
independent, so the even simpler result is that the inference should be based
on the marginal model for (n — 1)s?/0?, with its x2_,-distribution. In
particular this leads to the conditional and marginal ML estimator 6> = s,
which differs by the factor n/(n — 1) from the MLE in the joint model (with
denominator n).

1.6  Kullback-Leibler divergence
The Fenchel conjugate of the cumulant function A is the function
A*(t) = sup{(6,t) — A(0) : 8 € R}.

For regular exponential families A*(t) < oo if and only if t € u(©).
The function A* is convex as a supremum of linear functions’® and,
in fact, strictly convex. If t € (@), the unique optimizer of the
log-likelihood is 8(t), where 6 : M — @ is the inverse of the map
i : @ — M; see Proposition 1.3.6. It follows that, for t € (@),

AT(t) = (0(t),t) — A(6(t)) (1.15)
or alternatively, for 0 € ©,
A*(u(0)) = (6,u(6)) — A(6) (1.16)

implying in particular that A* is smooth, since u and A are both
smooth. By composite differentiation in (1.15), since p(0(t)) = t, we
obtain

VA (1) =0(t) + VO(t) - t — VO(t) - u(6(t)) = 6(t),

where the gradient is taken with respect to t.

' see Proposition B.2.5.
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For two distributions over some state-space X with densities p, g
with respect to some measure y, the Kullback-Leibler divergence
K(p,q) is defined as

K(pa) = [ p(x)10g ZX (e,

X

The following result is well-known and it is a direct application of
the Jensen’s inequality stated formally in Theorem B.2.3.

Proposition 1.6.1. We have K(p,q) > 0 with equality if and only if p = q
almost surely.

Proof. We use the fact that —logy is a strictly convex function. By
Theorem B.2.3,

0= —loglEpM < —Eplog Zg; = Eylog” X) _ K(p,q)

with equality if and only if 4(X)/p(X) is constant almost surely.
Since p, q are both densities, this is possible if and only if they are
equal almost surely. O

Given two distributions P, , Py, in the given exponential family
we write the corresponding Kullback-Leibled divergence as K(6;, 61).

We easily check that Since p; = VA(6), (1.17) has an-
other interpretation as the Bregman
K(Bl, 62) _ A(ez) . A((—)l) o <92 _ 61,”1>. (1.17) divergence (defined by the function A

between 6, and 6. Look this up!

Proposition 1.6.2. Consider two distributions in the exponential family
(1.1), one with the mean parameter u; € u(®) and the other with canonical
parameter 0y € @. If this exponential family is regular, the Kullback—
Leibler divergence between these two distributions is

Ky, 02) = (. 62) + A% (py) + A(62). (1.18)

The Kullback—Leibler divergence is well defined and nonnegative over
1(®) x ©. Moreover, K(py,02) = 0 if and only if p; = pu(63).

Proof. We leave it as an exercise. O + Exercise 1.9.11

The reason to express the Kullback-Leibler distance in terms of p,
and 0; rather than 01, 6, (as usually done in the literature) is that we
wish to exploit the following basic result.

Proposition 1.6.3. The Kullback—Leibler divergence K(p,, 02) is strictly
convex both in pq and in 6.

Proof. This follows directly from (1.18) and the fact that both A(0)
and A*(p) are strictly convex functions O
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This set-up has been exploited in various places. See, for example,

Section 5 in '*. Another important application is in situations when  Martin ] Wainwright and Michael L.
Jordan. Graphical models, exponential

. . families, and variational inference. Now
parameter. Note that the MLE can be equivalently defined as the Publishers Inc, 2008

a statistical submodel is given by affine restrictions on the mean

minimizer of K(f,, 0). We have a parallel definition, when the dual
MLE is given as the minimizer of K(u,0(1,,)).

Example 1.6.4 (Behrens-Fisher problem). The Behrens-Fisher problem
is concerned with testing the difference between the means of two normally
distributed populations when the variances of the two populations are not
assumed to be equal, based on two independent samples. Since the hypoth-
esis is linear in the mean parameter, this problem can be addressed with the

dual MLLE; see ' for details. 2 E Susanne Christensen. Statistical
properties of I-projections within
We finish this chapter with one of the most fundamental results exponential families. Scandinavian
motivating exponential families. The maximum entropy principle Journal of Statistics, pages 307-318, 1989

states that under uncertainty, one should take a model which maxi-
mizes the entropy subject to constraints on the known features about
the system. We show that the exponential family arises naturally if
the constraint is given by the expected value of some statistics.

Recall that for a distribution P that admits a density function p(x)
with respect to the base measure y, the entropy Hp of IP is

Hp = —Eplogp(X) = — [logp(x)p(x)u(dx).

For notational simplicity, in what follows consider the exponential
family (1.2), where the function k(x) has been incorporated into
the base measure . In this case each distribution in this family has
the same support, which is equal to the support of y. For such an
exponential family Py we have

Hp, = —(6,1(0)) + A(60) = —A"((6)), (1.19)

where the second equality follows from (1.16).

Consider the problem of maximizing the entropy for all distri-
butions IP that admit a density function absolutely continuous with
respect to u and Ep(#(X)) =t

maximize Hp s.t. P ~pu, Ept(X) = t. (1.20)

The following result provides an important characterization of expo-
nential families.

Theorem 1.6.5. Consider the exponential family (1.2). Suppose there exists
00 € O such that VA(6y) = to. Then for any distribution P, which
satisfies condition of (1.20), we have

Hp

0,

,— Hp = K(P,Py,).

Thus, Py, is the unique solution to (1.20).
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Proof. Note that VA(68) = to is equivalent to 1(6y) = Eg,t(X) = to.
Let p(x) be the density of IP with respect to . Consider

K(PPo) = [ px)log 7 gesm(do)
= —Hp— [ ({60,(x)) = A(80) ) p(x)n(c)
= —Hp — (60, t) + A(6o)

=" Hp, — Hp.

]

By Proposition 1.6.1, this shows that Hp < H]peo with equality if and
only if P = IPg,. This concludes the proof. O

Example 1.6.6. Consider all distributions with the support R™ and with
the property that EX = u, E(XX ") = X + upu'. Among all such
distributions, the multivariate normal N(p,X) is the one that maximizes the
entropy.

1.7 Generalized Linear Models

The generalized linear models are formulated based on the construc-
tion of exponential families. Here we provide only a basic treatment
that explains the origin of the construction and the most important
examples.

Consider the pairs (y1,X1), ..., (Yn, Xn), where the input xq,...,x, €
R are considered fixed and the outputs y, ...,y are independent
observations each from density

flyixi,w,0?) = hlyi,0) exp { & (v:6i(w) — AB(w)) } .

T
i

standard theory, we get immediately that

where 0;(w) = x;'w and ¢ is called the dispersion term. From the

u(8;) == E[Yi|x;, w,0?] = A'(6;).

Indeed, the standard result show that for a fixed ¢?, ]E(%Y) =
%A’ (0). In the same way, we argue that

V(0,0%) = varg(Yi|x;, w,c?) = o>A"(6;).

From now on we fix ¢ and with no loss of generality we take
02 = 1. The log-likelihood function is

=

A(x; w) + const.

-

1 n
la(w) = — ) log flyixi,w) = (5 L yix) w—1
i=1 1

1

1

Since a composition of a convex and a linear function is convex, we
conclude that ¢, (w) is a concave function.

29
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Let X € R"*? be the data matrix with rows x; and let y be the
vectors with entries y;. It can be shown that the unique optimizer of + Exercise 1.9.13
£, (w) (if it exists), must satisfy the likelihood equations

X'y = XTA'(Xw), (1.21)

where the function A’ is applied elementwise to the vector X@. In
machine learning it is customary to call A" in this context an activa-
tion function.

We now discuss a bunch of basic examples.

Example 1.7.1 (Linear regression). Consider the univariate Gaussian
distribution in Example 1.1.4. Suppose now that o2 is fixed and the model is
parametrized only by the mean yu. We can rewrite the density as

2

flyma?) = ﬁf;?ew{%(w—%z)} = h(y,0®) exp{ s (yu — A(1))},

2mo?

1
V2mo?

as a linear function of a vector X, 4 = w

¥
e 202 and A(p) = u?/2. If we model the mean p
T

where h(y,o?) =

x we get the standard Gaussian
linear regression

1
flubow o) = ———ep {3y —w P’}

We easily see that this is a generalized linear model as defined above. As
A(p) = pand A"(p) = Lweget B(Y|x,w,0?) = u = w'x
var(Y|x,w,0?) = o?and, by (1.21), the MLE equations are X'y =
X" Xw, which are identical to the OLS estimating equations.

Example 1.7.2 (Binomial regression). The binomial distribution for the
number of successes in n trials, y € {0,...,n} has the probability mass
function

n
Yy

If 0 = log % then p = %, which is typically called a sigmoid function

and denoted by o(6). Moreover, A(8) = nlog(1 + e?) and so A’(8) =

no(0). Now we use this distribution for the GLM setup. If the response
variable is the number of successes in n trials, y € {0,...,n}, we can use

bin(inp) = () )p =" = () explytog i+ nlog(1 = ).

binomial regression, which is defined by
f(y;x,N,w) = Bin(y;n,o(w'x)),

where the logistic regression becomes a special case with n = 1. This clearly
has the right form and E(Y) = n6, var(Y) = np(1 — p). By Exer-
cise 1.9.13 the likelihood equations are

X'y = XTo(Xw).
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Example 1.7.3 (Poisson regression). The Poisson distribution is a distri-
bution over X = {0,1,2,...} with the probability mass function

flyn) = o

" yedi.

This is an exponential family with mean parameter u (EY = u) and canoni-

T

cal parameter 6 = log (). In Poisson regression we take 6 = w ' x.

Modelling the canonical parameters as a linear function of external
variables is not the only choice. For example, for the Bernoulli distri-
bution in Example 1.7.2 gives the logistic regression. An alternative
approach is to model p = ®(w " x), which gives the probit regres-
sion. Generalized linear models with non-canonical link functions
correspond to curved exponential families.

1.8 Diaconis-Ylvisaker conjugate priors

An important advantage of exponential families over more general
classes of distributions is that they admit explicit conjugate prior
for Bayesian computations. The conjugate prior measure for the
exponential family (1.1) is given by the density (w.r.t. the Lebesgue
measure) of the form

m(0) = Cexp{(0,7) —noA(0)}, TeRY, ny > 0. (1.22)

Note that 77(8) = 0 outside of ® because there A(6) = +o0. It can
be also shown that the distribution is normalizable if ny; > 0 and
T/ng € K = conv(T(X))*3.

Proposition 1.8.1. For a reqular exponential family, consider the conjugate

prior in (1.22). If p is the mean parameter then we have Eq[u] = n—TO

Proof sketch. We use the fact that uy = VA(6). We have
Eo[t — noVA(8)] = /@(T — gV A(8))Cexp{ (8, T) — ngA(8)}d8
- /@ V(Cexp{(6,7) — noA(6)})d6

/@ V72(6)d6

It can be shown that the latter integral is equal to zero. This result

is a consequence of Green’s theorem (a general form of the funda-
mental theorem of calculus). A rigorous proof of this result was first
presented in Diaconis and Ylvisaker (1979); for a simplified proof see
4, O

3 Persi Diaconis and Donald Ylvisaker.
Conjugate priors for exponential fam-
ilies. The Annals of statistics, pages
269-281, 1979

4 Lawrence D. Brown. Fundamentals
of statistical exponential families with
applications in statistical decision theory,
volume 9 of Institute of Mathematical
Statistics Lecture Notes—Monograph
Series. Institute of Mathematical
Statistics, Hayward, CA, 1986
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If the prior is of the form (1.22) then the posterior 77(60|x1.,) satis-
fies

n

m(B|x1.) o< 7(0) [ f(xi;0)
i=1
n n
= CJh(x)exp{(6,T+) t(x;)) — (n+mo)A(6)}.
i=1 i=1

And so it has the same general form as the prior, where (T,np) is
replaced with (7 + nji,, ng + n). By Proposition 1.8.1, the Bayes esti-
mator of the mean parameter is

T+nu T —
Elplxi:n] = T—l—nﬂ = /\VT() + (=M,
where A = no"i — and so the Bayes estimator is a convex combination

of the MLE 7, and the prior mean 7/ny.

We can easily define conjugate priors over non-canonical param-
eter. For example, to get a conjugate prior over the mean parameter
we simply change 6 with 6(p) in (1.22) and change the definition of C
so that the corresponding expression integrates to 1. Note that this is
not the same as the density obtained through the change of variable
formula.

Example 1.8.2. If we do it for the Bernoulli distribution, the conjugate
prior for the mean parameter is the Beta distribution.

1.9 Exercises

Exercise 1.9.1. Prove formally, using (1.4), that the space of canonical
parameters in the centered multivariate Gaussian distribution is S}

Exercise 1.9.2. Consider a multivariate Gaussian distribution with general
mean vector p € R™. Show that the canonical parameter space is R™ x
8" with canonical parameters (Ku, K) and that the sufficient statistics is
(x, —2axT).

Exercise 1.9.3. Show that the distribution of x1.,, in Proposition 1.1.7 is
of exponential type with the same canonical space ©. What is the sufficient
statistics? (c.f. Example 1.1.4)

Exercise 1.9.4 (Ising model on a bipartite graph). Consider the Ising
model on the bipartite graph G with m nodes Xy, ..., Xy and n nodes

Y1, ..., Yy such that G has mn edges connecting each X; with each Y] Show
that to compute the conditional distribution of Y = (Y1,...,Yy) given

X = (Xq,..., Xm) we essentially need to: (i) apply a linear function to

X, (ii) apply an activation function to each element of the resulting vector.
(Does it ring a bell?)
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Exercise 1.9.5 (Gaussian graphical models). Let G be a graph over m
nodes representing m random variables X; € R fori = 1,...,m with mean
zero. Describe the distribution satisfying

m
f(x;0) o< exp{}_0;ix7 + Y 0;xix;}.

i=1 ijeG
Exercise 1.9.6. Consider an exponential family with sufficient statistics
t(x) and canonical parameter 0 € ©. Consider now a model whose parame-
ter space is L N © for some affine subspace £L C R?, such that LN O # @.
Show that it forms an exponential family with @' = © N L and sufficient
statistics which is a linear transformation of t(x).

Exercise 1.9.7. Suppose the state-space X is finite. Show that every expo-
nential family over X is regular.

Exercise 1.9.8. Suppose that X = (X, ..., Xy) has i.i.d. components that
are N(p,0%). Show that the vector X — X1 is independent of X = 117X,
Use this fact to conclude that s> defined in (1.13) is independent of *. Hint:
This result follows from basic matrix algebra. Let A = I, — %11T. Note
that AX = X — X1 and that cov(X) = ¢?1,,. Finally, note that (n —1)s* =
tr(AxxTAT).

Exercise 1.9.9. Let E be any set of pairs of elements of {1,...,m}. Use
Proposition 1.4.6 to show that for any two A, B € S there exists a unique
X € S such that X;; = Aj; for ij € E and (X~ ');; = Bj; for ij ¢ E.

Exercise 1.9.10. Consider the Gaussian distribution N(u,c?). From the
first principles, provide the two mixed parametrizations. Discuss their set of
parameters and the corresponding Fisher information matrices.

Exercise 1.9.11. Prove Proposition 1.6.2.

Exercise 1.9.12. In the zero-mean Gaussian distribution N (0, %) with
K = X7, the log-likelihood function is

((K;S,) = logdetK — (K, Sy),

where S, = % Y. x;x, is the sample covariance matrix. Following Sec-
tion 1.6 of the notes show that the dual log-likelihood, up to some additive
constants, is

[(Z;S,) = logdetx — (%,5,1).

Consider the bivariate Gaussian distribution with mean zero and covariance
a b
b al’

Compare in simulations the maximum likelihood estimator (4,b) of (a,b)

> =

with the dual maximum likelihood estimator (i, b). Based on your simula-
tions, what is the asymptotic behaviour of \/n(4 — i)?

33
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Exercise 1.9.13. Consider a generalized linear model with canonical link
function. Arque that the maximum likelihood estimator of the parameter w,
for data (y;,x;) fori = 1,...,n, leads to a convex optimization problem.

Show that the MLLE satisfies
X'y = XTA'(Xw),

where X € R4 is the data matrix, y = (y1,...,yn), and in A'(Xw) the
function A’ is applied elementwise to the vector Xw.



2
Statistical Decision Theory (1 week)

Statistical decision theory was covered in the first semester. Here I
recall some of this material but in class we focus entirely on admissi-
bility.

2.1 Decision theoretic framework*

Statistical decision theory, developed by Abraham Wald, Jerzy Ney-
man and others during the mid-2oth century, provides an abstraction
that allows for comparison of statistical procedures. Our decision
theoretic framework is made up from the following ingredients:

o A family of probabilistic models with parameterization 0 € ©.
We can think of this as a mapping from the parameter space © to a
family of probability distributions P = {IPy : 6 € ©}. We assume that
all distributions in P are absolutely continuous with respect to some
underlying measure y. Examples of parameter spaces and models
include the following:

- O CR%: exponential, Gaussian, other parametric models.

- © C (a function space): in nonparametric settings, e.g. the set of
all twice-differentiable functions.

o A decision procedure In general this is a recipe that defines what
action to take, given a set of observations (X, jt). The set of possible
actions is denoted .A. Examples of possible actions might include:

- Accepting or rejecting a null hypothesis, A = {0,1}.
- Estimating a value for some model parameter 6, A = ©.

- Selecting one family of models as “superior” to other models
(model selection).

Formally, a (non-randomized) decision rule is a measurable function
0: X = Aoré : X" — A. An estimator ¢ is a particular kind
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of decision procedure by which we estimate the value of § from the

observations. In this case A = ©. Denote by Dy the set of all (non-

randomized) decision rules.

e A loss function, which tells us how to evaluate different decision

procedures. This is an extended mapping L : © x A — [0,00],

in which L(0, a) represents the loss incurred by deciding a when 6

is “true”. In many applications L(6,a) is convex both in 6 and in

a (or jointly) but there are important examples where there is no

convexity. Canonical examples of the loss functions are the convex

loss functions L(#,a) = ||0 —a||?, L(6,a) = ||6 — a||, and the 0/1-loss

L(6,a) = 1(6 # a). Depending on the particular application we also

consider hinge loss, Kullback-Leibler divergence, and many others.
We assume that L(6,a) lower semicontinuous in a. This means that

forevery § € ® and every t € Rtheset {a € A : L(0,a) < t}is

closed. By Exercise 2.7.1, such L(6, a) is then also measurable in a*. In

particular, if X has distribution Py then L(6,5(X)) is Py measurable.
We define the risk function as:

R(6,6) = E4L(8,5(X)).

When the sample space is continuous, a quadratic loss function is
frequently used. In this case, the risk is simply the mean squared
error.

Example 2.1.1. Suppose a coin is being tossed and you are interested

in the probability of getting heads. We can model this using a family of
Bernoulli distributions on the binary outcome space: X; ~ Ber(0) with
6 € ® = (0,1). Suppose we observe n replications with i.i.d results

X = (X1,...,Xn) € {0,1}" from IPy. We consider various rules 6;(X)
for estimating 0. In this case A = [0,1]. We use the quadratic loss
L(6,5(X)) = (0 — 6(X))?. and evaluate the associated risk function for
each estimator:

o The first estimator is the sample mean 61(X) = 1 Y| X; with risk

—n

R(0,6,) — %9(1 —0).

e The second estimator is given by the constant value 5,(X) = % with risk
R(0,6,) = (6 — 3)*

o The third estimator S X4
T X+
53(X) = ===

3(X) n+6

with risk

9+ (n—36)8 — (n—36)62

R(6,63) = e

< Exercise 2.7.1

* We think about A C R? as a measur-
able space with the underlying o-field
of Borel sets (generated by the open
subsets). A function f : A — R is then
measurable if the sets {a : f(a) < t} are
measurable.
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nnnnn

The risks functions for the first and the last estimator are plotted in Fig-
ure 2.1. Intuitively, it seems clear that if we strongly believe that 6 is close
to 0.5, &3 outperforms &1. Later we learn how to formalize that. .,

Example 2.1.2 (Benefits of bias). Suppose X; ~ U(0,0) are drawn i.i.d.
i=1,...,n. Consider the statistic

02 02 04 06 08 \
5(X) = max{Xl, ey Xn}. Figure 2.1: Risks functions for é; (blue)
and 3 (red) shown for n = 100.

Its distribution is easily found to be

0 itt<0
P(6(X)<t) = ¢ (§)" ifo<t<e
1 ift >0

with density f(t) = J&t"~! for t € [0,6]. We thus have

n 0
Ep(5(X)) = 97/0 e = 1.

Similarly,
n
62.
n—+2

n 0
Fo($*(X)) = o /0 prldE =

Clearly "Tﬂé (X) is an unbiased estimator. But instead consider all estima-
tors of the form ad(X), a € R. Find the value of a that gives the minimal
risk with the quadratic loss function. We have

R(0,a0) = IEg(6—ad(X))? = 6% —2aEq(6(X)) + a’Egd(X)?
_ 92 n p, 2 N
= 0 2an+19 +a n+29’

This is a convex function optimum does not depend on 6 and the minimum
is easily found to be a* = "2, We have

n+1
+1 0> +2 0>
n _ n _
R(9,%9) n(n+2)’ R(9,5519) (n+1)%

This shows that unbiased estimators are not always best if the goal is to
minimize risk.

There are situations where certain decision rules can be disre-
garded. A decision rule §(X) is inadmissible if there is some compet-
ing procedure ¢’ has uniformly lower risk, meaning:

@) R(6,0') < R(6,5) forall§ € ©,

(b) R(6,8") < R(6,6) for at least one 6 € O.
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Otherwise the decision rule is admissible. We treat admissibility
in more detail in Section 2.4. In practice however, we often need to
compare two admissible procedures and then there is no one ob-
vious way to say that one is better than the other; more on that in
Section 2.3.

Example 2.1.2 shows that a natural unbiased estimator may not be
admissible. A slightly more artificial example follows.

Example 2.1.3. Continuing Example 2.1.1, consider 64(X) = Xy, a
rather silly estimator that uses only the first observation. Then R(6,0y) =
Eg(6 — X1)?> = 0(1 — 0) which is always greater than R(8, 6y ) for all

6 € (0,1) (unless n =1 of course). Therefore 6, is inadmissible.

Given a sample X = (X,...,X,), define the empirical risk as

1=

R.(0,6) = % L(6,5(X;)). (2.1)

1

I
—

A popular way of constructing an estimator is by minimizing the
empirical risk, which is directly related to M-estimation discussed
later in Section 8.3.

Remark 2.1.4. In the supervised learning set-up we have the training

data {(X1,Y1),...,(Xn, Yn)}. Where X; € X are called features and

Y; € Y C Rare called labels. Here the loss function L(y,6(x)) is defined
on Y x X. The (expected) risk is then defined through a double integral over
X x Y. In this context the empirical risk becomes

R (6) = liL(YM(Xz‘))o

nia

2.2 Randomized decision rules*

It can often be useful to consider randomized decision rules.

Definition 2.2.1. A randomized decision rule 6 is a measurable mapping
from X to probability measures on A, x — 6x. By this we mean that the
function x +— 6x(B) € [0,1] is measurable for any fixed Borel subset

B C A. (such objects are also called probability kernels)

The idea is that for a fixed X = x a random action A will be drawn
from dy, A|X = x ~ &, thatis, P(A € B|X = x) = 6x(B) for every
Borel set B C A. The definition makes sure that the joint distribution
probabilities of the the following form are well defined:

P(A€B XeU) = /U/B(S,C(da)IP(dx) - /uéx(B)]P(dx),

which they are because dx(B) is measurable in x.

< Exercise 2.7.2
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Note that the marginal distribution of X and the conditional distri-
bution of A given X naturally specify the joint distribution of (A, X)
and so also the marginal distribution of A. For a randomized deci-
sion rule, we define the risk function as

R(6,6) = EgL(6, A) = Eq (E[L(6, A)|X]) = // L(6,a)x(da)Py(dx).
(2.2)
Here the conditional expectation E(-|X = x) is computed with
respect to the conditional distribution d, of A given X = x. Denote by
D the set of all randomized decision rules such that R(6,d) < +oo for
all 8 € ©. The set D contains all non-randomized decision rules Dy in
which case to each x we assign the point mass at this point.

Example 2.2.2 (Statistical testing). Consider the problem of testing Hy :
0 € ©gversus Hy : 6 € ©,. Here A = {0,1}. We consider here a
randomized testing procedure where based on data x € X we compute
¢(x) € [0,1] and let 6 be the Bernoulli distribution with the success
probability ¢(x). In testing problems we typically use the 0/1-loss:

L(6,a) = 1(a=1,0 € Og)+1(a=0,0 € Oy).
The power function assigns to 0 the probability or rejecting Hy:
B(O) := Py(A=1) = E[Py(A=1|X)] = Ep(X). (23)
The risk function for the ranomized rule defined above is
R(0,0) = IEE[L(P,A)|X] =EP(A=1,0€ Oy|X)+EgP(A=0,0c 01|X)

_ JEBee(X) if € O
Eg(1— (X)) if6 € ©y

_JBO) if0 € O
1-B(6) ifoc@;

In standard statistical theory, randomized decision rules appear
mostly in the context of statistical testing. It is important however
to discuss briefly general advantages of considering them. For two
randomized decision rules J,6’ and A € (0,1) the convex combination
(1 —A)é+ Ad' is the randomized decision rule defined by

6 with probability 1 — A,

(2.4)
&' with probability A. !

(1=A)5+A8 = {
With this definition the set of randomized decision rules D forms a
convex set. The following proposition suggests that convexity will
play an important role in our analysis; see also Remark 2.3.1 below.

39
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Proposition 2.2.3. The set D of all randomized decision rules is convex.
The function 6 — R(6,6) is a linear function of & € D for any fixed 6, that
is,

R(0,(1—-A)6+A8) = (1—A)R(0,5) + AR(0,6")

or every A € (0,1) and 5,6' € D.
f yA€(0,1)

Proof. The first statement is clear. For the second statement let Ay, Ay
be the random variables representing the randomized decisions &
and ¢’. Their mixture is A and so A is equal to A with probability
(1 —A) and it is equal to A; with probability A. We thus have

R(6,(1— A)d+ A8) = EgL(6, A) = (1 — A)EgL(6, Ag) + AEgL(6, A1),
which is equal to (1 — A)R(6,6) + AR(6, ") as claimed. O

It may be surprising that linearity in Proposition 2.2.3 holds irre-
spective of the loss function. The following remark may help.

Remark 2.2.4. It is important to note a subtlety in the above discussion. If
3,6 are non-randomized decision rules then (1 — A)d + A&’ could mean two
different objects. It could be either a randomized decision rule as defined in
(2.4), but it could be also a non-randomized decision rule

(1= A)5+ 28 (x) = (1 — A)d(x) + A (x).

For the last definition, there is no equivalent of Proposition 2.2.3 although
convexity of Dy still holds as long as A is convex. In the hypothesis testing
case, A = {0, 1} is not convex.

2.3 Bayesian and minimax rules*

In the ideal situation we would be able to choose the best decision
rule ¢ as the one that leads to the lowest risk. However the risk
R(6,9) of 6 depends on 0 and, in general, there is no total ordering
on the risk functions for different 6; c.f Figure 2.1. The only realistic
solution is to define a functional on the space of risk functions and
evaluate decision rules according to the value of this functional.

2.3.1 Definitions and basic properties

Two natural choices for functionals on the risk functions are the
maximum risk and the Bayes risk. The maximum risk of J is defined
as the number

R(6) = sup R(6,9).
0cO

For a given prior distribution 77(6) on ©, the corresponding Bayes
risk is

r(r,8) = /R(G,é)n(@)d@.
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We say that a decision rule ¢* is a (randomized) minimax rule if

R(¢") = inf R(0).

A (randomized) Bayes rule with respect to prior 7t is any decision
rule §* that satisfies

r(m, &%) = (sing)r(n,é).

When the infima are over Dy we call the corresponding decision
procedures non-randomized Bayesian and non-randomized mini-
max rules respectively.

In practice we prefer non-randomized decision rules. The reason
for considering randomized versions can be explained as follows.

Remark 2.3.1. By Proposition 2.2.3, R(0,6) is linear (and so convex) in &
for any fixed 6. By Proposition B.2.5, R(8) is convex and r(7t,8) is linear
in 8. It follows that both minimizing R(8) and r(7t,8) over D is a (infinite
dimentional) convex optimization problem. For non-randomized rules such
favorable properties will hold only under special assumptions on the loss

function.

The following result shows that there is no difference between
randomized and non-randomized Bayes rules.

Theorem 2.3.2. Every Bayes rule 6* satisfies r(7,6*) = infsep, 7(71,9).

Proof. We omit the formal proof. See Section 1.8 in 2. O

2.3.2  Simple geometric insights

It is good to briefly discuss the geometric picture that drives our in-
tuition. Consider the set of all finite mixtures of all non-randomized
decision rules. It is natural to denote this set as conv(Dy). Although
in general D # conv(Dy) from the point of view of risk analysis
often we can use these two sets interchangably obtaining the same
results; see Section 1.6 in 3 for a more careful discussion and further
references. This insight makes Theorem 2.3.2 very natural to con-
jecture because (7, ) is a linear function of 4§ and we optimize it
(essentially) over conv(Dy).

We next discuss a trivial instance of this when things can be ex-
plicitly depicted in two dimensions. Take ® = {0,1} the risk function
R(8,5) can be represented by a point (R(0,6),R(1,5)) € R2. Define
the risk set

R = {(R(0,8),R(1,4)) : & € conv(Dy)}-.

By Proposition 2.2.3, R is a convex set, namely, if y,iy' € R (with the
underlying 6,¢’) then (1 — A)y + Ay’ lies in R as it is realized by the
randomized rule (1 —A)J + AJ'.

> Thomas S. Ferguson. Mathematical
statistics: A decision theoretic approach.
Probability and Mathematical Statistics,
Vol. 1. Academic Press, New York-
London, 1967

3 Thomas S. Ferguson. Mathematical
statistics: A decision theoretic approach.
Probability and Mathematical Statistics,
Vol. 1. Academic Press, New York-
London, 1967
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Suppose that the considered set of non-randomized decision rules
Dy is finite. In this case R forms a polytope and the geometry of the
Bayes rule is quite straightforward. A prior distribution 7t is simply
a point (7r(0), t(1)) with nonnegative coordinates that sum to 1.
Moreover,

r(m, ) = m(0)R(0,6) + m(1)R(1,9).
Thus a Bayes rule will be obtained as one of the minimizers of a
given linear function on R. The maximizers may be unique but it is
not always the case. In this case, Theorem 2.3.2 holds trivially.

For the minimax rule note that

R(5) = max{R(0,5), R(1,6)}.

Draw the line R(0,d) = R(1,) and consider how the minimax risk
can be improved above or below the line.

2.3.3 Finding the Bayes rule

We next explain how to find a Bayes rule. By Theorem 2.3.2, it is
enough to minimize r(7,J) over § € Dy. For a prior distribution 77(8)
let 77(0|x) denote the posterior distribution. We write p(x|0) be the
density of the distribution IPy. By the Bayes theorem

2(0]x) = (XIG) ( ) p(x]6)7(6)

= , (2:5)
rx m(x) ’

where m(x) = [ p(x|0)7t(0)d6. The posterior risk is defined as
r(5]x) = /L (6,6(x)) 72(6]x)d. (2.6)

One of the main result on Bayesian rules is the following proposition.

Proposition 2.3.3. The Bayes risk r(7t,6) for 6 € Dy satisfies
r(m,é) = /r(5|x)m(x)dx.

Define 6* pointwise, for every x € X, as

6" (x) = &p(x), where r(d|x) = inf r(d]x). (2.7)
0€Dy

If 6* € Dy (i.e. if 5* is measurable) then, by construction, r(5*|x) =
infsep, (6|x) for every x € X' and 6* is a Bayes rule.

Proof. Using the Fubini’s theorem we get
/R(G,(S) de_/ L(6,6(x))p(x|6) 71(6)dxdo

= /LG(S 70(6)x)m(x)dxdo

_ /(/LG(S 9|xd9> m(x)dx

= /r((5|x)m(x)dx.
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It is also clear that 6* minimizes the above integral over Dy:

inf r(7,6) = inf [ r(6]x)m(x)dx > /(g P(8|%)ym(x)dx = r(7, 5%).

6€Dy 6€Dy .

If 0* € Dy (c.f. Remark 2.3.4), the inequality becomes equality. By
Theorem 2.3.2, minimizing over D is equivalent to minimizing over

D showing that 6* is a Bayes rule. O
Remark 2.3.4. The function §* defined in Proposition 2.3.3 will be however
measurable in all practical situations. For more details see 4. 4+Lawrence D Brown and Roger Purves.
Measurable selections of extrema. The
In some situations the Bayes rule can be found explicitly. Annals of Statistics, pages 902-912, 1973

Proposition 2.3.5. If ®, A C R and L(6,a) = || — a||? then the Bayes
rule is i
5*(x) = / 070(6]x)d0 = E(6]X = x).

Proof. By Proposition 2.3.3, the decision rule 6* = infscp 7(d|x) is a
Bayes rule. In our case

r(3x) = [ 116 = 5(x)|Pe(olx)de

For a fixed x, write 4 = §(x) and minimize the above expression with
respect to a. We have

/||6—a|\2 (6]x)d :—z/ —a)r(0]x)d

which is equal to the zero vector if and only if a = [ 67(6|x)d6 =
E(0|X = x). O

Example 2.3.6. Given a sample X1, ..., X, from N(6,1) consider the prior
N(0,72). The posterior is

) 2
N(-2 5, ).
nt2+1" nt2+1

Thus, for this prior and with the quadratic loss, the Bayes rule is

nT2

(5*(x1,...,x71) - mfn

The risk function is

1 2 1 a2 \2
R(6,6") = Be(6— 1= X,)? = (,ﬁzH) 0 +n(nr2+1> '

Since E0? = 12, the Bayes risk is

1 2, 1/ nt?
) = B0~ = (sher) 7 4 ()

For comparison, consider 8o(x1,. .., Xn) = %y. We have R(0,5y) = L and

sor(m,d) = 1.

< Exercise 2.7.3
< Exercise 2.7.4
< Exercise 2.7.5
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2.3.4 The link between minimax and Bayesian rules

The next result gives a connection between minimax and Bayesian
rules.

Theorem 2.3.7. Let 6* be a Bayes rule for some prior . Suppose that
R(6,6") <r(m %)  forall 6 € O. (2.8)
Then §* is minimax.

Here probably the most interesting case when this happens is
when R(6,6*) is constant in 6. Compare this with the geometric
picture presented in Section 2.3.2.

Proof. We prove the contrapositive statement. If 6* is not minimax
then there exists &y such that R(6y) < R(5*). However, the fact that
r(7t,00) < supy R(0,p) implies that

— — =38
r(m,dp) < R(ép) < R(6*) < r(m,d").
But this contradicts the fact that 6* is a Bayesian rule. O

To illustrate the utility of this theorem in actually finding minimax
estimators consider the following example.

Example 2.3.8 (Bernoulli distribution). Suppose X ~ Bern(6), 6 €
® = [0,1]. Given any prior 7t over [0,1], we define m; = E(0) and
my = E(62). The frequentist risk for the squared loss is

R(6,0) = 6%(1+2(8 — 01)) + 68(63 — 6% — 25) + 83,
whereas the Bayes risk is
r(71,8) = ma(1 +2(8g — 81)) + my (67 — 85 — 260) + 63

Note that it depends on 7t only through the first two moments! The Bayes
decision rule is found minimizing with respect to &y, 61:
my — my my
b= —-— 0 =—. .
0 T—m 1= (2.9)
To satisfy the constant risk property, we note that R(6,6) does not depend
on 8 if and only if 61 — 6y = % and 62 — 63 — 269 = 0, or equivalently
b = }1, o = % Solving for mq, my in (2.9) yields the solution
1 3

This, if 7t is such that B0 = Y and E6? = 3and 65 = 1,67 = 3,
then 6* is a Bayesian rule with respect to 1 and inequality (2.8) holds. By
Theorem 2.3.7, 6* is also minimax.
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Note that if 1 = Beta(1/2,1/2) then 6 has these moments. The as-
sociated Bayes (and hence minimax) risk is 11—6. These calculations can be
generalized to the case of n i.i.d. samples X1, ..., X, from the Bernoulli
distribution. We leave it as an exercise.

Consider the following slight generalization of the minimax rule:
allow nature to choose a distribution 77 over ©. In this case our goal
is to minimize

7(6) := supr(m,9).
7T
In this context it is useful to consider the notion of a least favourable
prior. A prior 7t* is called least favorable if

inf *0) = inf ,0).
infr(7,0) = sup infr(m,3)

< Exercise 2.7.6

2.3.5 Minimax theorem*

The minimax decision problem has a natural game-theoretic interpre-
tation. In particular, a two-player game is played between nature and
the statistician, with nature picking the prior 7, and the statistician
choosing a (possibly randomized) decision rule 6. Then the statisti-
cian pays to nature the amount r(7, ). Note that nature gains the
same amount the statistician loses, so that the game is zero-sum.The
following two quantities are important

L* = supinfr(m,J)
)

U* = infsupr(m, o)
0

called respectively the lower and the upper values of the game. These

quantities have the following interpretation: U* is the amount the

player pays when he is told what distribution nature choses before he

choses 0. Conversely, L* is the amount the player pays when nature is

told the player’s strategy J before it chooses 7. + Exercise 2.7.7

Theorem 2.3.9 (von Neumann). Suppose that
1. The parameter space ® = {6y, ...,0;} is finite, and
2. The risk set
R ={y e R*: y; = R(6;,6) for some 6 € D}
is closed and lies in the nonnegative orthant.
Then

(i) The game has the value L* = U*.
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(ii) There exists a probability vector 7t € R* that is a least favourable prior.

Proof. In Exercise 2.7.7 we show that L* < U* so in order to establish
(i) we need to prove that L* > U*. Given a € IR, define the lower-
rectangular set of the form

By={yeR:y; <aVi=1,.. k}
In addition, define
= arg inf {B, NR # @}.
v = arg inf {B, "R # O}

By definition of vy, for each n € IN there exists a (randomized) deci-
sion rule J,, such that

R(Gj,5n)§’y+%, forallj=1,...,k
Therefore, for any prior 7 on ® = {6y, ..., 0}, we have

1
r(m,én) < v+ P

Taking a supremum over the choice of priors yields that sup_ r(7,d,) <
v+ % and hence for n € IN

infsupr(rm,d) < ’y—l—l.
5 n

This inequality holds for every n € IN and taking the limit gives
u* <-s.

Now we are going to use the Separating Hyperplane Theorem B.1.3
to construct a vector 1 = (71q, ..., 1) that can be viewed as a least
favourable prior, therefore establishing (ii). It will also show that
L* > « establishing part (i).

Consider again the lower rectangle B,,. Observe that its interior
int(B,,) and the risk set R are two disjoint convex sets in R¥. Conse-
quently, the separating hyperplane theorem guarantees existence of
some non-zero vector 7t € R¥ and constant ¢ such that

(my) > ¢ forally e R,

(m,y) < ¢ forally € int(By).

We claim that 7z > 0. This can be proven by contradiction. Suppose
m; < 0 for some i. Directly by definition of the set B, we can con-
struct a sequence of y vectors such that y; — —co and y; = 0 for j # i,
while still staying in int(B. ). However, this yields a sequence such
that (7, ) becomes indefinitely large contradicting the separation
statement (these sequence ends up on the wrong side of the hyper-
plane (71,y) = c). Thus we must have 1 > 0. Since T # 0 we can
normalize it to sum to one, so it can be interpreted as a valid prior.
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Consider the vector x* := 91. Since x* lies in the closure of
int(B,,), we must have
(mx") =v<¢
where we have used normalization property of 7r. Now letting J be

an arbitrary decision rule with risk vector z € R¥ such that z; =
R(6;,9) for all i we have

r(m,é) = (mz) > ¢ > 7.

Since § was arbitrary, infs (7r,d) > 7 and, in consequence, L* > 1,
which completes the proof of part (i). Furthermore, the vector 7 that
we constructed is the least favourable prior of part (ii). O

2.4 Admissibility and Rao-Blackwell

It is clear that we can discard inadmissible rules from our analysis.
Thus it is useful to know that the procedure we analyse is admissible.
It should be clear that minimax procedures are admissible.

Theorem 2.4.1. If a Bayes rule for 7t is essentially unique (in the sense of
measurable functions) then o is admissible.

Proof. Suppose there exists dy such that R(6,6y) < R(6,) for all
6 € ©. Then r(rm,d8y) < r(7,d) and so, if ¢ is Bayes, then ¢ is also
Bayes. By our assumption, § = Jp almost surely. In consequence, for
every 0

EgL(6,5(X)) = BgL(6, o0(X))
and so the risk functions are equal implying that Jy does not strictly
dominate 4. O

In case, we cannot assure uniqueness, it is still useful to provide
some sufficient conditions on admissibility.

We now revisit the Rao-Blackwell theorem in the language of
statistical decision theory. It allows for a simple general construction
of decision rules that dominate a given decision rule é. Recall that a
statistic T = T(X) is sufficient for @ if the conditional distribution of

X given T does not depend on 6. Given any rule, we can define
n(T) = E[6(X)[T].

Since T is sufficient, E[6(X)|T] does not depend on 6 and so, #(T) is
a valid statistic. The following classical result explains why #(T) may
be preferred over J(X).

Theorem 2.4.2 (Rao-Blackwell). Let T be a sufficient statistic for P =
{IPy : 6 € O}, let 6 be a decision rule, and define n(T) = E[5(X)|T]. If
6 € ©®, R(0,6) < +oo, and L(0,a) is convex in a, then

R(6,7n) < R(8,9).

< Exercise 2.7.8
< Exercise 2.7.9

< Exercise 2.7.10
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Proof. Using the Jensen’s inequality (c.f Theorem B.2.3) for the con-
vex function f(a) = L(6,4) and with the conditional expectation
E(-|T =t) we get

L(8,7(T)) = L(6,E(6(X)|T)) < ]E(L(G,d(X))‘T). (2.10)

Taking expectations on both sides we conclude R(6,#(T)) < R(6,4(X)).
O

This theorem states that, as long as the loss function is convex,
every estimator that depends on the data not through the sufficient
statistics can be improved. In consequence, in our study of optimal
procedures, we can always focus on procedures that are based on the
sufficient statistics.

Remark 2.4.3. In Theorem 2.4.2 we can also show that if L(6,a) is strictly
convex in a, the inequality will be strict unless 6(X) = 5(T) a.e.. A rough
argument goes as follows: If f is strictly convex then, by Theorem B.2.3, the
inequality in (2.10) becomes strict unless 6(X) becomes constant a.s. after
conditioning on the event {T = t} (for every t). This implies that 5(X)
must be a function of T and so §(X) = E(6(X)|T) a.s. If this inequality is
strict then it remains strict after taking the expectation.
< Exercise 2.7.11

Example 2.4.4. Suppose X; ~ U(0,0),1 = 1,...,n. Consider X, :=
max{Xy, ..., Xu}. The fact that X, is a sufficient statistics follows

from the Fisher-Neyman factorization theorem. Indeed, denote X 1) :=
min{Xj, ..., Xy}, then the density of the sample x = (x1,...,%xy) is

fol) = 351{x) = O} {x(y) < 6},

which is equal to h(x)ge(x(y)) with h(x) = 1{x(1) > 0} and gg(x(,)) =
Consider now an unbiased estimator of 6 given as

Under the quadratic loss

4 4 02 62
R(6,8) = varyg(6(X)) = Evarg(Xl) =15 = 3
Consider now the rao-blackwellized version of ¢ defined as ’Y(X(n)) =
E[6(X)|X(y)]. By Theorem 2.4.2 it dominates 6. To compute this new

estimator explicitly, fix i and note that, for every t > 0

t
]E[XZ|X(n) = t,Xl’ < t] = ]E[XZ|XZ < ﬂ = E
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The first equation follows because X, is independent of X; conditionally
on the event {X; < X} (in this case the maximum is a function of
the remaining variables). The second equality follows simply because the
distribution of X; conditionally on X; < t is U(0, t), which follows by
standard calculations. We have shown that

X

E[Xi[X(n), Xi < X)) = ——

Trivially,
E[Xi| X (), Xi = X(m)] = X(n)-

The probability of the event {X; = X, } is L and thus

n—1 n+1
E[Xi|X(n), Xi < X(w] = == X(m),

1
E[Xi[X(m)] = E[Xi| X, Xi = X] +
which gives

2 & 211714—1 n+1

(X)) = E;E[Xﬁx(m] = o X = X

In Example 2.1.2 we showed that this is an unbiased estimator of 0. We < Exercise 2.7.11
showed that its risk satisfies R(6,1) = n(;fij-z)' If n > 2 we then indeed
have R(6,1) < R(6,6) confirming the Rao-Blackwell theorem. Note how-

ever that Example 2.1.2 also showed that 17(X ) is not admissible!

Theorem 2.4.5. Let Xy, ..., X, be a random sample from N(6,1). The
sample mean X, is an admissible estimator of 0 under the squared loss.

We are not going to prove this result as it is quite technical. The
idea follows from the fact that X, is a limit of Bayes rules for priors
. = N(0,k). Indeed, in this case, by Example 2.3.6, the posterior
is N (%XW @) and so it concentrates around X, for large k. The

o _k
Bayes rule is -5
of more care we can argue that the same holds in the limit. More

X;,. Since each of these is admissible, with a bit

generally, it can be show that every admissible procedure is a limit of
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Bayes procedures; see Theorem 3.40 . 5Mark J. Schervish. Theory of statistics.
Springer Series in Statistics. Springer-

Verlag, New York, 1995
2.5 Stein’s paradox

Consider a sample XM, .., XM ~ Ny (p, X) with X known. Here we

assume ¥ = U'ZId. In this case € := X — u ~ Ny(0, Uzld). Using the This is called the Gaussian sequence
square loss L(p,a) = || — al|> we easily show that the risk of any
estimator i, admits the following decomposition

R, fin) = Ellfin — E[a]l|* + |[E[n] — p]|*.

The first term is the variance of ji,, and the second term is related to
its bias. The MLE estimator of y is the sample average X,,. Its bias is

model and will reappear in this lecture.
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zero and its variance is

. d
EIL L (X0 )P = 1Elle]? = 2%, (211)

1

For simplicity take = = 1. In the special case when n = 1, the
MLE is X which is an unbiased estimator with large variance d. Con-
sider first as an alternative a simple linear estimator jic = CX with
C = diag(c) diagonal and ¢ = (cy,...,c4). In this case

d d

R(ufic) = Y (L—c)* i+ ) cf.
i=1 i=1

Suppose we restrict ourselves to the hyperrectangular model class

|1t;| < 7;. In this case we can easily find that the minimax risk is

2
4

1+17

d d
inf sup R(p jic) = ilrcle(l—Cl-)z’rl»Z—i—ch2 =
i=1 i

d
¢ —r<u<t =1

i=1 i
This computation shows that for sparse model classes diagonal esti-
mators jic may strictly dominate the MLE if ¢ is chosen carefully.

In this section we show a famous surprising result that the ob-
servation X = (Xi,...,Xy) is not an admissible estimator for the
parameter yt = (p1,...,1y) unless d < 2. We start introducing the
Stein’s Unbiased Risk Estimates (SURE).

2.5.1 Stein’s Unbiased Risk Estimates (SURE)

For a function 1 : R? — R? denote by Jh(x) the Jacobian of / at
x € RY, that is, the matrix of partial derivatives with
oh;
(]h(x))l] = BTCJ

The goal of this section is to prove the following result.

Proposition 2.5.1. [Stein’s Unbiased Risk Estimates (SURE)] Let X1, ..., Xy
be independent, X; ~ N(u;, 1). Consider an estimator ji(X) of u =

(U1, ..., 1g) and let
h(x) = x — p(x). (2.12)

Suppose that h(x) satisfies
(i) h is differentiable,
(i) B, IH(X)]| < o

Define
R = d+ [|n(X)|? - 2tr(Jh(X)).
Then
R(p, 1) = Ey||[#(X) — p|l> = EuR.

< d.



STATISTICAL DECISION THEORY (1 WEEK)

Remark 2.5.2. Proposition 2.5.1 is true if condition (i) is replaced with
(i’) h is weakly differentiable. A primary application being soft-thresholding
when

Xi—A x> A

hi(x) = h,‘(x,‘) = x;—10 |xi\ <A
Xi+A x < —A

Here h;(x) is weakly differentiable in the sense that whenever —co < a <
b < oo there exists hi(x;) such that

b
| s = k() ~ hia).
To prove Proposition 2.5.1, we start with the Stein’s lemma:

Lemma 2.5.3 (Stein’s lemma). Let X ~ N(u,0%) and leth : R — R be
differentiable with E|l' (X)| < co. Then

E[(X — p)h(X)] = ¢*El (X).
2

Proof. First assume p = 0,0° = 1. In this case we equivalently

show that E(Xh(X)) = EN (X). Without loss of generality assume

h(0) = 0°. The proof is an application of integration by parts. We ¢ Both sides will not change if we
have replace h with h — h(0).

(h(x)e /%) = I (x)e™/% — xh(x)e */?

and so
0 = El' (X) — E(Xh(X)),

which establishes the result. The fact that we get zero on the left
follows from the fact that limy—s+co h(x)e_xz/ 2 — 0, which can be

argued since E|//(X)| < +o0. Indeed, first note that
2 P
W (8)le™ P () < [H(1)]e"/?

and the dominating function on the right is integrable by assump-
tion. We also note that the smaller function goes to zero as x — *oo.
Thus, we can use the dominating convergence theorem

. 2 . * 2 . i 2
Jim h(x)e”™ 2 = im ; W (t)e ™ /2dt:xgr£w mh’(t)e 2y (H)dt
o0 . .2
- megxﬁwh’(t)e 2270 4(Hdt = o.

This establishes the result in the standard normal case. For general y
and ¢ define Z = (X — u)/c ~ N(0,1). Define ii(z) = h(y + 0z). We
have
E[(X —uh(X)] = 0E(Zh(u+0Z)) =0cE(Zh(Z))
= 0El/(Z) = ¢*BW (u + 0Z) = ®El (X),
where moving from the first to the second line we used the case
=0, 0 =1 proved earlier. O
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We need another technical lemma.

Lemma 2.5.4. Let X = (Xy,..., Xy) be a random vector with independent
entries, X; ~ N(p;, 1). If h : RT — R satisfiesx E||Jh(X)|| < co. Then

E((X —p) h(X)) = Etr(Ji(X))

Proof. Denote by X ; the vector X with X; removed. Using Lemma 2.5.3,
foreveryi=1,...,d

E((Xi— u)hi(X) = E(E[(X; - p)l(X)|X.])
- =(e[m]) -2 (347)

Summing over i we get the result. O

Now Proposition 2.5.1 follows easily.

Proof of Proposition 2.5.1. We have

R(wi) = E(@X) —p)T(AX) - p)
= EB(((X) - X+X—p)T(A(X) - X+ X —p))
= E[r(X)|? - 2E((X — 1) Th(X)) + E[| X — |2
L2 ||n(X) |12 — 2E(tr(J(X))) + E[| X — p?
= ER,

where the last equality follows because E|| X — u|> = d, which
follows because X — p is standard normal. O

A natural estimator of y is X and it has constant risk R(y, X) =
E|| X — u||> = d. Although it is unbiased, the variance is large if d is
large. The James-Stein estimator of u = (y1, ..., 1) is defined as

d-2
515(X) = (1 - ) X.
J5(X) B3k
Theorem 2.5.5. The risk of the James-Stein estimator is
d—2\2
R(u,55) = d — B () |
e “\Tx]

In particular, the natural estimator is not admissible if d > 3.

Proof. For the James-Stein estimator the function / in Proposi-

tion 2.5.1 is
d—2
hix) = x
S
and so )
N d—2
d+( ) —2tr(Jh(X)).
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The diagonal entries of the Jacobian have a simple form

ohy d—-2 _d-2,
— = -2 X;
dx; x>l

giving

proving inadmissibility. O
< Exercise 2.7.12
It is interesting to study the risk of a general linear estimator jic =
CX for an arbitrary square matrix C. To use SURE note that (X) =
(I; —C)X and so Jh(x) = (I; — C) giving tr(Jh(x)) = d — tr(C).
Therefore

R(u,fic) = Euld + |[(Is — C)X||* — 2d +2tr(C)] = E||(C — I)X||* - d + 2tr(C).

We formulate the following result without a proof.

Proposition 2.5.6. The linear estimator jic = CX is admissible if and only
if
(i) C is symmetric,

(ii) the eigenvalues satisfy 0 < p;(C) <1,

(iii) p;(C) =1 for at most two i.
< Exercise 2.7.13
In many situations in the expression (2.13) C = C(A) depends on a

regularization parameter A so one could find optimal A* by minimiz-
ing the MSE over A. One example is given by ridge regression. In this
case for some Z € R?*P

C=2(Z"Z+ALy) 12" (2.14)

and the corresponding estimator is obtained as jiy = Z B where <+ Exercise 2.7.14
B € IR? is obtained by solving

. 1 2 /\ 2
ZIx - s .
min o X ZB + S B A >0

(2.13)
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2.6 Minimizing risk under constraints

Earlier we saw that finding a decision rule ¢ that minimizes the risk
R(6,6) uniformly over 6 is impossible. In Section 2.3 we saw two
common strategies for introducing a global risk and finding optimal
decision rules. An alternative approach is to introduce a reasonable
constraint on the set of decision rules one is willing to consider. In
this case, it can be possible to find a (constrained) J for which R(6, J)
is minimized uniformly over 6. It is not so surprising that the in-
teresting constraints are often convex. We review some of the most
popular.

2.6.1 Unbiasedness constraints

An estimator is called unbiased if [Egd(X) = 6 for all 6. Sometimes
the following definition is used instead.

Definition 2.6.1. For a loss L(6,a) a decision rule § is unbiased with
respect to L if

Eo(L(¢',6(X))) > Eg(L(0,6(X))) =R(6,5)  forall 0,0’ € ®.
(Note that on both sides the expectation is taken with respect to Py.)

Exercise 2.7.15 explores the connection between unbiased decision
rules and unbiased estimation. Exercise 2.7.17 partially motivates the
more general definition.

Proposition 2.6.2. The set of all (randomized) unbiased decision rules is
convex.

Proof. In exactly the same way as in the proof of Theorem 2.2.3 we
can show that EgL(¢’,6) is linear in ¢ for any €’. Let A € (0,1) and
suppose that both § and ¢’ are unbiased. It follows that

IEQL(GI, (1-A)o+ A(sl) = (1- A)]EgL(Q’, d) + )\]EQL(QI, 5/)
> (1 — )\)]E(;L(G, 5) + )\]E(;L(Q, 5/)
= TEyL(0,(1 */\)(5+A(5l)

proving that (1 — A)é + Ad’ is unbiased. O

Though unbiasedness is more general, we shall focus here on the
estimation problem. The next result says we need not look at Bayes
estimators in this context, because (except in weird cases) they cannot
be unbiased.

Proposition 2.6.3. No unbiased estimator 5(X) of § € ® C R¥ can
be a Bayes estimator (under the square loss) unless the prior 7t satisfies
({6 :R(0,0) =0}) =1.

< Exercise 2.7.15

< Exercise 2.7.17
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Proof. Suppose ¢ is a Bayes rule (under square loss with respect to )
and is unbiased. By Proposition 2.3.5 and the fact that § is unbiased:

d(X) =E(0|X) and 6 =E(6(X)]0).
Then depending on the order in which we condition, we get

E(0T5(x)) = 4 El EOX)I0)] =E@070)

Therefore E(#T5(X)) =E(876) = E(5(X) §(X)) and
E||6(X) —0|> = E(6(X)T6(X)) —2E(0"6(X))+E(676) = 0.

Since r(7t,8) = E||6(X) — 0||* (with the expectation both with respect
to X and 0) we get that r(71,6) = 0. But the Bayes risk also satisfies
r(m,6) = [ R(6,6)m(0)d6. Since R(6,8) > 0 for all 6, the only way
the rr-integral can be zero is if 7t assigns probability 1 to the set of 0
where R(6,6) vanishes. This proves the claim. O

Next we formulate a very powerful result, which states that there
is a rule that uniformly minimizes risk over the unbiased estimators
and, moreover, gives easily verifiable sufficient conditions to identify
this best estimator. We first recall the notion of completness.

Definition 2.6.4. A statistic T is called complete for the model P = {IPy},
if for every measurable function g, if Egg(T) = 0 for all 6 then g(T) = 0
almost surely.

Although we did not specify this explicitly, a sufficient statistics in
a regular exponential family is always complete.

Theorem 2.6.5 (Lehmann-Scheffe). Let X ~ Py and suppose that T is a
complete sufficient statistic. Suppose the goal is to estimate 6 under convex
loss, and that an unbiased estimator exists?. Then there exists an essentially 7 Note that in this result the estimator is

unique unbiased estimator that is a function of T and uniformly minimizes unbiased in the classical sense but the
the risk loss function is general.
e risk.

Proof. We first show that if § is an unbiased estimator that uniformly
minimizes risk then, without loss of generality, we can assume it is

a function of T. Let 6 be an unbiased estimator and define its rao-
blackwellized version 17(T) = E(§(X)|T) as in Theorem 2.4.2. Unbi-
asedness of J gives

0 = Egd(X) = E[E(3|T)] = Eg[y(T)]

and so #(T) is unbiased too. Moreover, by Theorem 2.4.2, R(6,7) <
R(6,6) for all 6.
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Now we will show that the estimator #(T) is essentially unique.
Suppose 1*(T) is also unbiased. Then

Eg(n(T) —n*(T)) = 0 forallf € ©

and by completness 17(T) = #*(T) a.s. showing that #(T) is essen-
tially unique. O

Note that the proof also shows how such an estimator can be
obtained. We simply start with an unbiased estimator and rao-
blackwellize it. In Example 2.4.4 we essentially followed this con-
struction. The estimator 6(X) = 2 Y, X; is unbiased. Here Xy =
max{Xy,..., Xn} is a minimal sufficient statistics and can be showed
to be complete. The rao-blackwellized version of this estimator is
ntly

n (n):

Remark 2.6.6. We may have a situation when no unbiased estimator exists;
e.g. estimating 0 in a Bin(n, %) Indeed, we would require

n n _
0 = E6(X) = ) 5(k)( );k(1 — Bk,
k=0 "
After multiplying by 6" we get that

gl — kg)g(k)n (Z) (6 —1)"k,

which is impossible to hold for all 6 € (0,1) irrespective of & because on the
right we have a polynomial of order n.

In the special case when 6 € R with the square loss function, if é
is unbiased then R(6,6) = var(é(X)). In this case ¢ in Theorem 2.6.5
is called the unbiased estimator with uniformly minimum variance
(UMVU).

Example 2.6.7 (Finding UMVU). Let X,..., X, be i.i.d. Exp(u,1). So

) — {eXp(—(x—#)) x> p
0 x <
Both Ty = Xa) — % and T, = %Zi X; — 1 are possible estimators and
both are unbiased. Moreover, var(T;) = nl—z < var(Tp) = L. Note that
Ty is a function of a minimal sufficient statistics. To show that T = Xy is
a sufficient statistics we use the Fisher-Neyman factorization theorem and
note that the distribution of the data satisfies

n
[Tp(p) = e BT > i}

i=1
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and so indeed T is sufficient. To show that T is complete, note that the
density of T is
nexp(n(p—t)) t>p
pr(tip) = {
0 <.

Let g(T) be a measurable function such that B, g(T) = 0 for all u > 0.
Equivalently, for all y > 0

G(u) =" / e "e(t)dt = 0.
K

In particular, G is almost everywhere differentiable with G'(u) = 0 By the

fundamental theorem of calculus,

0= /(1) = net™ [ e g(t)d (e (1) = 503

implying that T must be complete. Thus, Ty is actually the UMV U.

2.6.2  Equivariance constraints*

Equivariance is a classical topic in statistics. Recently it also got a
lot of attention in machine learning as equivariant convolutional
networks grew popular. The idea is very simple and we will explain
it first on a concrete example. Suppose the exercise is to classify
pictures into one of the categories. Pictures may get rotated and we
do not want the label to depend on this rotation. In other words, we
want the procedure to be invariant under picture rotations. Suppose
now that before running the classification exercise, we first reduce
the quality of the images in order to save space. In that case, we may
want to require that the compression algorithm on a rotated image
outputs rotation of the compression of the original image. In that
case, we say that the procedure is equivariant.

In order to generalize this simple example, we formalize the set-

“ o

up. Recall that a group is a set G with a binary operation “-” and

identity element e € G such that:

(i) g-heGforallg hegG,

(i) (g-h)-k=g-(h-k)forall g h ke G. (associativity)
(ili) g-e=e-g=gforallge G,

(iv) forevery ¢ € G there exists h € Gsuchthatg-h=h-g =¢e, we

write h = gL

The following examples will be important in the sequel.
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Example 2.6.8. The set of real numbers R with addition forms a group. Its
identity element is 0. We denote this group by (R, +).

Example 2.6.9. The group of permutations of the set {1,...,m}.

Example 2.6.10. The set of real invertible m X m matrices forms a group
under the matrix multiplication with the identity element given by the
identity matrix. This group is sometimes called the generalized linear group
denoted GL,,(R).

Example 2.6.11. The group SO(m) of rotations in R™. The group is a
subgroup of GLy,(R).

The groups in this section will act on X, that is, each g € G defines
a function ¢ : X — X, which (perhaps abusing notation a bit) we
denote in the same way, and:

1. e(x) =xforallx € X,
2. (gh)(x) =g(h(x)) forall g,h € Gand x € X.

Following the standard algebraic notation, we write g - x for this
action. For example, the group GL,,(R) acts on R by the matrix
multiplication x — g - x for a matrix § € GL,,(R). The group (R, +)
also acts on R by translations x — x + c1 for ¢ € (R, +). The group
of permutations acts on R” by permuting the coordinates. If o is a
permutation of {1,...,m} then the corresponding transformation of
R™ is x = (Xg (1), s X (m))-

The same abstract group can act on different sets. Fix a sample
space X C R™ and a group G that acts on it. Suppose P = {Py :
6 € ©} is a model for a random variable X € X with the identifiable
parameter 6 (i.e. Py = Py implies 6 = ¢’). We say that P is a group
transformation model with respect to G if it holds that:

X ~ 1Py then  ¢X ~ Py forsome 6 € ©.

(the model is invariant under the group action) This particular 6’
then determined by 6 and the transformation g. In other words, the
transformations g also act on 6. We will use the same notation for the
action on A and on ©:

X ~ Py = g~X~Pg,9.

Example 2.6.12. Let IPy be a probability measure with symmetric density
po with respect to the Lebesgue measure on R (the mean of this distribution
is zero if it exists). For X ~ IPgand 6 € R, let Py be the distribution of

X + 6. Doing this for all 6 generates the family P = {IPg : 6 € R}. The
parameter 0 is called the location parameter. The normal family N(6,1) is
a special case. Here the group is (R, +) and we have

XN]P9 <~ X+CNP9+C.
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Example 2.6.13. Extending the previous example, suppose that Py 1 is a
distribution of a univariate random variable X with mean zero and variance
1. Denote by P, the distribution of X + p for y € Rand ¢ > 0.
Then (u, o) is called the location-scale parameter for X. This setup is
generalized to a random vector X in R™ by considering the distributions

of cX + pl. In the vector case it is more suitable to consider a location-
scale family by taking p € R™ and U € S and considering the induced
distributions of UX + p. What is the associated group?

Example 2.6.14. Suppose X has a m-variate zero-mean Gaussian distri-
bution with covariance matrix X. The group GL,,(R) or m x m invertible
matrices acts on X = R™, x — Ax, A € GL,,(R). If X is Gaussian
with covariance Y., then AX is Gaussian with covariance AXAT and so the
action of GL,(R) on @ =S" is A- £ = AZAT. We have

X~Py &  AX~TPypgtr.

Example 2.6.15. A slightly more involved example considers a simple
Gaussian graphical model given by three-dimensional centered Gaussian
distributions with the inverse covariance matrix satisfying K13 = 0. The
group is given by all invertible matrices of the form g - h, where

1 00] [oo1 « % 0
hedlo 1 0[,l0 1 0]y, g=1]0 % 0
00 1] |1 00 0 * =

The action on the parameter space is the same as in the previous example.
(verify the details)

Consider a decision procedure in the situation when there is a
group acting on X and © as described above. As it was noted in the
introductory example, if we have a group acting on the sample space,
we may want some statistical procedures like testing or classification
to be invariant with respect to this group action. A decision rule J is
called invariant if 6(¢ - x) = §(x) forall x € X and all ¢ € G.

Example 2.6.16. Suppose X ~ Py and the goal is to test hypothesis 6 € @g
versus 6 € ©, A = {0,1}. Suppose that a group G acts on X and on @,
that is, X ~ Py for 0 € ©p then g- X ~ Pg for 8’ € ©y. Intuitively, if
for data X we accept/reject the null, we should also accept/reject it for data

g - X. We will be then interest in test procedures 6 : X — {0,1} that are
invariant.

Example 2.6.17. Consider a classification function § : X — {1,...,c}.
In many applications, there is a group of transformations of X and we want
the classification procedure to classify each example the same way as its
transformed version (think images and their rotated versions). We again will
requite that 6 is invariant.
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In estimation of group transformation models we have A = ® and
in this case G acts on A in the same way as it acts on ©. In this case
we may want to restrict to procedures that are equivariant.

Definition 2.6.18. A function 6 : X — © is equivariant if 5(g - x) =

g 6(x).

Example 2.6.19. Let X = R™ and define maps g.(x) = x + c1, the

location shifts. These transformations form a group. The function B(x) =

x1 is equivariant where X is the average of entries of x. The function a(x) =

x — X1 is invariant.
Although this plays no role here, we note that equivariance is also

a convex constraint under a minor condition. <+ Exercise 2.7.18
The last ingredient in designing good equivariant procedures is a

loss function that is also amenable to this group action setting.

Definition 2.6.20. The loss function L : ® x A — [0, 0] is called
invariant (with respect to G) if, foreach g € G, 0 € ©,anda € A,
L(g-0,9-a) =L(6,a).

Example 2.6.21. [Example 2.6.14 continued] Let
L(%,S) = —logdet(SZ 1) + tr(SZ ! — )

be the Kullback-Leibler divergence between two mean-zero Gaussian distri-
butions with covariances S and .. Basic matrix algebra gives that

L(gxg',gSg") = L(%,S).

Thus, in the problem of estimating ¥. we have A = S" and L(%,S) is a

valid invariant loss function.
< Exercise 2.7.19

Definition 2.6.22. An invariant decision problem is when: P is a group

transformation model, 0 is equivariant, and L is invariant.

We view the insistence that the decision rule be equivariant as
a constraint on the possible decision rules, just like unbiasedness
is a constraint. Then the question is if there is an equivariant rule
that uniformly minimizes the risk. The first result is a step in this
direction.

Theorem 2.6.23. In an invariant decision problem, the risk function
R(6,6) of an equivariant decision rule ¢ is an invariant function on ©.

Proof. We have
R(g:6,8) = Ego(L(g-0,6(X))) = Ege(L(6,37"6(X)))
= Ego(L(6,0(87" - X))) = Eg(L(6,4(X))),

where the last equation follows from the fact that X ~ P, if and
only if g_l - X ~ Py. O
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This theorem really shows that R(6,d) is constant on G-orbits in ©,
that is, the sets

G-0={0€©:0' =g-0forsome g € G}.

This gives a plausible justification for restricting attention to equivari-
ant decision rules. Since the risk function is constant on orbits in ®
when the loss is invariant, this makes it easier to compare equivari-
ant rules by means of their risk functions. In particular, if the group
acts transitively on the parameter space (i.e. there is only one orbit),
then the problem of noncomparability of risk functions disappears
altogether as the risk function becomes constant on é. This happens
in some interesting situations, e.g. for the location model.

Theorem 2.6.24 (Pitman’s estimator). Suppose that Y = (X; —

Xn, .-y Xu_1 — Xy) and L(6,a) = (0 — a)?. Suppose that &y is a loca-
tion equivariant estimator with finite risk. Then, the equivariant estimator
with smallest risk is 6y(X) — Eo[do(X)|Y].

Proof. If Jy is a location equivariant estimator with finite risk then
all other equivariant estimators have the form 6y(X) — v(Y). Indeed,
J is equivariant if and only if § — Jp is invariant. So it remains to
show that every invariant function f is a function of Y. This follows
because

fx) = f((y,0) +x41) = f(y,0) = o(y).
By Theorem 2.6.23, the risk function is invariant in 8 for an equivari-
ant ¢, and so

R(6,0) = R(0,0) = Eoldy(X) —o(Y)]* = Eo(Eo[(60(X) —v(Y))*|Y]),
which is minimized by minimizing Eo[(Jy(X) — v(Y))?|Y = y] uni-
formly in y. This is accomplished by choosing v(y) = Eg |4 ( )Y =
yl- O

Like with the Lehmann-Scheffe theorem, we get an explicit pro-

cedure of obtaining the best equivariant estimator by improving any

given equivariant estimator. + Exercise 2.7.20
It can be shown that the Pitman’s estimator is the generalized

Bayes rule with respect to the uniform “prior” distribution. This fact

and Theorem 2.6.24 can be both generalized; see Section 6.2.3 in 8;

will not provide any more details.
Verlag, New York, 1995

Theorem 2.6.25. Consider an invariant decision problem. Under some
assumptions, if the formal Bayes rule with respect to the right invariant
Haar prior on G exists, then it is the minimum risk equivariant rule.

The following case of the truncated normal distribution shows
the power of this result. Using Theorem 2.6.24 directly is rather te-
dious. Computing the generalized Bayes rule E(6|X) in this case is
straightforward. + Exercise 2.7.21

61

; we 8 Mark J. Schervish. Theory of statistics.
Springer Series in Statistics. Springer-
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2.6.3 Type I error constraints

Recall the testing problem in Example 2.2.2, which is a particular
instance of a decision problem with A = {0,1} and o/1-loss

L(6,a) = 1(a=1,0 € 0g) +1(a=0,0 € ©) (2.15)

which is associated to testing two competing hypotheses Hy : 6 € ©g
versus Hj : 6 € ©7. The data are X ~ Py for 6 € Oy U O1.

It is usual to find tests that bound the type I error, defined as
Supyc@, f(0), on some level a, where the power function f(-) is de-
fined in (2.3). By the risk calculation in Example 2.2.2,

sup B(0) = sup R(6,9).
0@ 0€®q

On the other hand

sup R(0,6) = sup(1—B(0)) = 1— inf B(6),
00, 00, €6,

which is precisely the type II error. It follows that

R(6) = sup R(6,6) = max{sup R(6,9), sup R(6,9)}.
0c®yUO; 8€0 0€0,

By “bounding the type I error” we mean optimizing R(6) by restrict-
ing to test procedures § with an explicit constraint on the type I error:

sup R(0,0) < a.
0€©)

< Exercise 2.7.22

Definition 2.6.26. A test ¢* with level w is called uniformly most pow-
erful (UMP) if
Egp® > Egp,  forall6 € O,

for all ¢ with level at most .

As we will see, test of this form may appear only in very special
situations and mostly in the univariate case. A particularly famous
instance is discussed in Section 3.1.

2.7 Exercises

Exercise 2.7.1. Show that if f : A — [—o0,00] for A C R? is lower
semicontinuous then it is measurable. Hint: Use Exercise A.2.8.

Exercise 2.7.2. Suppose that x1,...,x, € R. Show that the minimizer of

f(0) = Ly (0 —x;)? is the average L Y- | x;. Moreover, show that the
1

median of the collection x1,...,x, minimizes f(0) = YLy [0 — x;.
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Exercise 2.7.3. Show that the estimator 63 in Example 2.1.1 is a Bayes rule
for the quadratic loss and a beta distribution.

The next two exercises allow you to explore a similar situation in
the case when the loss function is not differentiable.

Exercise 2.7.4. In the one-dimensional case, show that if L(6,a) = |6 — a
then the Bayes estimator is the median of the posterior distribution 7t(6|x)
(c.f. Exercise 2.7.2).

Exercise 2.7.5. Show that if L(6,a) is the 0/1-loss then the Bayes estimator
is the mode of the posterior distribution 7t(0|x).

Exercise 2.7.6. In the setting of Theorem 2.3.7 show that 7t is least favourable.
Exercise 2.7.7. Show that in Section 2.3.5 we always have L* < U*.

Exercise 2.7.8. Let (Xy,...,Xy) be a random sample of binary random
variables with X; ~ Bern(0) with 6 € (0,1).

(i) Show that the sample mean X, is an admissible estimator of 6 under the
loss function L(0,a) = (a —0)2/[0(1 — 0)].

(ii) Show that X is an admissible estimator of 0 under the squared error
loss.

Exercise 2.7.9. Show that if a minimax rule is essentially unique then it is
admissible.

Exercise 2.7.10. Show the following result: If risk functions for all decision
rules are continuous in 0, if 6 is Bayes for 7t and has finite integrated risk
r(m,8) < 400, and if the support of 7t is the whole parameter space, then &
is admissible. Hint: This looks much more complicated than it actually is.

Exercise 2.7.11. Show that if §(X) is an unbiased estimator, Egd(X) = 6,
then 1(T) is also unbiased.

Exercise 2.7.12. Consider the special case when 6 = 0. In this case || X||* ~

X3. Show that E ”)}”2 = -5 and so

R(0,45) = 2 << d.

Exercise 2.7.13. Suppose that Z € RY*? is a fixed matrix of full column
rank (in particular p < d). Consider a linear estimator of u given by i =
Z(Z'Z)7'Z" X. Compute the risk of this estimator. Discuss conditions
when the risk of this estimator can be significantly smaller given p << d.

Exercise 2.7.14. Show that the linear estimator jic with C defined in (2.14)
satisfies the conditions of Proposition 2.5.6 and so it is admissible.

Exercise 2.7.15. Show that the decision rules that are unbiased with respect
to the square loss L(6,6) = ||6 — 6(X)||? are the rules satisfying Egd(X) =
6.
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Exercise 2.7.16. Suppose Y ~ Ny (y, I,). Let X € R"*F be a fixed matrix
with full column rank. In this exercise we consider estimators of the form

fi = Xp for some estimator . More specifically, we study the least squares
estimator 5 = (X" X)71X"Y.

(i) Find the formula for the risk R(u, fic) of a general linear estimator
fic = CY.

(i) Let iS5 = XBLS be the corresponding estimator of the mean of Y. Find
the risk of this estimator directly in terms of Co = X(X " X)71X ", u, n,
and p only.

(iii) Suppose p = XpB* for some p* € RP. Show that R(u, fi'S) = p.

(iv) Consider the ridge estimator i8¢ = (XX + 61,) "' X 'Y and the
corresponding matrix Cs = X (XX + 0I,) X", where § > 0. Show
that R, fi98°) = tr(C3) + | (In — Cs)pl|*.

(v) Suppose that X' X = Ip and that p = XB* for some B*. Show
that for every B* # O there exists & > 0 such that R(Xp*, pridse) <
R(XB*,i9).

Exercise 2.7.17. Consider estimation in a regular exponential family and let
the action space A be its set of mean parameters. Consider the loss function
given by the Kullback-Leibler divergence in (1.18):

L(O2, 1) = K(py, 02) = A"(py) + A(62) — (02, py)-

Given a sample Xy, ..., Xy, consider the sample average of the sufficient
statistics 6(Xy, ..., Xy) = &,. The minimizer 8, of L(8,7,) is the MLE of
the canonical parameter. Although 7, is an unbiased estimator (in the usual
sense) of the true mean parameter u, this is typically not true for 8. Show
that 1, is an unbiased decision rule in the sense of Definition 2.6.1.

Exercise 2.7.18. Show that the set of equivariant randomized decision
rules is convex (with convex combination defined as in (2.4)). Discuss some
natural conditions under which the set of non-randomized equivariant
procedures also forms a convex set.

Exercise 2.7.19. Show that the squared loss function is invariant for the
translation family in Example 2.6.12.

Exercise 2.7.20. Show that for the Gaussian model N(6,1) the Pitman’s
estimator is the sample mean.

Exercise 2.7.21. Let (Xq,..., Xy) be a random sample of random variables
with the Lebesgue density

2= (x=0)2/2 ifx>0
fo(x) = § 7

0 otherwise



STATISTICAL DECISION THEORY (1 WEEK) 65

where 8 € R is unknown. Find the minimum risk location equivariant
estimator of 0 under the squared loss.

Exercise 2.7.22. Show that bounding the type I error in Section 2.6.3 gives
a convex constraint on 6 € D.






3
Hypothesis testing and multiple testing (2 weeks)

Our goal in this section is not to give an extensive treatment of hy-
pothesis testing procedures. We trust that much of it was covered in
earlier courses. This includes the basic philosophy of constructing
statistical tests (rejection regions, p-values etc).

Given data X ~ Py and a model P = {IPy : 6 € ®}, consider two
competing hypothesis: Hy : 6 € ©g, Hy : 6 € ©7. Unless otherwise
stated we assume that ® = @y U ©; and ©y N ®; = @. In this context,
A = {0,1} and we are interested in statistical testing procedures
0 : X — {0,1}. In consequence, every nonrandomized test can be
associated with a measurable set S C X such that the decision rule
becomes: accept H; if X € S and accept Hy when X ¢ S. From the
theoretical perspective it is also useful to allow for randomized tests,
in which case the critical function ¢ to every x € X is assigns the
probability of rejecting Hy given X = x

¢(x) = P(reject Hy|X = x),

where ¢ is assumed to be a measurable function from X to [0,1]. A
nonrandomized test is a randomized test with ¢(X) =1(X € S).

Recall from Example 2.2.2 that the power function is the function
B:©® — [0,1] defined by

B(6) = Py(reject Ho) = [ p(x)dPy = Egg(X).

Using the o/1-loss we see that the risk function satisfies

R(,5) — B(6) if 0 € O
' 1—PB6) if6c®

In the idealised situation we would have g(8) = 0if 6 € © and
B(6) = 1for @ € O;. This is obviously not possible in most of the
cases. For example, when all [Py have the same support. However,
a good test would try to be close to that. We define the significance
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level of a test as

a = sup B(6) = sup Egp(X).
0@ 0@

The main technical convenience of randomized tests comes from the
fact that the set of critical functions is a convex set.
3.1 Neyman-Pearson lemma*

In this section we discuss a classical result in the case when Hjy and
H;j are both simple with the underlying density functions py and p;
with respect to some underlying measure y. The type I error is

Eop(X) = [ p(x)po(x)dn(x)

and another quantity of interest is

Eip(X) = [ ¢(x)p1(x)du(x).

A good test will result in small type I error (small [Ey¢) and small
type Il error (big IE1¢). We want to explore to what extend this can
be achived.

As discussed in Section 2.6.3, a natural approach is to consider the
optimization problem:

maximize [Ep¢(X) subject to Egp(X) < a.

We call such test the most powerful.
Consider the likelihood ratio statistic

o - 28

where we define LR(x) = +o0 if p1(x) > 0, po(x) =0, and LR(x) =0
if po(x) = p1(x) = 0. For any A > 0 we consider the critical function

1 ifLR(x) >
pa(x) == {7 ifLR(x)

A (3-1)
0 ifLR(x) < A.

Note that, if v € (0,1), the corresponding test is randomized, as we
need to toss a y-coin when we observe LR(x) = A. Our freedom to
choose v will add extra flexibility in a second.

Constructing a test of size « is not a problem. It is enough to toss
an a-coin to decide on the decision. However, this procedure does not
depend on the data so it is clear that its power will be low.



HYPOTHESIS TESTING AND MULTIPLE TESTING (2 WEEKS) 69

Theorem 3.1.1 (Neyman-Pearson Lemma). Given any level « € [0,1]
there exists a likelihood ratio test ¢ with level x. Any likelihood ratio test
with level &« maximizes Eq @ among all tests with level < a.

Proof. To prove the first part note that for # = 0 we can take A = +oo,
and for « = 1 we can take v = 1, A = 0 (check carefully). Now take
a € (0,1). By construction, Pg(LR = o0) = 0 and so LR is finite
Pp-a.s. We claim that this implies that

JA <co suchthat Po(LR>A) <a and Po(LR > A) > a.
(3-2)
Before we continue, take a look at Figure 3.1. As we showed in
Proposition C.1.2, the survival function G(A) = Po(LR > A) is
right-continuous. Thus taking

= inf{f: Py(LR <
A :}rzlo{t o(LR > t) < u}

we get Pg(LR > A) < a. By Remark C.1.3, the function Py(LR > A) is
left-continuous in A. Since, for every € > 0

Po(LR>A—€) > Po(LR> A —¢€) > a,

we get that lim; ,,- Po(LR > t) = Pp(LR > A) > a confirming (3.2).
By properly randomizing our procedure, we can obtain level ex-
actly a. If Po(LR = A) = 0 then Pp(LR > A) = Pp(LR > A) = a and
so the likelihood ratio test for this A has level exactly a. If Po(LR =

A) > 0, we define

& —Po(LR > A)

"= DRz N PR Ay < 0D

and it is straightforward to check that Egp, (X) = a with this choice
of .

By the first part, there exists A > 0 (and y € [0,1]) such that ¢, has
size «. Let ¢ be any test with level < a. We have

Eip(X) < Eig(X) = MEop—a) = [ 9(x)(p1(x) = Apo(x))p(dx) + Aa

IN

[ oa()(p1(x) = Apox) () + Aa
< Eiga(X) — MEopr —a) = Eipa(X).

The following corollary will be useful.

Lemma 3.1.2. In the likelihood ratio test with level & = Egg, (X) we have
E ¢, (X) > a with equality if and only if pg = p1.

Figure 3.1: The claim (3.2) is clear if
the CDF P(LR < A) is continuous.

If it is not and & accurs at one of the
jumps, we use the fact that the CDF,
and so also the function Py(LR > A) is
right-continuous as on the picture.

< Exercise 3.7.1
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Proof. A silly test 6, where we decide based on an a-coin flip re-
gardless the data (¢(x) = a for all x) satisfies &« = [Epd(X) but

also E16(X) = a. By the Neyman-Pearson lemma we conclude that
E;1¢,(X) > a. By Lemma 3.7.1, we can conclude that the inequality is
strict, unless the silly coin-flip is equivalent with the likelihood ratio
test, which happens if and only if po(x) = p1(x) for all x. O

Example 3.1.3. Suppose pg(x) = 0e=% for x > 0. Consider the test
Ho : 0 = 1 versus Hy : 8 = 0y for a fixed 6, > 1. A likelihood ratio test is
given by the rejection region

LR(x) = px) _ fre1700X >y

or equivalently if
- log(61/X)

= Al
61 —1
The level is
v = Py(X<A)= / e ¥dx = 1—¢ .
0
Solving A" = —log(1 — «) gives a test with level a. By Proposition 3.1.1

the test constructed in this way maximizes IE1 ¢ over all tests with level

at most w. Note that the test does not depend on 01! Hence, this test is the
UMP test for Hy : 0 = 1 versus Hj : 61 > 1. In the next section we provide
some general theory explaining this phenomenon.

Often, instead of LR(x) we work with the log-likelihood ratio
A(x) = log LR(x) (for essentially the same reason as we prefer log-
likelihoods). If po, p1 both lie in the same exponential family with
parameters 6, 61 then

A(x) = (61 — 8o, t(x)) — (A(61) — A(60))

and so thresholding LR(x) is equivalent to thresholding a linear
function of t(x). The following simple example plays an important
role later.

Example 3.1.4 (Linear discriminant analysis). Consider two classes
that are distributed as multivariate Gaussians, say N(po, X) and N(pq,2),
respectively, differing only in their mean vectors. For each observation we
want to decide from which of the two classes it comes. In this case, the log-
likelihood ratio reduces to the linear statistic

Alx) = <#1 — po, 7 (x— yo;’“>> (3-3)

(Note that A(pq) > 0and A(pp) < 0)
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By the Neyman-Pearson lemma, the optimal decision rule is based on
thresholding this statistic. Concretely, if the two classes are equally likely,
then the corresponding Bayes risk of our procedure is given by

1 1
Err(A) = 5Po(A(X) 2 A) + 51 (A(X) < A) (34)
and we use it to evaluate the quality of this decision rule. <+ Exercise 3.7.2

Given our Gaussian assumptions, some algebra shows that the error
probability can be written in terms of the Gaussian cumulative distribution
function ® as

Err(0) = ®(=v/2)  wherey = |[p1 — pollz, (35)
where ||x||y = VxTZ 1x.

3.1.1  Derivation from the first principles*

In our calculations above we used a guess that the optimal test
should be based on the likelihood ratio and then it was straight-
forward to show that such a test must be optimal. In this subsection,
we argue how we could come up with this guess. Note that our opti-
mization problem is equivalent to maximizing

Eig if Eop < a,
fle) = { 17 Ro?

—oo otherwise.

Denote by ¢* an optimizer of this function and note that

inf {E1p —A(Bop —a)} = f(g). (3.6)

The function L(¢,A) = E1¢ — A(Epp — «) is called the Lagrangian
and (3.6) shows that

— inf L(p, A .
sipf(st’) sngo (¢, M), (3.7)

where the supremum over ¢ is unrestricted and it runs over all criti-
cal functions. It is clear that

inf L(p,A) < infsupL(,A). .
sgpgo (p,A) < gOS‘;P (¢, M) (3.8)

The next result states that the inequality in (3.8) is actually an equal-
ity. The proof is similar to the proof of Theorem 2.3.9.

Proposition 3.1.5. We have

inf = : :
sup inf L(g,A) ggsipL(fp,A) (3-9)
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Proof. This is a standard strategy in proving strong duality. Let
A={(u,t):Eyp—a <ulE ¢ >t for some ¢}
so that E;¢* = sup{t: (0,t) € A}. Consider also a set
B={(0,s):s>E9p"}.

The sets A, B are both convex and disjoint subsets of R? (make
sure you agree). By the separating hyperplane theorem (c.f. Theo-
rem B.1.3) there exist real numbers A, y, B such that

Au—put>p  forall (u,t) € A, (3.10)

Au—ut<p  forall (ut) €B. (3.11)

If (u,t) € Athen (u/,t') € Aforeveryu’ > uandt < t. Hence,
(3.10) implies that A > 0 and u# > 0 for otherwise this expression
could not be bounded below. Since u = 0 in B, (3.11) states that
—ut < B for every t > [E ¢*. But then also —ulE;¢* < B. It follows
that for every ¢

AMEop —a) —pEr9 > B > —uEip*.
or equivalently, denoting A* = %,

A (Eop —a) —E1p > > —Ejp".

==

This gives that
inf L(g,A) = E19* > sup L(@,A*) > inf sup L(@, A).
sngo (¢, A) =Ei9 _sip (¢ )_gosg)p (¢, M)

This proves the reverse of (3.8) and thus the equality in (3.9). O

By equation (3.7) and Proposition 3.1.5, in order to maximize f we
can first optimize L(¢, A) over ¢ and then over A. For any fixed A > 0
we have

Lg,A) = Eip = A(Eop — ) = [ g(x)(p1(x) = Apo(x))dx + A

As we also argued in the previous section, irrespective of &, it is clear
that ¢ that optimizes L(¢, A) satisfies

o) — {1 if 1 (x) = Apox) >0 a2

0 if p1(x) —Apo(x) <O

If p1(x) — Apo(x) = 0, ¢(x) can take any value. So the optimum ¢ is
given by a likelihood ratio test.
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3.2 Some constructions of UMP tests*

If the hypotheses are not both simple the situation is in general much
more complicated and a uniformly most powerful test (as defined in
Section 2.6.3) may be hard or impossible to obtain. In this section we
discuss some of the special situations when a UMP can be obtained.
We also provide alternative approaches to find a test with good prop-
erties.

3.2.1  Monotone likelihood ratios

A one-dimensional family of densities pg(x), # € ® C R has mono-

tone likelihood ratios (MLR) in T(x) if, whenever 0 < ¢’, the likeli-

hood ratio pg/(x)/pe(x) = h(T(x)) for a nondecreasing function h. A
canonical example of such a situation is a one-dimensional exponen-
tial family with

po(x) = h(x) exp{n(6)T(x) — A(6)},

with the canonical parameter # being a strictly increasing function of
the parameter of interest 6. In this case, if ' > 6, then

P00 oxp{(r(#) ~ n(@)T(R) + A0) — A,

which is increasing in T(x).
In this section we will be interested in testing

Hy:0 <6 versus Hq:0 > 6.

Consider the test

1 if T(x) > ¢,

pi(x) =<y if T(x)=t, (3.13)

0 ifT(x)<t
Note that for MLR families the corresponding test is equivalent to
the likelihood ratio test. In particular, for any 6; > 6y, this statistic
gives a most powerful test for Hy : 8 = 6y versus Hj : 6 = 6, at level
a = Eg ¢;(X). The following result allows us to get a more general
statement.

Proposition 3.2.1. If P = {IPy : 6 € © C R} has monotone likelihood
ratios and Py # Py for 0 # 0'. Then, for every t > 0, the power function
B(6) = Egq:(X) is strictly increasing in 6.

Proof. Note that for any 61 < 6, ¢¢(X) is equivalent to the likelihood
ratio test and so it is the most powerful test for testing Hy : 6 = 6;
versus Hy : 6 = 0, at level [Eg, ¢:(X). By Lemma 3.1.2, we conclude
that Eg, ¢:(X) < IEg,¢:(X) with equality if and only if pg, (x) =

P, (x). O
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As a corollary from this result we get that

sup Eg¢:(X) = Eg,¢:(X).

0<bp
In particular, the same test statistic can be used to get a most power-
ful test of size & = Eg, ¢+(X) for testing Hp : 6 < 6 versus Hy : 6 = 6,
for any 6; > 6. This reasoning gives us the following result (read
carefully Definition 2.6.26 again).

Theorem 3.2.2. Suppose the family of densities has monotone likelihood
ratios. Then the test ¢ in (3.13) is uniformly most powerful for Hy : 6 < 6y
versus Hy : 6 > 6 and has level « = Eg @t Any o € (0,1) is possible.

We discuss an example that is not an exponential family.

Example 3.2.3. Suppose the data X1, ..., Xy, are i.i.d. from the uniform
distribution on [0, 6]. The joint density py(x) is positive if and only if
x; € [0,0] fori = 1,...,n and this happens if and only if M(x) =
min{xy,...,x,} > 0and T(x) = max{xy,...,x,} < 6. Thus

po(x) = {1/9" if M(x) >0,T(x) <6

0 otherwise.

Suppose 0 > 01, M(x) > 0, and T(x) < 6,. Then

P, (x) _ {(91/92)” if T(x) <6

Po, (x) ) otherwise.

This shows that the family of joint densities has monotone likelihood ratios.
If we are interested in testing 8 < 1wversus Hy : 8 > 1, the test function
@t (x) gives the UMP. This test has level

]E](pt(X) = ]Pl(T > l’) =1-t"

and a specified level a can be achieved taking t = (1 — a)'/". The power of
this test is
0 ifo <t

1-158 ifo >t

B(0) =Py(T = t) = {

3.2.2  Affine submodels*

Consider an exponential family as in (1.5). Consider a p-dimensional
linear space £ C RY and the corresponding ® = @ N L. There
exists a simple affine change of coordinates form 6 to (A, 3) such that
©y = {(A, 9) : p = 0}. If the basis of L is given by the columns of
RY*? then § = AA parametrizes @. Thus, for 8 € @) we have

(0,1) = (AL, 1) = (A, ATE) = (A, u),
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where u = ATt is the sufficient statistics of the p-dimensional model
parametrized by .

Thus, without loss of generality we assume t = (u,v) with ¢ = 6,
and A = u,,. We want to test the g-dimensional hypothesis (g = d — p)
$o =0

Hy: =0, versus @ # 0.

A simple example is that we have a regression model and want to
delete a certain set of its regressors to reduce the dimension of the
model. Alternatively, the primary model might be the smaller p-
dimensional model with canonical statistics #. We want to test if this
model fits data, by embedding it in a wider model. As an example,
consider the problem of testing a Gaussian graphical model with
respect to graph Gy (see Example 1.9.5) versus a Gaussian graphical
model with respect to graph G D Go.

We first consider a model reduction of the canonical statistics
from t = (u,v) to u. In Section 1.5 we argued that any inference
on ¢ should be done conditionally on u. The argument was that
u provides no information about i as expressed in the likelihood
factorisation (1.14) valid whether Hj is true or not. All information
provided by u is consumed in estimating u,, and this parameter has
no information about i by variational inference.

Recall the form of the distribution of t = (u#,v) in (1.6) and con-
sider the conditional distribution for v given u. Inserting ¥y = 0
simplifies this to

fotolu) = S22, G)

where index 0 indicates distribution under Hy, and in particular
go(u) = [ g(u,v)dv is the structure function in the marginal expo-
nential family for # under Hy. Note that, under the null, the condi-
tional distribution of v given u is parameter free.

We propose the following test for Hy : ¢ = 0 versus Hj : ¢ # 0:

(i) Use fo(v|u) as the test statistic, which, under the null, is equal to
the conditional density of v given u.

(i) Reject Hy if fo(T|u) is too small, and calculate the p-value as

P(fo(ol@) < fo(al@)) = fo(ol@)do,

/fo(vlﬁ)gfo(ilﬁ)
where %, 7 denote the observed quantities.

These test follow the Fisher’s principle of exact tests. “Exactness”

comes from the fact that the test achieves exactly the desired size «

(as opposed to approximate tests). One obvious question is about the
power of such a procedure.
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Consider a special case of the above setting when t = (u,v) with
v one-dimensional. In this case 0, is one-dimensional too and we can
obtain a uniform most powerful test for Hy : i = 0 versus Hy : i # 0.
Recall that, under the null, the conditional distribution of v given u is
parameter free. We will then use directly v as the test statistic with u
fixed and consider the test ¢*(x) defined as

1 ifo>c*(u),

)

¢ (x) =97 () ifv=c*(u),
ve(u) if v =ci(u),

1 ifo <cy(u

7

0 ifv e (ce(u),c*(u)),
with ¢(+) and 7(+) adjusted so that the test has exactly level a.

Theorem 3.2.4. If the exponential family is regular and 0, is one dimen-
sional, then ¢* is a uniformly most powerful unbiased test of Hy : 6, = 0
versus Hy : 6, # 0.

Proof. See Theorem 13.6 in *. O

Example 3.2.5 (Mean value test for a normal distribution). Consider
testing Hy : p = 0 for a sample of size n from N(p,0?). In Example 1.1.4
we note that the canonical parameters of this family are (%, —2}7) 50 equiv-
alently we test 01 = 0 with v = Y _; x;. The exact test should be conditional,
given u = Y; x? = ||x||%. Thus we are free to eliminate the scale parameter
by considering v/+/u instead of v. Indeed, use Exercise 3.7.3 to conclude
that, under the null, u 1L v/+/u and the vector %(xl, ..., Xp) is uniformly
distributed on the (n — 1)-dimensional unit sphere and so the distribution
of v/+\/u is also parameter-free. Exercise 3.7.3 also allows to conclude that
v/ /u is independent of u. Thus we can forget about conditioning on u, that
is, we may restrict attention to the marginal distribution of v/\/u.

The last step is to show that this test is equivalent to the t-test. Let T =
\/HJZ /s be the t-test statistic. Let us rewrite v/+/u as

nx nx/s B VNt

nx .
Joe Vg en? - =D+ (Vir/s? -+

The right-hand side is seen to be an odd function and monotone function of
T. Thus, a single tail or a symmetric pair of tails in u/+/v is equivalent to a
single or symmetric pair of tails in the usual t-test.

3.3 Sequential testing*

The aim of this section is to give a brief introduction into sequential
testing. For simplicity we focus on the sequential probability ratio

! Robert W. Keener. Theoretical statistics.
Springer Texts in Statistics. Springer,
New York, 2010. Topics for a core
course

< Exercise 3.7.3

< Exercise 3.7.4
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test. This test was suggested by Wald for simple versus simple test-
ing with i.i.d observations with optional stopping. Let X;, Xy, ... be
iid from a distribution with density pk, k = 0,1, and consider testing
Hy : k =0 versus Hj : k = 1. Define

LRy = LRy (X1, ..., Xu) = f[ pl(Xf) (3.15)

the likelihood ratio for the first # observations. By convention,

LRy = 1. From the Neyman-Pearson theorem we know that for a
fixed sample size the best test rejects Hy according to the size of LR;,.
In the Sequential Probability Ratio Test (SPRT) at each step the re-
searcher has three options: stop and accept Hy, stop and accept Hi,
or continue sampling. For the SPRT these options are resolved by
comparing the likelihood ratio with two critical values 79 <1 < 7 in
the following manner:

1. If LR, € (70,71), take another observation.
2. If LR, > 7, reject Hy.
3. If LR, < 79, accept Hp.

Formally, the sample size for this SPRT is then a random variable
defined as

N := inf{n: LR, ¢ (v0,71)}-

We will set the thresholds to provide desired power

B =P (LRy > 1)

and size
a =Po(LRy > 7).

Note that both quantities involve N, which makes the analysis
more subtle. To simplify the notation, for a fixed n € IN, let x :=
(x1,...,xn) and write py(x) := [T pr(xi), k = 0,1. Let Ry = {x :
LR, > 1} be the rejection region. Note that

Pi(LR, > 1) = /R pr(x)dx = /R LRypo(x)dx > 71Po(LRy > 71).
1 1

(3.16)
Similarly, denoting Ry = {LR,, < 7o},

Po(LR, < 70) = /R po(x)dx = /R LR, 1py (x)dx > 75 P; (LR, < 70).
0 0

(3.17)
With a bit more careful treatment (using Wald'’s likelihood ratio iden-

77

tity, Theorem 2.3.3 and Section 3.1.1.1 in ?) we can replace n with the 2 Alexander Tartakovsky, Igor Nikiforov,
and Michele Basseville. Sequential anal-

ysis: Hypothesis testing and changepoint

detection. CRC Press, 2014
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stopping time N both in (3.16) and (3.17). It follows that 8 > & and
(1—a) >, (1—pB) and so

B

o

—_

—B

and Yo >

7 < (3.18)

—_
=

The relation between («, 8) and (o, 1) is complicated. The above
inequalities lead to an approximate analysis. Suppose (a*, *) are
some desired size and the power. Using the proposal of Wald, we set

7= 5* and v, = 1 'B . Note that a*, p* are typically not equal to the
real size and power. The bounds in (3.18) guarantee however that is
«* is small and B* is large then & ~ a* and 8 ~ pB*; see Figure 3.2.

Expected stopping time of SPRT. To gain insight into this issue,
let us consider the expected stopping time. We can calculate the
expected value of N as follows. First observe that, for any fixed time
n,

(lo (X) _ JnD(p1llpo)  ifk=1

where D(py||p1) is the KL-divergence between py and p;.

Proposition 3.3.1 (Wald’s identity). Let Y1,Y5,... be independent

and identically distributed random variables with mean y and suppose
E|Y;| < C for some C. Let N be any integer—valued random variable such
that E[N] < coand {N = n} € o(Y1,...,Ys). Then E[Y.N, Y;] = uE[N].

Proof. Start by noting that the event {N > i} = (U;;%{N = j})-
Thus, the event is independent of Y;, Y; 1, ... (since it is determined
by Yi,...,Y;_1). From this we see that

8

Z]E|Y|]1N>z :2 (IY;)P(N >i) <CEN < co.  (3.19)

i=1 =1

Write

ngk:

E(YY) = BN > i)Y,) =

i=1 i=1 i

E(L(N > i)Y)).

I
—

(the interchange of expectation and summation is justified by the
dominated convergence theorem and (3.19)). Therefore,

o)

im(N > i)Y = B(Yy) Y E((N = ) = g iw > i) = uE(N).

i=1

1

O
So, by Wald’s Identity we have
E{(N)D ifk=1
E,(logLRy) = 1(N)D(p1llpo) 1 (3.20)
—IEo(N)D(pol[p1) ifk=0.

Figure 3.2: Bounds in (3.18) with
70—15*and'71 'B-
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Now to obtain an expression for E;(N) we will derive another for-
mula for E;[log LRy]. Let us assume the value of the likelihood ratio
is approximately equal to a threshold level when the SPRT termi-
nates. The value of the likelihood ratio will typically be just slightly
greater /lower than the upper/lower threshold level. Using this ap-
proximation and smoothing (note that Pi(LRy € (79,71)) = 0) we

can write
Eo(logLRy) ~ alog(11) + (1 —a)log(7o)
R alogg—f—(l—zx)log}:’i,
where we used the fact that y; = | and 79 = % Similarly,
E;(logLRy) =~ ﬁlogg +(1—pB)log %. (3.21)

Denoting by 7, ~ Bern(«) and 715 ~ Bern(p), we get [Eg(log LRy) ~
—D(7ty||7t5) and Eq(log LRy) =~ D(7g| 7ty ). With these approxima-
tions, using (3.20), we obtain expressions for E;(N):

- D(74||715)
EoN) ~ B allpn)

Ei(N) ~ 7];(”’”‘”“).
(p1llpo)

Note that the expected stopping times increase as the KL divergences
decreases (as the two densities become less distinguishable). Increas-
ing B or decreasing « also increases the expected stopping time.

Optimality of SPRT The expected stopping time of the SPRT that
we determined above is optimal. No other test can achieve the same
B and « with a smaller expected number of samples, under either
hypothesis, as the following result shows.

Lemma 3.3.2 (Lower bound on expected stopping time of any testing
procedure (Wald&Wolfowitz 1948)). Let o and B be given and consider
any sequential test with size < a and power > B. Then the expected stop-
ping times N’ for the test satisfy ExyN' > EyN for k = 0,1, where N is the
stopping time of the corresponding SPRT with size « and power p.

The lemma shows that if no other test can have error levels as
small or smaller than the SPRT and have expected stopping times less
than the values computed above for the SPRT.

Example 3.3.3 (Sequential testing in Gaussian case). Let Xj, Xp, ... be
an i.i.d. sequence of normal variables N(p,1). Consider the simple binary
testing problem: Hy : w = 0, Hy : u = po > 0. For simplicity, let us
specify equal probabilities of error, that is, a =1 — p < % In this case the

79
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optimal cut-off for the (non-sequential) likelihood ratio test is to reject the
null if log LR,, > 0. It also easily follows that

o).

where ® is the CDF of the standard normal variable. So the number of
samples required for a specified w is

2@ (@)
o
Since D(pollp1) = p?/2 and D(m,||7tg) = D(mgllma) = (1 —

2a) log 1%", the expected stopping time of the SPRT in this case is ap-
proximately

Eo(N) = E{(N) =

Compare the two quantities to see that the sequential sample requirement is
indeed preferred.



HYPOTHESIS TESTING AND MULTIPLE TESTING (2 WEEKS)

3.4 Motivating multiple testing

Selective inference means searching for interesting patterns in data,
with statistical guarantees that account for the search process. It en-
compasses multiple testing, post-selection inference, and adaptive or
interactive inference. There are two main situations for considering
simultaneous inference. One situation is when we test multiple hy-
pothesis. Another is when we try to obtains simultaneous coverage
for confidence intervals for a multiple parameters. In this section we
will focus on multiple testing.

As a general motivation, consider the general problem of si-
multaneously testing a finite number of null hypotheses H}, for
i=1,...,m

Example 3.4.1. Suppose that we have m genes and data about expression
levels for each gene among healthy individuals and those with lung cancer.

‘ Healthy (k patients) ‘ Lung cancer (I patients)
Expression Level of Gene i ‘ xl(].o), 1<j<k ‘ xlg]-l), 1<j<lI

The i-th null hypothesis, denoted H},, would state that the mean expression
level of the i-th gene is the same in both groups of patients.

We assume that the tests for the individual hypotheses are avail-
able (T; test statistic, R; rejection region, P; the associated p-value,
i.e. the smallest « leading to rejection) and the problem is how to
combine them into a simultaneous test procedure. The easiest yet
extremely naive approach (as illustrated in the webcomic xkcd?) is 3See https://xkcd. com/882/
to disregard the multiplicity and simply test each hypothesis at level
«. However, with such a procedure the probability of one or more
false rejections rapidly increases with n. For example, if all test are
independent of size « and all null hypotheses are true then

m

Po(({Ti € Ri}) = [[Po(T; ¢ Ri) = (1 —a)™.

i=1
In this sense the claim that the procedure controls the probability of
false rejections at level « is clearly misleading. A similar situation
emerges when constructing a confidence region for a parameter
vector using individual confidence intervals for each component.

3.5 Family-wise error rate

Let Ho C {1,...,m} be the index set of the true hypotheses and let
R C {1,...,m} be the set of rejected hypotheses. Denote my = |H,|.
The family-wise error rate (FWER) is

FWER = P(|[HoNR|>1). (3-22)
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A natural approach it to replace the usual condition for testing a
single hypothesis, that the probability of false rejection not exceed «,
by the requirement

FWER < «

for all possible combinations of true and false hypotheses. Methods
that control the FWER are often described by the p-values of individ-
ual tests.

3.5.1  Example: Gaussian sequence model

For simplicity of the discussion, for most of this section, we restrict
our discussion to the important example given by the Gaussian se-
quence model. Consider a model Y; = y; +¢; fori = 1,...,m, where
€; ~ N(0,1). For now we will not assume that ¢; are independent*.
Also the case, when variance of the noise is a general ¢ > 0 but
known can be easily covered. The typical question that is asked about
this model is how we can test, which elements of u = (y1,..., um) are
zero, or perhaps, which elements of i are equal to each other. There
are many other questions that can be phrased as linear equalities or
inequalities in the vector .

In the question of testing which y; are zero, we already mentioned
the naive approach: take z,, = ®1(1 — a/2). Test H) : y; = 0
using the test statistic T; = |Y;| and rejection rule 1{|Y;| > z,,}. One
classical fix is given by the Bonferroni correction, which is to use a/m
instead of «. Now, we test Hj : ; = 0 with the test 1{|Y;| > z, /2 }-
Assuming all the nulls are true, we obtain

i o
FWER = Po(3i |ej] > zopom) < Y Pollei|l > zojom) = mo = a
i=1
where in the inequality we used the union bound. It is clear that the
union bound can be conservative, which implies that the Bonferroni
bound can be conservative too. In the special case when all ¢; are
independent, the events {|¢;| > z,/2,,} are independent and

FWER

m
Po(3i el > zayom) = 1 _H]PO(‘EA < Zy/om)
i=1

1

o
1-(1—-)" =~ 1—¢e% =~ a.
( m) e o

Therefore, in this case, the Bonferroni procedure provides a good
control over the family-wise error rate. This also tells us that if we
have many hypotheses (e.g. m = 10,000 genes in the biological
example) then Bonferroni’s test has size approximately 1 — e™*,
which for small « is approximately «. For example, if « = 0.05,
then1 —e™* = 0.04877 ... So to get a test of size 0.05, we could test

each hypothesis at level 0.0512/m.

4 With independence, this model al-
ready appeared in our discussion of the
Stein’s paradox.
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Remark 3.5.1 (Sidak correction). The above calculation shows that we

1/m

could use zz jp with & = 1 — (1 — a)"/™ in order to get the error rate

precisely « under independence.

The Bonferroni correction can become overly conservative in the
case when ¢; are dependent. In the extreme situation, when they are
all equal we get

. «
FWER = P(3i |eil > zojom) = Pller] > zajom) = -

As we said, one of the problems of selective inference can be to
find guarantees for simultaneous coverage. In what follows we are
going to assume full independence of the errors ¢;. Consider a prob-
lem in which for all v € R™ we want to build a confidence interval

Cl, to cover the parameter v ' with the property that
P (’(]T‘M € Cl, forall v € ]Rm> > 1—a.

Since there are infinitely many vectors v, using the Bonferroni cor-
rection is not possible. One way to solve this problem is to use the
Scheffé’s method. First, it is clear that the problem depends only on

the direction of v and not on its norm. Assume then that ||v|| = 1.
The confidence interval Cl, will be centered around v Y. To get its
length, we need to bound |v"Y — v | for all v such that ||v|| = 1.
We use

Xm(a) = the (1 — a)-quantile of the x;, distribution

and define
Cl, = (vTY—Xm(zx),vTYerm(zx)).
We have
P (v peclforall o =1) = P(Jo"Y ~ 0"l < xu(a) foral o] =1)
= PIY —ull <xm(a)) = P(|le]| <xm(a))
= a.

Remark 3.5.2. In this section, we always assumed that c* = 1 or equiv-
alently that 2 is known. If it is unknown, it can be still often estimated
using replicates. So suppose Yj; = p; + €, where ¢; iid. N(0,0?) for
i=1,...,mandj =1,...,n LetY; = %ijijzgi = %stij' Then
Y; = p; + g with g i1d N(0,0%/n). Using ideas in Example 1.4.5, we
can then simply construct an estimate 6> of o2, where 6> 1L gy, . .., &n.

Moreover,

6-2

ﬁ(n —1)m ~ x%n_l)m.

Now the correct modification of Bonferonni bounds is to use the quantiles
of t(n—1)m instead of N(0,1). In the Scheffé’s method we use F,, (1, in
place of xm.
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3.5.2  Bonferroni and Holm

First, recall a basic fact of statistical tests. Suppose a null hypothesis
Hy is true, and we perform a statistical test of Hy and obtain a p-
value P. What is the distribution of P? Recall that the p-value is the
probability of obtaining test results at least as extreme as the result
actually observed, under the assumption that the null hypothesis

is correct. If our test statistic T has a continuous distribution under
Hy with CDF F, and the rejection regions are of the form {X € X :
T(X) < tu}, then the p-value is just the lower tail probability P =
F(T). Thus, for any u € (0,1)

Po(P < u) = Po(F(T) < u) =Po(T < F'(u)) = F(F'(u)) = u.

So P ~ U(0,1) under the null. Similarly, P ~ U(0,1) if we reject for
large T, or both large and small T.

If T has a discrete distribution under Hy, then so does P, so the
null distribution of P would not be exactly uniform. However, we
still have that

P(P<u)<u  forallue (0,1). (3-23)
To show this define

G(u) = sup{y: F(y) <u}. (3-24)

Note that, by definition, F(t) < u implies that t < G(u). Since F is
non-decreasing and right-continuous we have F(G(u)) > u5. Suppose
that u is such that F(G(u)) = u, then

Po(P <u) = Po(F(T) <u) < P(T <G(u)) = F(G(u)) = u

If F(G(u)) > u, F had a jump at A = G(u)

lim F(y) <u,  lim F(y) > u
Jm (y) <u i (y) >u

By Remark C.1.3 the function P(T < A) is left-continuous in A. Thus,
we have

5Indeed, if t > G(u) then F(t) > u. By
right-continuity, if converging to G(u)
from the right gives F(G(u)) > u.

Po(P <u) = Po(F(T) <u) = P(T<A) = lim P(T<y) < lim F(y) < u.

t—=A~ YA~

This gives us one simple way of dealing with multiple testing prob-
lem.

Theorem 3.5.3 (Bonferroni Procedure). If, fori = 1,...,m, hypothesis
H(") is rejected when P; < a/m, then the FWER for the simultaneous testing
of H}, ... ,H(')" satisfies FWER < a.
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Proof. Suppose hypotheses Hj with i €  are true and the other are
false. From the union bound it follows that

FWER = ]P(reject any Hj with i € ’Ho) < Y P(reject Hy)
i€ty
(3-23)
- YPrR<o) < ¥ E<M<n
i€ty m i€ty m m

From the proof, it is clear that, although this procedure controls
FWER, it is generally too conservative to be useful in detecting H})
that are false. If mq is smaller than m, using a/mg would be prefer-
able. The problem, of course, is that m is not known. Note however
that is one H}) is false then my < m — 1 and we could use a/(m — 1)
as the threshold. If this Hé was true and we rejected it then we al-
ready made a mistake so we can do whatever we want and there is
no harm in using a/ (m — 1) for the other hypotheses (if we make a
mistake, it does not matter how many).

The Holm procedure tries to make use of the above observations.
It can conveniently be stated in terms of the p-values Py, ..., P, of the
n individual tests. The procedure starts by sorting the p-values. Call
them P(l) <. < P(m). Then it goes as follows:

1. If Pqy < 4, reject H(()l) and continue. Else stop.

@
m

2. If Ppy < 59, reject Héz) and continue. Else stop.

m

m. If P(m) < a, reject Hém).

In other words, the procedure finds the smallest r such that P(,) >

ﬁtx and it rejects the null hypotheses H, (1), ceey Héril).

Theorem 3.5.4. The Holm procedure satisfies FWER < a.

Proof. Suppose H is the set of true hypotheses. Order the P-values

as above P(l) <. < P(m). Ideally, if i € Hg then P; appears later in

this order sequence. Let j be the smallest (random) index satisfying
Pj) = min b

Note that, by construction, j < m — mg + 1 (there are at least my — 1

indices following (j)). Now, the Holm procedure commits a false

rejection if ¥ > j 4 1, or in other words,

o
m—1"

Poy=<, Py =

3=

25 50 75 100

Figure 3.3: The plot of the function
iz with m = 100 and «. The ordered

p-values P(l),. ., P(,) will lie below this
curve.
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which implies that

14 o

inP; = P S E—— .
ey D S w1 T mg

(This may be confusing because you may think that we could make
a mistake by rejecting some other null. Note however that, if P( M >

m%ﬁl then the procedure stops and no other mistakes are done!) We
thus get
P([HoNR|>1) = PPy <o, Py < — 2 )
0 = - V) =3 (])_m—j—l—l
< P(minP,< —2> ) < P(minP; < —).
i€Hy m—j+1 i€ty mo

By the union bound, the probability of a false rejection is bounded
above by

P (minPi < “) < Y PP < < a

=)
i€Hg my icH, mop

This means that the Holm procedure is strictly more powerful
than Bonferroni without any extra assumptions. However, Figure 3.3
also suggest that, when m is very large, the Holm procedure may not
substantially differ from the Bonferroni correction.

3.6  False discovery rate

Controlling the FWER may be too conservative and greatly reduce
our power to detect real effects, especially when m is large. In many
modern “large-scale testing” applications, focus has shifted from
FWER in (3.22) to the false-discovery proportion (FDP)

[Ho NR|
FDP = ———
R|V1

and on procedures that control its expected value E(FDP), called the
false-discovery rate (FDR). The FDR can be interpreted as follows: if
FDR < 0.1, we expect around 9o% of the discoveries to be true.

Controlling FDR is a shift in paradigm - we are willing to tolerate
some type I errors (false discoveries), as long as most of the discov-
eries we make are still true. It has been argued that in applications
where the statistical test is thought of as providing a “definitive an-
swer” for whether an effect is real, FWER control is still the correct
objective. In contrast, for applications where the statistical test identi-
fies candidate effects that are likely to be real and which merit further
study, it may be better to target FDR control.
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3.6.1  Benjamini-Hochberg procedure

It is clear that the false discovery rate depends heavily on the number
of true hypotheses. Thus, any procedure that controls FDR should

be adaptive. As we showed earlier, if i € Ho then P(P; < u) < u
for all u € (0,1). The Benjamini-Hochberg (BH) procedure compares
the sorted p-values to a diagonal cutoff line, finds the largest p-value
that still falls below this line, and rejects the null hypotheses for the
p-values up to and including this one. Formally, the BH procedure at
level « is defined as follows:

1. Sort the p-values. Call them P(l) << P(m) as before.

2. Find the largest r such that P(,) < Za.

r
m

: (1) (r)
3. Reject the null hypotheses H;/, ..., Hy .

Remark 3.6.1. Just to avoid confusion with the Holm procedure, note that
we do not require that P(;) < Lo forj<r.

It is useful to observe the following.

Lemma 3.6.2. Suppose the B-H procedure rejects exactly r hypotheses.
Then i € R if and only if P; < L a.

Proof. If i € R then P; < P(r) < ;.&, which proves the right im-
plication. For the left implication we argue using a contrapositive
statement. Suppose i ¢ R, let s be such that P; = P(). Then s > r and
Py > o> . O

Theorem 3.6.3 (Benjamini and Hochberg). Consider tests of m null
hypotheses. If the test statistics (or equivalently, p-values) of these tests are
independent, then the FDR of the above procedure satisfies

FDR < a— < .
m

Proof. We have

_ HoNRI\ . (Lien, i€ R}\ 1{i € R}
R = (RO = B (2T ) - i&f(mvl )

Let R = |R| and let R ; be the number of rejections if we replace
P; with zero and run BH, on Py, ..., P;_1,0,Pi14,..., Py. Note that
P; 11 R; and R; > 1. Consider the following:

Claim: ic R & R=R, < P <

Before we prove the claim, we show how it helps us to prove the
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theorem. Assuming that the claim holds

1{p, < Ry P(P; < SRR )
FDR = )} E(——"—) =} E =
N1 N1

i€ty i€ty
P LR AR m
i — 40
S Z E <R = i m S .
i€ty Nt

It remains to prove the claim. We do it in several steps.

[feR=P< %]: First note that BH,, is monotone in the
p-values: If P; > P! for all then R < R’. From this it follows that
R < R.;. Suppose i € R. Then

p < aR < &.
m m
[P < % = R = R;]: By definition of R. ;, we must have

R many values from Py, ..., P;_1,0, Piq,..., Py which are < %
Since P; < aljn\i, it follows that there are R.; many values from

Pi,...,P1,P;,Piy1,..., Py which are < % In particular, R > R.;.
The other inequality was shown above and so we get equality.

[R = R; = i € R] We prove this implication by contradiction.
Suppose R = R;buti ¢ R.Ifi ¢ R then P; > R and there are R
many P]-'s with P]- < %. Now run BHy on Py ..., P;_1,0,Piyq,..., Py

a(R+1)

Then there are R + 1 many values < % < —=.—. Thus, we must

have R.; > R+ 1 > R, which gives contradiction.

< Exercise 3.7.5

3.6.2  Benjamini-Yekutieli justification

The main problem with the validation of the Benjamini-Hochberg
procedure is that it requires that the hypotheses are independent.
Handling uniformly all dependence structure between the hypothe-
ses is hard. One popular setting where the B-H procedure can be still
validated is when the dependence between the P-values satisfies a
form of positive dependence. We will now discuss this in more detail.

A set S C R" is nondecreasing if x € S and y > x implies that
ycs.

Definition 3.6.4. A random vector X = (Xj,..., Xy) is positively
regression dependent on I C {1,...,m} (PRDS) if P(X € S|X; = x;) is
non-decreasing in x; for every nondecreasing set S and any i € I.

If (X1,...,Xm)isPDRSonIand Y; := fi(X;) foralll <i < m
with f; strictly increasing or decreasing, then (Y1,...,Yw) is PRDS on
I as well. Tranformation of this form are called co-monotone trans-
formations. Thus PRDS property is preserved under co-monotone
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transformations. It follows that P; = IP(T; < X;) is PDRS as well (at
least in the continuous case).

Theorem 3.6.5. If the joint distribution of P = (Py,...,Py) is PRDS on
the subset Hy, the Benjamini-Hochberg procedure controls the FDR at level

“ou.
The proof of this result relies on the following proposition.

Proposition 3.6.6. If P is PRDS on the set of true nulls, then the function
P(P € S|P; < t) fori € Hy is non-decreasing in t for S a non-decreasing
set.

IP(PeS,Pi<t)

PP < For t > t', we have

Proof. Forany t, P(P € S|P; < t) =

that

P(PeS P <t)+P(PeS,Pe(tt])
P(P; <t)+P(P; € (tt])

P(Pe S|P <t)=

To show that P(P € S|P; < t') < IP(P € S|P; < t), it suffices to show

that
P(Pe€S,P<t) P(P €S, P € (tt])

P(p<t) = PPet])

The last statement is because for any positive number a,b, ¢, d, % <

% if and only if § < §. If F; denotes the CDF of P; then

P(PeS,Pe(tt]) = EBI{PeSPe(tt]}
E[I{P; € (t,']}E(L{P € S}|P;)]
E[1{P; € (t,']}P(P € S|P;)]

/ttllp(p € S|P; = s)dF(s)

£l
IovE
)

t/
/ P(P € S|P; = t)dFi(s)
t
P(P € S|P; = t)P(P; € (t,1')).
Similarly we have
ot
P(PesSP<t) = / P(P € S|P; = s)dF;(s)
JO
(PRDS)

t
< / P(P € S|P, = t)dFi(s)
J0
= P(P € S|P, =t)P(P; <t).
We have just shown that

P(P€S,P; <)
P(P; <t)

P(P €S, P e (tt])
P(P; € (¢ ])

< ]P(PES|P1‘:t) <

as claimed. O
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Proof of Theorem 3.6.5. In the proof of Theorem 3.6.3 we noted that

FDR = ) 1E<1{i€R}>

i€Hy |R|\/1
%) <a/mforie Hy.

By Lemma 3.6.2, if r rejections are made then H is rejected if and
only if P; < 9. Hence, 1{i € R} = 1{P; < T'}. This gives

£(MUER) (e [MERN) g (Lo )

For any true null we now have

Note that it is enough to show that [E (

m m
Y P(R<ER=1) = )R < PR =1|P < %)
r=1 r=1
« m
< =) P(R=rp <.
m r=1

Hence, it suffices to show that } ;2 ; IP(R = r|P; < %) < 1. Observe
that {R < r} is an increasing event, that is, it can be written as {P €
S} for some non-decreasing set S. This is because increasing all p-
values increases the p-value at each rank. Hence, any ranked p-value
above the threshold remains above it’s threshold, that is, we accept
at least as many as before and hence, do not reject more hypotheses.
Using this, we get that

I

g

=
o]
I

rp <) = (P(R<m|P<a)-P(R<O|P <))

3|

+ ) (JP(R < 7P < %) —P(R < r|P; < 4D

Note that each summand in the second line is non-positive since
P(R < r|P; < x) is increasing in x. Also P(R < 0|P; < /=) > 0, which
implies that

m
YP(R=kP<%) < P(R<m|P<a) < 1.
k=1

As stated before, this proves the upper bound on the FDR. O

3.7 Exercises

Exercise 3.7.1. Show that if an a-level test maximizes IE1 ¢ then it must
be essentially equal to the likelihood ratio test. (Hint: Use the proof of Theo-
rem 3.1.1)
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Exercise 3.7.2. Show that the threshold A = 0 in Example 3.1.4 is optimal
to optimize the Bayes risk with equal weights on each class. Hint: Note that
Z = 7YX — pg) is standard normal if X comes from the first class.

Exercise 3.7.3. Show that if Z is d-dimensional standard Gaussian vector
then D = ||Z||and U = Z/||Z|| are independent. Conclude that every
d-dimensional vector X ~ Ny(p,X) admits a stochastic representation

X = p+ DEY2U, where D 1L U with D* ~ x2 and U being uniformly
distributed on the unit sphere.

Exercise 3.7.4 (Correlation test). Given a sample of size n > 2 from

a bivariate normal distribution, use the same type of procedure as in Ex-
ample 3.2.5 to derive an exact test of the hypothesis that the two variates
are uncorrelated. That is: specify u and v, find a function of them that

is parameter-free under Hy, conclude independence, and go over to the
marginal distribution. Finally transform to a test statistic of known distri-
bution. Hint: \/m\/ﬁ is exactly t, _o-distributed under Hy.

Exercise 3.7.5. Suppose we perform 10 tests (e.g. test the association be-
tween 10 different outcomes and a potential prognostic factor) and obtain
the p-values 0.0140, 0.2960, 0.9530, 0.0031, 0.1050, 0.6410, 0.7810, 0.9010,
0.0053, 0.4500.

1. Which hypotheses are rejected after Bonferroni correction?
2. Which hypotheses are rejected after Holm correction?

3. Which hypotheses are rejected using the Benjamini and Hochberg proce-
dure?

Exercise 3.7.6. Consider 2m independent coins X; ~ Bern(6;) i =
1,...,m. Suppose that 6; = § + ﬁfori =1,...,mand 6; = } for
i=m+1,...,2m. For each of the coins we make n independent tosses.

(a) For each i find the most powerful test for testing 6 = % against 0 > %
for level & < 0.05 (finding the test of size exactly o may be too hard).

(b) Consider now the multiple testing problem for all m coins. We proved
that Bonferroni and the Holm procedures both control the FWER. De-
scribe how Bonferroni will look in this case. We want FWER< 0.05.

(c) Take a look at the power of Bonferroni. Denote by IP; the distribution
Bern(6;) fori = 1,...,m (these are the coins for which the null does not
hold). Try to find some sufficient conditions to bound the probability of
the type 11 error for each of the false nulls by, say, 0.05.

(d) Provide some simulations to see the difference in power between the
Bonferroni and Holm procedures. For fixed m consider n = m, 10m, 100m
to see how the answer depends on the ratio between n and m.
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(some parts of this problem can be approached in various ways so there is no
one correct solution)



Part 11

Statistical Learning Theory:
An Empirical Process

Perspective






4
Motivation and examples (1 week)

This part of the lecture focuses on statistical learning theory taking
the empirical process perspective. These techniques have become
now a standard toolbox for studying modern statistical scenarios.
We will introduce basic tools in emprirical processes and apply those
tools in mathematical statistics and machine learning. We will focus
on the non-asymptotic perspective’.

We start by introducing the main objects of this theory and some
motivating examples?.

4.1 Uniform law of large numbers

Suppose X, X, ..., X, are independent and identically distributed
random variables taking values in X' C R. Let the CDF of the under-
lying distribution be F(t) = IP(X < t) for t € R. The empirical CDF
fn is

—~ 1

E.(t) = - Y X <t}

i=1

As EI{X < t} = P(X < t), it is clear that, for every t € R, ]El?n(t) =
F(t). By the strong law of large numbers, for every t, F,(t) =5 F(t) as
n — oo. The following stronger result is well-known.

Theorem 4.1.1 (Glivenko-Cantelli). For any distribution, the empirical
CDF E, isa strongly consistent estimator of the population CDF in the
uniform norm, meaning that

a.s

IFn = Flleo := sup [Ea(t) = F(£)] *50.
teR
We will provide the proof of this result using a more general the-
ory in Section 6.3; c.f. Proposition 6.3.6.
One reason, this result can be useful is because in many situations
we want to estimate some functional y(F) of the population CDF. For
example 7, (F) := [ g(x)dF(x) is the expectation Eg(X). Also, for

* Good references:

Martin J. Wainwright. High-
dimensional statistics: A non-asymptotic
viewpoint. Cambridge University Press,
Cambridge, 2019; and A. W. van der
Vaart and Jon A. Wellner. Weak con-
vergence and empirical processes—uwith
applications to statistics. Springer Series
in Statistics. Springer, Cham, 2023.
Second edition
> Thanks go to Qiang Sun for inspiring
this. Part of the material was discussed
by Wenlong in the Fall semester.
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any « € [0,1], the quantile functional Q, is given
Qu(F) := inf{t € R;F(t) > a}.

If we have access to F only through the sample CFD F,. A natural

way to estimate -y (F) is using the plug-in estimator (F,). We could Recall that a function f : X — R on
a metric space (X, d) is continuous if
"~ . . pn — pin X implies that f(p,) —

we get that y(F,) is almost surely consistent for y(F) as long as the F(p) in R. Also recall that p, — p is

define convergence F, — F in the sup-norm, as ||F, — F||e =3 0. Then,

functional v is continuous with respect to the sup-norm. Indeed, by equivalent to d(pu, p) — 0.
continuity in the sup-norm

{w : [IFx = Fllo = 0} € {w: [[7(F) = 7(F)]lw — 0}

By Theorem 4.1.1, the set on the left has measure 1 and so the set on
the right also has measure one proving v (£,) %3 7(F).

We are also interested in the following generalization of Theo-
rem 4.1.1. Let F denote a class of integrable real-valued functions on
X, and let {X;}! | be a collection of i.i.d. samples from some distri-
bution P over X'. We want to analyze the following quantity

Note that there may be measurability

1 & . . . S
P, —1P = s - X)—Ef(X)!, 1 concerns associated with this definition.
” " H]: flelg_)- n ; f( 1) f( ) 4-1) We will skip the details; see Section 4.4

in Wainwright’s book for some details.
which measures the absolute deviation between the sample average
1Y f(X;) and the population average E[f(X)], uniformly over class
F.

Definition 4.1.2. We say that F is a Glivenko-Cantelli class for P if
I, — P|| 7 — 0 almost surely as n — oo. If the convergence in probability
holds, we say that F is a weak Glivenko-Cantelli class for IP.

If F is the family of indicator functions f(x) = 1{x < t} for some
t € R, we recover the CDF example in Theorem 4.1.1. In Chapter 6
we discuss some other examples of Glivenko-Cantelli classes. In
general, the condition is that the class cannot be too rich as illustrated
by the example below.

Example 4.1.3. Suppose that F is the set of all indicator functions 14 (x)
for all measurable sets A C R and suppose that IP is absolutely continuous
with respect to the Lebesgue measure on R. We have El 4(X) = P(X €
A). Forany xq,...,x, € Rtheset A = R~ {x1,...,x,} is measurable
and P(X € A) = 1. We thus get that ||IP, — P||x = 1 for all n, and so,
this class of indicator functions is not Glivenko-Cantelli.

Even if F is not a Glivenko-Cantelli class, we still want to control
the size (4.1) by anserwing the following questions:

1. Does the random variable ||IP,, — IP|| 7 in (4.1) concentrate around
its expectation? What is the size of this expectation?
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2. Provide finite-sample bounds on ||IP, — P|| 7, that is, bounds that
hold for every n, in terms of the class function and the distribution
P of X.

The strategy for controlling (4.1) is to first show that this quan-
tity concentrates around its mean. Given the techniques described in
Chapter 5, this is often easy?. Second, we need to control the mean.
This is often more complicated and requires more advanced tech-
niques that we overview in Chapter 6. Before we discuss more tech-
nical aspects, we first discuss one motivating example in machine
learning and one in statistics.

4.1.1  Example: Binary classification

Consider a random vector (X,Y) with values in X x {—1,1}. A
classifier is a function ¢ : X — {—1,1}. The error of the classifier is
given by

R(g) := P(g(X) #Y).

The goal of binary classification is to construct a classifier with small
error based on n i.i.d. observations (X1,Y1),..., (Xu, Yx) having the
same distribution as (X, Y). The empirical error of the classifier g is
1 n
LY (g(X) £ ).

i=1

Ru(g) =

A natural strategy for classification is to pick a class of classifiers C
and then to choose the classifier in C which has the smallest training
error

Qn = arg?eian(g).

Here one possible choice is to use the logistic regression in Exam-
ple 1.7.2. A good classifier should have a small out of sample test
error

R(8n) = P(&u(X) # Y[(X1, Y1), -, (X, Yn))-
One possible question concerns how close is g, to the optimal
classifier ¢* = argmingce R(g). To compare R(g,) with R(g*) note
that

R(gn) = R(g")+R(&n) — Ru(8n) + Ru(gn) — R(g")
< R(§") +R(8n) — Ru(n) + Ru(g") —R(8")  (4-2)
< R(g") +2sup|Ru(g) — R(g)I-

geC

Another question could be about comparing the training arror and
the test error, which amounts to comparing R(g,) with R, (g,). Here

3 For instance, for the class in Exam-
ple 4.1.3, we show concentration around
the mean in Example 5.3.6.

In the language of the statistical de-
cision theory we first define the loss
L(g) = 1{g(X) # Y}. Then the error
R(g) is simply the risk of the classifier
8-

< Exercise 4.3.1

It is natural to associate each classifier
with the set {x : g(x) = 1}. Thus, the
class C can be identified with a set of
measurable subsets of X.
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we have
R(gn) = Rn(gn) + R(gn) - Rn(gn) (4-3)
< Ru(8n) + sup [Rn(8) — R(8)!- (4-4)
g€

With the analogous bound on R, (g,) we conclude that |R,(gx) —
R(gn)| < SUPgce IR, (g) — R(g)|- The key quantity in both cases is

sup [Ru(g) = R(8)1,

geC
which is a special case of (4.1), when F is taken to be the class of
all functions 1(g(x) # y) as g varies over C, where the data are
(X;,Y;) instead of X;. We provide more details in Section 6.3.1 after
developing necessary theory.

4.1.2  Example: M-Estimation

Let X, Xq,..., X, are i.i.d. from P where P € P, with P = {IPy :
0 € ®} for® C R? A popular method of finding an estimator
6, =0, (X1,...,Xy) is to minimize a criterion function of the form

1 n
0 — Mn(e) = E ng(Xi).
i=1
Here my : X — R U {400} are known functions. An estimator
maximizing M, (6) is called an M-estimator. Often the minimizer is
sought by setting a derivative equal to zero. Therefore, the name M-
estimator is also used for estimators satisfying systems of equations

of the type

¥,(0) = LY pp(X;) = 0. (4:5)
=1

n
1
Here ¢ : X — R? are known vector-valued maps.

Example 4.1.4 (Maximum likelihood estimators). Suppose X, Xy, ..., Xy
have a common density pg. Then the maximum likelihood estimator maxi-
mizes the likelihood [1; pe(X;), or equivalently

n
GO = L log po(Xi). respect o hesomple distraton.
Thus a maximum likelihood estimator is an M-estimator with my =
—log py. If the density is differentiable with respect to 6 for each fixed x,
then the maximum likelihood estimator also solves an equation of type (4.5)
with Pg = Vg log py, the score function of the model.

Other simple examples of M-estimators include the sample me-
dian (c.f. Exercise 2.7.2), the least squares estimator, and more gener-
ally, the estimators obtained by minimizing the empirical risk (2.1) in
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which case my(x) = L(60,6(x)). The general theory of M-estimators
originated in robust statistics.

Example 4.1.5 (Huber Robust loss). Consider a regression problem. Let
y € Rtand X € R"™4 pe the design matrix with rows x;, . .., X,. Let
L(y,a) = %(y — a)% In the standard least squares approach, the vector of

coefficient is estimated by minimizing the empirical risk

1 1&
= —|ly=XBlI*> = = ¥ L(yi, B7x).
m(B) = 5l X6 = Y L)
Consider instead the loss Note that Ls(y, a) is differentiable
everywhere.
l( —a)? if |y —
y—a) ifly—al <9
L(y,a) = {2 ) , :
O(ly —a| — 39) otherwise
The corresponding M-estimator is the minimizer of
13 T
ms(B) = " Y Ls(yi B'xi).
i=1
Let M(0) = Emy(X). In the theory of M-estimation, the target
quantity for the estimator 8, is
0 = in M(0).
argmin M(6)
For example, suppose data come from the distribution IP with density
g. Let my(X) = —log pg(X). Then
. . q(X)
argmin —Elog pg(X) = argminlElo ,
gmi gro(X) = argminElog "5
which is simply the Kullback-Leibler divergence between the dis-
tribution IP and IPy. In particular, if P € ‘P then it is the unique
minimizer.
The main question of interest while studying M-estimators con-
cerns accuracy of 8, for estimating 6*. In the asymptotic regime
n — oo, the two key questions are:
1. Is 5,1 consistent for estimating 6%, equivalently, does d (5,1, 6*) ﬁ) 0;
see Section 8.1 for relevant definitions and basic results.
2. If yes, what is the rate of convergence of d(@n, 9*) to zero? The
usual rate of convergence is Op(n’l/ 2), so that \/n(8, — 6*) con-
verges in distribution?. 4 For a simple example see Exer-
cise 8.6.5.

3. How shall we do inference on 0* using 8. For this we may need
to understand better how 6,, concentrates around 6*.

99
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Some basic asymptotic results for M-estimators are provided in
Appendix 8.3. Here, we complement this with the link to the uniform
law of large numbers. For the first question we investigate closeness
of M,(6) = %Z?:l my(X;) to M(8) = Emgy(X) in some sort of
uniform sense over 6, which leads to investigation of (4.1) for

F = {m9:9€®}

and then translate the result back to the result on d(8,, 6*).
This is how this can be done: Let D, = {6 € © : d(0,60%) > €}. We
can bound d(8,, %) as

P(d(04,6") 2 €) < P(sup(My(6") — Mq(6)) > 0)

0€De
< P (sup{(Mn(G*) — M(67)) — (Mu(0) — M(6))} = — sup {M(6") — M(9)}>
0eDe¢ 0eDe¢
<

P (2 sup {|M;(6) — M(6)} > inf {M(6) — M(G*)}> ,

0D, €D,

where going from the first to the second line we used the fact that

supy f(08) < supyg(0) + supy(f(0) — g(8)). Note that the bound

above again relates to the random quantity (4.1). If 6* is uniquely

and globally identifiable, that is, there exists 7 > 0 depending on e

such that infgecp,_(M(0) — M(6*)) > 5. Thus, with proper control of

the size of supy.p_|Mx(6) — M(0)], the right-hand side in the above

display diminishes to zero>. 5We get P(d(,0%) > €) <
H’(SupeeDg | My (8) — M(6)] > 11/2).

4.2 The Uniform Central Limit Theory

The classical central limit theorem (CLT) studies the following type of
results: for an i.i.d. sequence X, Xy, ..., Xy

Gulf) = Vin (iif(&)—lﬁf@@) = N(Ovar(f(X)): (46)

The uniform central limit theorem studies the above convergence in
distribution uniformly over f in the class F. To illustrate this idea
consider the following example.

4.2.1  Example: Uniform empirical process

Suppose X, X, ..., Xy are i.i.d. uniform on [0,1]. Let 7 = {I(_ 4(x)
t € R}. Define

Uy (t) = /n(F,(t) — F(t)), teR, (4.7)

where F,(t) = Iy 1{X;>t}and F(t) = P(X < t) =t
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This defines a stochastic process {U,(t) : t € R} which is typically
referred to as an empirical process or, more specifically in this case, a
uniform empirical process.
How do we find a candidate for the limit? The CLT states that, for
each t € [0,1], U, (t) ~ N(0,t(1 —t)) as n — oo®. Moreover, for every ¢ We have EU,(t) = 0 and var(U,(t)) =
fixed ty, ..., t;, the multivariate CLT states that var({X < t})

(Un(t1),...,Un(tg)) ~ N(0, %),

where £ = (¥;), Zj; A tj — t;it;. This follows simply because we

can rewrite Uy, (t) = ﬁ Y (1(X; <t)—t) and, for any t,t/,

E[(L(X; <t) — ) (1(X; <t') — )]

-

Il
-

EUn(OUn(t') = 3

1

(tAE —t) = tAE —t.

-

I
—

1
n

1

In consequence, the candidate for the limiting process is the Gaussian
process with kernel x(s,t) = s At — st.

We will be interested in the underlying limiting process called a
Brownian bridge.

Definition 4.2.1 (Brownian bridge). Brownian bridge {U(t) : 0 < t <
1} is a stochastic process satisfying the following conditions

1. Every realization is continuous in [0,1] with U(0) = U(1) = 0.
A Brownian bridge is an example of

. -~ a Gaussian process on [0, 1] with the
2. For every fixed ty, ..., ty, the vector (U(t1),..., U(tx)) ~ N(0,%), anderlying kernel function x(s, ) —
where Oij = ti A t]‘ — i’it]'. SAt— st

Thus, the finite dimensional representation of {U,(t) : t € [0,1]}
converges in distribution to that of {U(t) : t € [0,1]}. It is then
natural to ask whether the entire process {U, ()} converges in distri-
bution to the process {U(t)}.

Convergence of stochastic processes can be defined as follows.
First recall the definition of convergence in distribution given in Sec-
tion 8.1. Equivalently, by Portmanteau Lemma 8.1.1, we say that a
random sequence (Z,) with values in R converges in distribution
to Z if and only if Eh(Z,) — Eh(Z) for every h € C,(RF), where
Cy,(R¥) denotes the class of real-valued bounded functions on R¥.
This equivalent definition can now be generalized to stochastic pro-
cesses.

Definition 4.2.2. For any set F by {*(F) denote the set of bounded real-
valued functions on F with the sup-norm.

In particular, ([0, 1]) is the space of all bounded functions on
[0, 1] with metric p(f,g) := supyc(o ) |f(t) — g(t)]-
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Definition 4.2.3. The process {U,(t)} converges to {U(t)} in distribution
if
Eh(U,) — ER(U) asn — oo

for every bounded and continuous real-valued function h : £°[0,1] — R.

There is one measure-theoretic issue with this definition as for
some h, h(U,) could not be measurable. A technical remedy is to
replace expectation by the outer expectation E*/ (U, ) induced by the

outer measure. For details see Chapter 1 in 7. 7 A. W. van der Vaart and Jon A. Well-
ner. Weak convergence and empirical
processes—uwith applications to statistics.
4.2.2 The geneml case Springer Series in Statistics. Springer,
Cham, 2023. Second edition
Consider the general empirical process G, (f) defined in (4.6), where

f € F. Under the assumption that sup,. » | f(x)| < oo for every
x € X, the function f — G, (f) belongs to {<°(F).

Definition 4.2.4. We say that F is a Donsker class (or P-Donsker) if
Gn(F) = {Gu(f) : f € F} converges in distribution in {*(F) to some
G(F)={G(f): f € F}asn — oo.

The limiting process G(F) is a Gaussian process: for every fi, ..., fx
the vector (G(f1),...,G(fx)) is a multivariate Gaussian distribution.

This all looks abstract but the following example should illustrate
importance of these considerations in statistics.

Example 4.2.5 (A goodness-of-fit statistics). Consider X, X1,..., Xy
iid. from a distribution IP on R with CDF F. Suppose we want to test
Hy : F = Fyversus Hy : F # Fy. Kolmogorov proposed the following test
statistics

Dy := \/Hsuﬂ}zﬂ?n(x) — Fy(x)]. (4-8)
xe

It turns out that, under Hy, the distribution of D, does not depend on Fy;

see Exercise 4.3.2. If Fy is strictly increasing and continuous we can then + Exercise 4.3.2
with no loss of generality assume that Fy is a uniform distribution on [0, 1];

Fo(t) =t for t € [0, 1]. We obtain that under the null

Dy = sup [Un(t)] = |[Unllec = [[U]leo,
0<t<1

where U, (t) was defined in (4.7). Thus® SP,(Dy < x) = EI{D, < x} =
E{[|Un | < x}

lim P(D, < x) = P(sup |U(t)] < x).

n—s00 0<t<1
Example 4.2.6 (Asymptotics of MLE). Suppose X, X, ..., X, are iid
from Py,. The maximum likelihood estimator is

n
0, = argmax% Y log p(xi; 6
i=1
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A classical result is that, under second order or third order smoothness
conditions \/n(8, — 6y) ~» N(0,1(6p)~1), where I(6y) is the Fisher
information matrix defined as See Section 8.3.2 for some details.

1(60) = E[Vlogps(X)V ' logpy(X)] oty

What is the minimal smoothness asumption that is needed for the above
result to hold? It turns out that if we use UCLT together with the notion of
differentiability in quadratic mean (DQM), first-order smoothness will be
enough. This is useful in some examples that involve the Laplace density.

Example 4.2.7 (Asymptotics of M-estimators). The UCLT can also be
used to derive asymptotic distributions for M-estimators. We consider two
representative examples of location estimators.

1. The sample median is defined as

n
0, = arg min 1 X; —0].
" geeR”;‘ ! |

Assume the CDF F is differentiable around its median 6y with positive
derivative F'(8) =: p(6y). Using UCLT, we can prove that
V(8 = 80) ~ N(O, gis)-

2. A form of mode estimator can be defined as

o~

n
0, = argmax . Z mg(X;),

where mg(x) = A(|x — 8| < 1). For this estimator, the asymptotic This is 6 that contains the most of X;’s
distribution is very complicated as we have in its unit neighborhood.

n'/3(8, — 0) ~ argmax{aZ(h) — bh?},
heR
where Z is a standard two-sided Brownian motion starting from 0, and
1
@ = p(Oo+1)—p(6o—1) and b=5(p'(+1)—p'(60—1)),

where p is the density function, unimodal, and symmetric.

4.3 Exercises

Exercise 4.3.1. In the binary classification problem in Section 4.1.1, show
that the Bayes classifier gy given by

1 if P(Y=1X=x)>1,

—1 otherwise

go(x) =

minimizes the misclassification probability R(g) over all measurable func-
tions g.
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Exercise 4.3.2. Show that the the statistics (4.8) does not depend on F.
Hint: First assume that the CDF is continuous and strictly increasing. For
the general result use (3.24).



5
Concentration of measure (3 weeks)

In this chapter we are interested in bounding random fluctuations
of functions of many independent random variables. Variables
X,Xj,..., Xy are independent and take values in some X. Let g :
X" — R and

Z = g(X1,...,Xn).

The function g can be quite complex. For example, as motivated in
the previous chapter, we could have

n
Z = Py =Pz = sup |3} f(X;) — Ef(X)|.
feF | i=1
How large are “typical” deviations of Z from [EZ? In particular, we
seek upper bounds for

P(Z>EZ+t) and P(Z<EZ-t)

fort > 0. When [EZ is unknown, to obtain direct bounds on the
concentration of Z, explicit bounds on [EZ will also be needed, which
will lead to more advanced considerations in Chapter 6.

There are various methods that include: martingales, information
theoretic and transportation methods, Talagrand’s induction method,
and logarithmic Sobolev inequalities. We will not get into too many
details here. We refer to two excellent books * and 2 for a thorough
overview of the theory.

5.1 Basic inequalities

In this section we set up the scene for more advanced considerations
by recalling some basic probability inequalities. The simplest inequal-
ity is the Markov’s inequality.

Proposition 5.1.1 (Markov’s inequality). If Z > 0 and t > O then

]P(Zzt)gg.

* Stéphane Boucheron, Gabor Lugosi,
and Pascal Massart. Concentration
inequalities: A nonasymptotic theory of
independence. Oxford University Press,
2013

> Martin J. Wainwright. High-dimensional
statistics: A non-asymptotic viewpoint.
Cambridge University Press, Cam-
bridge, 2019

< Exercise 5.5.1
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Proof. We have

tP(Z >t) = E[tI(Z >t)] < E[Z1(Z > t)] < EZ,

where the last inequality follows because Z > 0. O

Markov’s inequality with its elementary proof looks very inno-
cent. It is then surprising to see how many powerful results can be
obtained from it. We first show that, for distributions for which the
second moment exists, the Markov’s inequality implies the Cheby-
shev’s inequality.

Proposition 5.1.2 (Chebyshev’s inequality). For every t > 0 we have

Var(Z).

P(|1Z-EZ| >t) = P((Z-EZ)*> ) < 5

A particularly important instance is when Z is a sum of i.i.d. ran-
dom variables, Z = Y | X;. Denote u = EX, 0 = var(X). In this
case var(Z) = no? and we get

n Tle
P(]Y Xi—nu|>t) < =
i1

or equivalently, denoting X, := % Y X,
P(VA(%y —p) > 1) < T

This bound is however not very tight. Let U ~ N(0,1) and note that,
by the Central Limit Theorem,

Tim P(|v/(%y — )| > 1) = 2P(U > L) < S /G,

where the last inequality is part of Exercise 5.5.2. In particular, at
least for very large 1, we expect an exponential decrease in > /0.

The trick to get the expected rate of decrease is to use the Markov’s

inequality in a more clever way.

Proposition 5.1.3 (Chernoff bounds). Suppose that the moment gener-
ating function of Z exists in some neighborhood (—b, b) of zero. Then for
every A > 0 in this neighborhood

EeMZ—EZ)

P(Z—-EZ>t) = P(eM?F2 > M) < ——

In consequence,

loglP(Z—EZ>1t) < inf {logEe?"EZ) _ )t}
A€[0,b)

More generally, if the corresponding
k-th moment exists for some k > 0 then

P(z-Ez| > 1) < BHIZED

< Exercise 5.5.2
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Note that if M(A) = Ee*?~EZ) is the moment generating function
of Z —EZ then K(A) = log M(A) is the cumulant generating function.
We get

log BEeM?~E2) At = K(A) — At.

By Holder’s inequality, K(A) is a convex function function with the
same proof as in Theorem 1.3.2. We will later discuss some tech-
niques to bound the moment generating function.

A useful observation is that, if X, X7, X, ..., X,, are i.i.d. then

A

_ IEe)‘(anﬂ) Eeﬁ(xflEX)
PRampzt) < =g = |5
en

Optimizing over A is equivalent to optimizing over A/n and so a
Chernoff bound on a single X, directly gives a Chernoff bound for an
average of its independent copies.

Example 5.1.4. Let Y,Y1,...,Y, be an id.d. sample such that Y = X2
with X ~ N(0,1). First note that

1 1
EY — )V T2X for A <3,
—+ o0

otherwise.

Thus, for A < 1/2,

1 1
1> < - -
P(Y-1>t) < ,/1_2/\&0“).

The optimal A* = %t%l, which gives the Chernoff bound3

P(Y-1>1) < Vi+1e !/
and consequently
P(Y,—1>t) < (t+ 1)”/267711‘/2'

It is convenient to have an explicit exponential bound for small t. In this
case we can use the fact that log(1 +t) —t < —t2/4fort € [0,1]4 to
conclude that, for every t € [0,1],

P(Ya—121) < (b4+1)"2/2 = (200810 < pmnt?/s,

A simple yet powerful illustration of the Chernoff bounds in
Proposition 5.1.3 is given by following example.

Example 5.1.5 (Johnson-Lindenstrauss lemma). Let a;,...,a, € RP
and e > 0. We are looking for a function f : RP — R¥ with d < D such
that

(A =e)llai —ajl* < |If(a;) = fap|* < A+e)lla—a;l*  (50)

The convex conjugate to K(A) is
K*(t) = infjer{K(A) — At} and we
get P(Z —EZ > t) <K',

< Exercise 5.5.3

3 Plot this to see that this bound is
actually not that great for t € (0,5).

4+To show that —#2/4 —log(1+t) +t >
0 for ¢ € [0,1] we note that the left hand
side is zero for ¢+ = 0 and its derivative
is nonnegative for t € [0,1].

< Exercise 5.5.4
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foralli,j =1,...,n. Johnson-Lindenstrauss lemma states such an embed-
ding f exists if
16
d > €—zlog n. (5.2)

(Note that the bound does not depend on D!) We present a probabilistic
proof of this fact and show that f can be taken as a linear function. In fact, if
we choose f at random, it works with positive probability. Let W € R¥*P
be a random matrix such that the W;; are independent N(0,1/d).
Take f(a) = Wa. Then, denoting b;; = (a; — a;)/||a; — a;]|, we can
rewrite (5.1) as
l—-€ < ||Wb,]H2 <l+e.

or equivalently
max [Wh|> —1| < e (53)
We first show that E||Wbjj||* = 1. Indeed, for any b € RP,
E|Wb|?> = E(LTWTWb) = bTE(WTW)b = bTb = ||b|*>. (5.4)

Since ||byj|| = 1 we get E[|[Wb;;||> = 1. To show (5.3) with positive
probability, it is equivalent to show that

|2—1’2e)<1.

P(max | Wb
Lj

We next show that |Wb;j||% can be written as Y Y4, 72 with Z; ~
N(0,1). Indeed, for every b € RP such that ||b|| = 1

IWb > = (Wb)T(Wb) = Xd:(win)z,
i=1

where w1, ..., wy are the rows of W. Note that IE(wlTb) = 0and

E((wl‘Tb)z) ZleE(wiwl-)b = %bTb - %

Thus, w!b fori=1,...,dareiid. N(0,1/d), we get

Iwp|* -1 =

qul -

d
Z(Zzz - 1)/
i=1

where Z; are i.i.d. N(0,1). By the calculations in Example 5.1.4 and by
(5.10), for every € < 1 we conclude that

P(|[|Wb|2 — 1] > €) < 2e <48,

By the union bound

Plamax [ W, <11 > ) < (5 ) PUIWGIE 11> €) < ()20 0%
L]
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It remains to check that if (5.2) holds then the right hand side is smaller
than 1. But this is clear. Rewrite (5.2) as de?/8 > logn? and get

<1’l> 267€2d/8 _ elog(n(nfl))fezd/S < elog(n(nfl))flognz _ n—1 <1
2 n

Note that the proof is not constructive, as the linear map satisfying (5.1) is
not given explicitly.

5.2 Sub-gaussian and sub-exponential random variables

It is clear that if the values of Z concentrate, its variance must be
small. To establish concentration using the Chebyshev’s inequality
in Proposition 5.1.2 it is important to obtain good bounds on the
variance of Z. Similarly, in order to utilize the Chernoff bounds in
Proposition 5.1.3 we need to obtain good bounds for the moment
generating function. In this and in the next section we will focus on
this last task.

To motivate the next definition note that if X ~ N(,¢?) then

EerMX—1) = ¢7A/2 forall A € R.

Substituting this into the Chernoff bound in Proposition 5.1.3 we

get
A2g? 2
i AMX=p) _ = i - - = ——
/gfo {log Ee At} )1\1;%{ > /\t} 252"
which gives In other words, for 6 € (0,1),
2 2
]P(X—VZt) S e t=/20 foralltZO (55) H’(X—yEa@)S&

The same concentration bounds hold in much greater generality
for so called sub-Gaussian variables. + Exercise 5.5.5

Definition 5.2.1. A variable X is sub-Gaussian (or o-sub-Gaussian) if
there is o > 0 such that

EeMX—1) < ¢”M/2 frall A € R

or equivalently
Kx(A) —Au < 0?A%2/2  forall A € R, (5.6)
where Kx is the cumulant generating function of X.

The following proposition shows that, if X takes values in a
bounded interval [a, ], then X is sub-Gaussian with ¢ = (b —a)/2.

109
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Proposition 5.2.2. Suppose that X has values in some bounded interval
[a,b]. Then EeMX-EX) < eAz(b’”)z/S, that is, X is sub-Gaussian with
c=(b—a)/2

In the proof we will use the following simple result.
Lemma 5.2.3 (Popoviciu’s inequality). If X € [a,b] then var(X) <
()

) .
Proof. Forevery u € R, E(X —u)? = var(X) + (u — u)? and so
var(X) < E(X — u)?. Take u = %b then

2
E(X—u)? = %]E(X—a—i-X—b)z < %]E(X—a—Ha—X)Z = <b2“> :

O

Proof of Proposition 5.2.2. Suppose f is the density of X with respect
to the underlying measure y. Consider the cumulant generating
function K(A) = log Ee* and note that K(0) = 0, K’(0) = EX, and
K'"(0) = var(X). Directly by definition of K(A)

flxid) = flx)et =K

defines a valid density function. Direct calculations (or Propo-
sition 1.3.4) show that the second derivative of K(A) is the vari-

ance of the distribution with density e’ K1) f(x)5. In particular, 5 Note that A is a parameter describ-
1" — 21 _ 2 — M 5 ing an exponential family where f
K'(1) = EA[X?] — (E\[X)), where Ex[¢(X)] = Elg(X) ] ing an exponental

[ §(x)e KM £(x)dx. By Lemma 5.2.3,

0 < K"(1) = Ez[X?] - (EA[X])?

IN
N
S
N
Q
~__
N

By the Taylor’s theorem, for every A € R

)LZ
K(A) = K(0) + K'(0)A +K"(0) 5

for some 6 between 0 and A. Using what we know, we conclude that

—a\?% A2
K(A) — AEX < (bz’l) % forall A € R,
which is equivalent to the claimed inequality. O

< Exercise 5.5.6
The following elementary result will be useful.

Lemma 5.2.4. Suppose that X = (X, ..., Xy) is a random vector such
that X; is 0;-sub-Gaussian fori = 1,...,n. If X; are independent and
u € IR", then the random variable uT X is sub-Gaussian with parameter

o= \/U%u%—i—...—f—a%u%.
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Proof. Denote by u the mean vector of EX. Equivalently we must
show K,rx(A) — AuTu < 02A? /2. We have

2)\2 2 2

n n
Kyrx(A) —AuTp = Z (KXI, (Au;) /\u,yl) < Z
i=1 i=1

i /\
which completes the proof. O

We list a couple of useful observations that follow directly from
Lemma 5.2.4. They show that the ¢ parameter behaves similarly to
the standard deviation.

Corollary 5.2.5. For a collection of independent o-sub-Gaussian random
variables Xy, . .., Xy, their average X,, is sub-Gaussian with parameter

o/\/n.

Corollary 5.2.6. If X is o-sub-Gaussian, then aX +b (a € R,b € R) is
sub-Gaussian with parameter |a|o. In particular, —X is o-sub-Gaussian.

Corollary 5.2.7. If X = (X,...,X,) is a vector of independent random
variables such that each X; is o-sub-Gaussian, and ||u|| = 1, then uT X is
o-sub-Gaussian.

Suppose that X is o-sub-Gaussian. By Corollary 5.2.6, —X is also
o-sub-Gaussian. Thus, on the top of (5.5) we also have

P(X—pu<—t) < e /2 forallt>0.

Using the union bound, we conclude the following result.

Corollary 5.2.8. For a o-sub-Gaussian variable In other words, for 6 € (0,1),
P(|X—ul> 2log(2 > < 4.
P(|IX —p| > 1) < 27/2°  forall t > 0. <\ u > 0y/2108(2) ) <

The graph below shows the price

we are paying by decreasing § €
sub-Gaussian variables. (0,0.1) (the x-axis) with respect to the
guaranteed bound (y-axis); o = 1.

The following result applies Chernoff bounds to a sequence of

Proposition 5.2.9 (Hoeffding inequality). If X; are independent o;-sub-
Gaussian then for all t > 0 we have

P (|Xy — E(Xy)| > 1) < 20 /L)

Proof. By Lemma 5.2.4, X, is sub-Gaussian with parameter

P(X>y)<x

o=1 i o?
o i=1 a " oo odzs oin oirs oion
Thus, the result follows by Corollary 5.2.8. O

Remark 5.2.10. If 0; = o for all i we also note that the Hoeffding inequal-
ity implies

P (|vn(Xy —E(X,))| > £) < 207/,
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Example 5.2.11 (Sub-Gaussian sequence model). Consider independent
Y1, ..., Yy that are o-sub-Gaussian with means p;, where o2 is known. Let

S C {1,...,n} be the support of the vector y = (uy,...,Un), that is,

ui #0fori e Sand y; = 0 fori ¢ S. One possible way of finding the zero
u;'s is by considering the LASSO estimator

n
n= argrr}lin{%|Y—y|2+)\Z |,“i|}
i=1

for a fixed A > 0. It is a simple exercise® to show that

Y;—A ifY,'>)\,
fli = (0 iflil <A, -
Yi+A ifY; < —A

To analyse this procedure we consider two types of errors
1. TypeI: |Y;| > A fori & S, and
2. TypeIl: |Y;| < Afori € S.

We would like to set the threshold A to control the Family-wise Error Rate.
In other words, Z := max;¢s |Y;| < A with high probability. Let s be the
number of the nonzeros entries in y then my := n — s is the number of
zeros. By the union bound and using the fact that each Y; for i & S is mean
zero o-sub-Gaussian

P(Z > A) < Y P(|Y;| > A) < 2mge /27,
i¢S

Suppose that A = Jq/Zlog(%)for somea € (0,1) then P(Z > A) < a,
which binds the family-wise error rate. Moreover, if A, = 20+/log(my),
then
P(Z> M) < —,
1y
which goes to zero as mq grows to infinity (with n)7. Of course, in practice,
we also want A to be as small as possible to reduce the type 1I error. We will

not discuss this issue hereS.

Another general type of bound on the moment generating function
is the following.

Definition 5.2.12. A random variable with mean y = EX is sub-
exponential if there are non-negative parameters v, a such that

E(MEY < @22 fral || < %

This condition is rather mild and it is essentially equivalent with
the existence of the cumulant generating function in a neighbour-
hood of zero.

© Check this!
In fact, our analysis applies to any
procedure based on thresholding.

7 We could compare this procedure with
the Bonferroni and the Holm proce-
dures discussed earlier. Note that the
latter two have no theoretical guaran-
tees if the underlying distribution is not
Gaussian.

8 Exercise: Analyze the type II error as a
function of y* = min;eg |y
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Example 5.2.13. Let Z ~ N(0,1) and let X = Z2. For A < 1/2, we have

—A . 1
E(MX1) = / M2-1) =22 /24, — \/i_ﬁ ifA <y,

+o0 if)xz%..

\/E

In particular, since the moment generating function is not defined every-
where, X is not sub-Gaussian. With a bit of calculus we see however that

_et < 2 for all |A| < E
-2 = 4
and so X is sub-exponential with parameters (v, a) = (2,4).

With essentially the same proof, Lemma 5.2.4 generalizes to sub-
exponential variables.

Lemma 5.2.14. Suppose that X = (Xy,...,Xy) is a random vector such
that X; is (v;, a;)-sub-exponential for i = 1,...,n. If X; are independent
and u € R", then the random variable u™X is sub-exponential with parame-

ters v = \/V1”1 + ...+ v2u2 and « = max; |u;|a;.

We obtain simple concentration inequalities for sub-exponential
variables.

Proposition 5.2.15. Suppose that X is sub-exponential with parameters
(v,a) and t > 0. Then

e a7 zf0<t <

P(X—p>t) < ¢ w’
e u lft > L E
and
2 o 2 e .
22 L
]P(|X — ll| > t) < 2 lfo <t< o’ Figure 5.1: Illustration of the subex-
- ze*ﬁ lft > L‘ ponential bounds for v = « = 1. The
. N blue line represents 2¢~/2, The red
Proof. Using the Chernoff bound we know that line represents 2¢~*/2. In black their
1272 ointwise maximum.
P(X—u>t) < inf {EMXEX)p=M1 < mf {ev AT /2=At P

Aefo,d) A€l02)

The global optimum of eV AP /2=At jg A = t/v? > 0. Thus, if t/1? <

2 > ta), we get the sub-Gaussian bound et/ (@),

1/a (equiv. v
Otherwise, if v2 < ta, the infimum is obtained on the boundary
A* = 1/« and it is equal to ev*/(2a%)=t/x Note however that the fact

that v? < ta, allows to bound this by e~*/ (24) O

Lemma 5.2.14 and Proposition 5.2.15 give now a handful of useful
results. For example, if X; are independent sub-exponential with
parameters (v, «) then X, is sub-exponential with parameters (ﬁ, )

and so )
ten
S 2¢ 22 if 0 <t L
P(|Su—pl =)< «
2e” 2« if t > 7
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5.3 Martingale-based methods

We will now briefly discuss techniques related to martingale repre-
sentations. Recall the basic set-up of the martingale theory in Ap-
pendix C.2. Let X3, ..., X, be independent random variables and
Z = f(X1,...,Xn). Denote

Ei[] = E[|Xy,..., Xi].

Thus E¢gZ = EZ and E,Z = Z. Moreover, if i < jthen E/E;Z =
E/E,Z = E;Z. Itis easy to see that Yy = [E;Z forms a martingale
sequence if [E|Z| < co. Indeed, by Jensen’s inequality

E(|E,Z|) < EE;|Z| = E|Z| < 0.

This is called the Doob’s martingale.
Writing
A = E;Z—TF; 1Z
we have
Z-EZ = Z A, (5.7)

This is the Doob martingale representation of Z. In particular, we
write Z —EZ = Y' | A;, where A; for the corresponding Doob
martingale difference sequence.

Theorem 5.3.1. Let {A;, F;} be a martingale difference sequence as above
and suppose that Fy_;[e}*] < eNVE/2 almost surely for any |A| < 1/ (a
form of a sub-exponential condition). Then Z —EZ = Y | A; is subexpo-
nential with parameters (vy,ax) = (||v||, ||&|/eo). In particular,

_2 )
2e 2% f0<t<

t

P(|Z-EZ| >t) < .
2”7 ift > gE

Proof. The first part can be directly shown by recursive conditioning.
Indeed, we first write

EeMZ-EZ) _ AL b — IE]En_le)‘Z?ﬂ Ai — BN MR, oM
and this is bounded for all [A| < 1/a, by
MNVR2EA LI B
Proceeding in a similar fashion, we get the conclusion. The second of
the theorem part follows by the first part and Proposition 5.2.15. O

A very useful version of this result is when each A; is bounded,
Ag € [ag, by], in which case it is also sub-Gaussian (also conditionally
on Fi_q).
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Definition 5.3.2. A function f : X" — R satisfies bounded differences
inequality, if there exist constants Ly, ..., Ly, such that

f(x) = f()] < L,
whenever x, x" differ only in the k-th coordinate.

A canonical example of such a function is
n
flx) = ) filx),
i=1

where all f; are bounded functions.

Proposition 5.3.3 (Bounded differences inequality). Suppose that Z =
f(Xy,...,Xy), where f satisfies the bounded differences inequality with
parameters Ly, ..., L, and such that the random vector X = (X1,...,Xn)
has independent components. Then Z is sub-Gaussian with parameter

c=3\/L24+ - +12

In particular, for all t > 0

2 212

P(|Z—~EZ| >1t) < 2¢ 27 = 2¢ Dk,

Proof. Fix i and take a look at A;. Let
a; = 11;[f]E[Z|X1, . .,Xl-_l,x] - lEl'_lz

and
b :=supE[Z|Xy,...,Xi_1,x] —E; 1Z.
X

It is clear that a; < A; < b; almost surely. To use Proposition 5.2.2 we
need to bound b; — a;. For that, note first that

]E[f(Xl,...,XZ',...,Xn)|X1,...,Xi_1,XZ' = x] :lE[f(Xl,...,x,...,Xn)|X1,...,XZ-_1],

which follows by independence of all X;’s (in both cases the integral
is with respect to the marginal distribution of (X 1,..., X))

We have
bl-—al- = sup]E[Z\Xl,...,Xi_l,x}—ir)}f]E[Z|X1,...,XZ-_1,x]

X

< sup‘]E[Z\Xl,...,Xi_l,x]—IE[Z|X1,...,XZ-_1,y]
Xy

- Sup ‘]Ei,][f(Xl,. . -/Xl'fl/xl XH»l/' . ~/XI’I> _f(Xll‘ . ~/Xi71/y/ Xi+1/' . '/Xn)]
Xy

< L.

Since A; € [a;, b;] and b; — a; < L;, by Proposition 5.2.2,

E; 1™ < M2 fory;=L;/2andallA €R.  (5.8)

115
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Now we can use Theorem 5.3.1 to conclude that Z — EZ (and so also

Z) is sub-Gaussian with parameter %\ /L2 + ...+ L2. The probability
bound then follows from (5.5). O

Remark 5.3.4. Note that there was an alternative route to simply observe
that |f(x) — f(y)| < YxLgforall x,y € X™. In other words, Z is
bounded and so sub-Gaussian with parameter o = ) Ly even without

assuming independence of Xy, ..., X,,. However, %, /3% L% < Yy Ly and
this difference can be critical.

Example 5.3.5 (Kernel density estimation). Let Xy,..., X, bei.id. real
samples drawn according to some density ¢. The kernel density estimate is

oulv) = LK (5,

where h > 0, and K is a nonnegative “kernel” f K = 1. The Lq-error is

Z = f(XiesX) = [ 100(x) =9l

It is easy to see that, if X, X' differ only in the i-th coordinate then

700 - 000 < o [ | (S52) - (255 ar < 2

By Proposition 5.3.3,

2)1
P(|Z—EZ|>t) <22  forallt>0.

Note however that to analyze the quality of the kernel density estimator, we
need bounds on Z directly. For that we need to separately study EZ. 9

Example 5.3.6 (Uniform deviations). Let A be a collection of measurable
subsets of X and let X, X, ..., Xy be random points drawn from X i.i.d.
Let

P(A)=P{XEA} and Py(d)= Y 1{X; € A},
i=1

Let Z = f(Xy,...,Xpn) =supyc 4 [P(A) =Py (A)|. If X, X' differ only in
the i-th coordinate then, for every A € A,

[IP(4) ~Pa(A)] ~ [P(4) ~ P, (A)]| < [Pa(A) Py (A)] = L[1{X; € A} -1{X € A}| < ..

We conclude that |f(X) — f(X')| < 1/n. By Proposition 5.3.3,
P(|Z—EZ| >1t) <272 forall t > 0.

This holds irrespective of the underlying distribution or richness of A. As in
the previous example, a major issue can be to understand better EZ.

9 This is well studies in the literature.
See for example Section I1.4.2 in .

P. P. B. Eggermont and V. N. LaRiccia.
Maximum penalized likelihood estimation.
Vol. I. Springer Series in Statistics.
Springer-Verlag, New York, 2001

1

N
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Example 5.3.7 (U-statistics). Let ¢ : R?> — R be a symmetric function.
Given an i.i.d. sequence X; of random variables, the quantity

Z = % Y 8(Xi, Xj).
@ &
is known as a pairwise U-statistic. For instance, if g(s,t) = |s — t|, then U
is an unbiased estimator of the mean absolute pairwise deviation E(|Xq —
Xy|). Suppose g is bounded, say ||g||cc < b. Writing Z =: f(Xy,..., Xn).
For any two x,x" € R" that differ only in the i-th coordinate we have

xX)— T X, X ,x- < —FiF—=—.
£(x) oy L8 ) — g )| < oy =
By Proposition 5.3.3,

£n
P(|Z—-EZ| >t) <2 &2  forallt>0.
In particular, Z is a consistent estimator of EZ = Eg (X1, X7).

The following example will become important later in the lecture.
This is also our first example for which the constants Ly, ..., L, may
be different.

Example 5.3.8 (Rademacher complexity). Let ¢ = (e1,...,€,) bea
vector of independent Rademacher random variables (values 1 with equal
probability). Given a collection of vectors A C R", define the random
variable
Z (A) = sup <a, €> . Although we do not use it here, note
ac A that Z(A) is a convex function of ¢.
The random variable Z = Z(.A) measures the size of A in a certain sense,
and its expectation R(A) is known as the Rademacher complexity of the
set A. Suppose A is bounded. We will use Proposition 5.3.3 to show that
Z = f(e1,...,&n) is sub-Gaussian. Note that for every a € A, if ¢, differ
only in the i-th coordinate, then

(a,€) —sup(b,¢’) = jnf ((a,€) — (b,e ) < (ae)—(ae) = ai(e;—e;) < 2|a;l.
be A <

Thus, we can take the supremum over a € A to conclude that

f(e) — f(¢') = sup(a, &) —sup(b,¢’) < 2sup|a;| =: L;.
acA beA acA
The arqument is symmetric if we swap € and € and so f satisfies the
bounded differences inequality. By Proposition 5.3.3, Z(\A) is then sub-
Gaussian with parameter 2,/Y; sup,, . 4 a2. We remark that, using different
techniques, this sub-Gaussianity pammeter can be reduced to sup, 4 ||a||.
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An important application of this theory is for the variable Z =
|IP,, — P|| 7, as defined in (4.1), at least in the case when F is uni-
formly bounded.

Theorem 5.3.9. Assume F is uniformly b-bounded, that is, || f||e < b for
all f € F. We have
P(Z>EZ+1) < ex e
= =P T

# i f(xi) — Ef(X)
satisfies the bounded difference property with L; = 271—’3. O

Proof. The function g(x1,...,x,) = SUpfe r

5.4 Lipschitz functions of Gaussian variables

Recall that a function f : R" — R is Lipschitz with parameter L if
[f(x) =fW)l < Lilx—yll  forallx,y € R™.

Theorem 5.4.1. Let X = (Xq,...,Xy) ~ Nu(0,1,) and let f : R" — R
be Lipschitz with parameter L. Then the variable f(X) is L-sub-Gaussian,
and hence

2

P(|f(X)—Ef(X)| > ) < 2¢ 22 forall t > 0.

We will prove this result with a slightly worse constant and as-
suming differentiability (Lipschitz functions are differentiable almost
everywhere though). In this case ||V f(x)|| < L for all x (easy exer-
cise, e.g. consider the directional derivative of f(x) in the direction

Vf(x)).

Proof. We have f(X) —Ef(X) = f(X) — Ex f(X’), where X’ is an
independent copy of X. By the Jensen’s inequality

Exe FXO-Bxf(X) < By M FO—F(X)) (5.9)

Suppose f is differentiable then, by the fundamental theorem of
calculus,

/2
f(X) = f(X) =/ 4 £(Xsinf + X' cos 0)do
0
/2
— /0 <Vf(Xsin9+X’cosG),XcostX’sin9>d9

Note that the variables Xy := X sinf + X' cos 6 and X := X cosf —
X' sin 6 are independent standard normal and so the distribution of
(X, X') is the same as the distribution of (Xg, X}). The right-hand
side in (5.9) can be rewritten as

By et Jo (V7 (X0) Xp)de,

Note that the sub-Gaussian parameter
is completely dimension-free! For this
reason this result is sometimes referred
to as “Dimension Free Concentration
Inequality”.
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If 0 is a random variable uniformly distributed on (0, %) then

/2 T
| (), X5)d0 = TEa(Vf(Xa), X

Using the Jensen’s inequality again (and Fubini’s theorem), we get

m/ /
Ey et o (V0 Xide — |y A BV XX < BgEy o003 (VX0 Xp),

For any fixed 6, (Xp, Xj) has the same distribution as (X, X’). It then
follows that

]EBIEX/X/e/\%<Vf(Xe)zXé> — IEe]EX,X,e/\%<Vf(X),X’> _ IEX’ e g(Vf(X) X’)

Note that for fixed X, the variable (Vf(X), X’) is Gaussian with

mean zero and variance ||V f(X)||? and hence

AT (VF(X),X") < ]EXe/\ZHZHVf(X)HZ/S < MTL2/8

IEX,X/e

This calculation shows that
By f(X)—Ex f(X) < A*rL2/8
or, in other words, that f(X) — Ef(X) is sub-Gaussian with parame-
ter o = 7L, which is slightly more than the claimed L. O
This result is useful for a broad range of problems.

Example 5.4.2 (x? concentration). For a given vector Z = (Zy,...,Zy)

of i.i.d. standard normal variables, we have Y := YI' | Z? = || Z||* ~ x3.

The most direct way to obtain tail bounds on Y was given in Example 5.1.4.
Alternatively we can use Theorem 5.4.1. Define V.= /Y /n = ||Z||//n.

Since the Euclidean norm is a 1-Lipschitz function, we get

P(V—EV>t) < ¢ /2
To obtain bounds on Y — EY note that, by Jensen’s inequality,
E[V] < /E[V?] = 1.
Thus
P(V-EV>t > P(V-1>t) = P(Y/n> (t+1)%).
Putting everything together we conclude
P(Y/n > (1+1)?) < e /2 forall t > 0.

Example 5.4.3 (Order statistics). Given a random vector (X1, ..., Xn),
its order statistics are obtained by reordering its entries in a non-decreasing
manner as

Xy =X =00 = X1y < X

119
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As particular cases, we have Xy = max; X; and X(1) = min; X;. Given
another random vector (Y1,...,Yy), it can be shown that | Xy — Y| <
IX =Y forallk = 1,...,1n"°, so that each order statistic is a 1-Lipschitz
function. Consequently, when X is a standard Gaussian random vectot,
Theorem 5.4.1 implies that

P(|X) —EX(p| > ) < 27772 forall t > 0.

Example 5.4.4 (Singular values of Gaussian random matrices). For
n > d, consider the matrix X € R"?, and denote by

01(X) 2 0p(X) > - 2 03(X) 2 0

the singular values of X. By Weyl’s theorem

max [i(X) (V)] < IX=Y] < X~ Y]|e
In other words, each singular value o;(X) is a 1-Lipschitz function of X.
Suppose now that W is random with independent standard normal entries.
Theorem 5.4.1 implies that

P(|o;(W) — Eoy(W)| > t) < 2e77/2  forall t >0,

or in other words

P(|oi( W) — Eoi(zW)| > ) < 20712 forall t > 0.
If X has i.i.d. rows from Ny(0,%) then X = W+/Z and the sample covari-
ance satisfies

£=1x1x = \/f(ﬁW)T(ﬁ IWE.

We can exploit this to obtain some bounds on ||Z — || (see Chapter 6 in %),

Example 5.4.5 (Gaussian width). Let W = (Wy,..., W) be the n-
dimensional standard Gaussian vector. Given a collection of vectors A C
R", define the random variable

Z=2Z(A) :=sup(a, W).
ac A
The variable Z is one way of measuring the size of the set A, which is
called the Gaussian width. We view Z as a function (w1, ..., Wy) >
f(wy, ..., wy). Fixing a, we get

(a,w) = (a,w') < |allllw—w'| < supllalllw—w|.
ae A
Then

sup(a,w) —sup(a,w') < [afflw—a|,
aeA acA

° The fact that |X; — Yi| < | X — Y| for
every k is trivial. But this statement is
more subtle!

" Martin J. Wainwright. High-
dimensional statistics: A non-asymptotic
viewpoint. Cambridge University Press,
Cambridge, 2019
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and similarly

sup(a,w') —sup(a,w) < sup [al[w—w'|.
acA acA acA

Let D(A) := sup, 4 ||la||. Thus f(w) is D(A) — Lipschitz and this

2

P(|Z -EZ| >t) < 2¢ 2D*A),

5.5 Exercises

Exercise 5.5.1. Provide a non-negative random variable for this the Markov
inequality holds as equality (for a fixed t). Is there a random variable for
which it holds as equality for every t > 0?

Exercise 5.5.2. Show that for U ~ N(0,1) it holds that

—2/2

P(U>t) < S

-0 T V2mt

Hint: If ¢(u) is the density of U, show ¢ (1) + u¢p(u) = 0 forall u € R.
Conclude that [~ ¢p(u)du < L¢(t).

Exercise 5.5.3. Show that in Proposition 5.1.3 the same way we get

logP(Z-EZ < —t) < inf {logEeM? E2) 4 7t}
Ae(—=b,0]

Conclude bounds on P(|Z —EZ| > t).

Exercise 5.5.4. Use Exercise 5.5.3 to show that in the Example 5.1.4
P(Y, —1< —t) < (1—1t)"/2em/2,
Conclude for t € [0,1] that
Py —1] > ) < 2e7"/8, (5.10)
Exercise 5.5.5. Use Exercise 5.5.3 to show that for all t > 0
P(X—pu<-—t) < e /2% ang P(|X—pul>t) < 2e~11/207,

Exercise 5.5.6. Suppose X is o-sub-Gaussian with mean . Show that
var(X) < o2,

Exercise 5.5.7. Suppose X;, i = 1, ..., N are zero-mean o-sub-gaussian
random variables (not neccessarily independent). Use Proposition 6.1.1 to
show that

P(max X; — Emax X; > t) < et/ fort < 20+/2logN.
1 1
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More advanced techniques (1-2 weeks)

6.1  Maximal inequalities

Lemma 5.2.4 and Lemma 5.2.14 provide concentration bounds on
linear combinations of sub-Gaussian or sub-exponential variables. In
many instances, we will be interested in controlling the maximum
over the parameters of such linear combinations. The main moti-
vation is in empirical risk minimization (see (2.1)) but many other
applications exist. The purpose of this section is to present such re-
sults.

We begin by the simplest case possible: the maximum over a finite
set.

Proposition 6.1.1. Suppose Xy, ..., Xy are zero-mean o-sub-Gaussian
then

E max X; <cy/2logN and ]Ei:nilf.),(N|Xi| < oy/2log(2N).

i=1,...,.N

Moreover, for any t > 0
P( max X; >1t) < Ne~/(%)
i=1,..,N
P( max |Xj| > 1) < 2Ne /@7,

i=1,...

(6.1)

Proof. Take A > 0. Then we get

e/\]Emaxl- X; ]erzen ]Ee)\maxi Xi

= [Emax M
1

S ]Ee)\X,' S NeU'Z/\Z/Z.

M-

I
—

1

By taking logs and optimizing with respect to A we get that the opti-
mal A = /2log N/c. Plugging this back, we obtain

1 2
Emax X; < %NJrUZ—/\ < o+/2logN.
1

In other words, for € (0,1),

P <miaxXi > UVZIOg(%)) <.
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The analogous bound for the absolute values follows from the fact
that max; | X;| = max{Xy, —Xj,..., Xy, —Xn}. Finally, the probability
bounds follow directly by the union bound and ¢-sub-Gaussianity of
X;. O

Maximum of N standard normal variables

Figure 6.1 offers an illustration of Proposition 6.1.1. The blue curve
depicts a Monte Carlo estimate of the maximum of N standard nor-
mal variables (¢ = 1) and its theoretical bound /21og(N) is plotted
in red. The bound reveals the right rate. Note also that in Proposi-

w

Maximum
N

tion 6.1.1 we did not require that X; are independent!
Let X = (Xj,...,XN) be a vector of independent c-sub-Gaussian
variables. It is often important to analyze suprema of random func-

tions over a general set A C RN:

(I) 25‘00 50‘00 75‘00 lO(I)OO
sup u' X (6.2) N
ucA Figure 6.1: Illustration of the bound in
Proposition 6.1.1.

By Corollary 5.2.7, each u " X is o||u||-sub-Gaussian. If A if finite, we <+ Exercise 5.5.7
can use Proposition 6.1.1 to get

E TX < odiam(A)/2log |A
max u < odiam( )m,

where diam(A) = max,¢4 ||u]|.

Sometimes, even if A is not finite, there is a trivial reduction to the
finite case. Suppose that P C R? is a polytope, that is, a set of convex
combinations of some fixed points vy, ...,vy. In this case we have

supu™X = max v]X

uep i=1,...,.N
and now we can use Proposition 6.1.1 to obtain bounds on E sup,,.p #TX
and IP(sup,,.p uTX > t). Of particular interest are polytopes that have
a small number of vertices. A primary example is the ¢; ball of RY
defined by

d
B; = {XG]RdZ Z|xi| Sl},
i=1

which has exactly 2d vertices.

If A is bounded, we still have a principled way to study the supre-
mum in (6.2). To simplify the discussion we first present the main
ideas in the specific case of the ¢, ball

d
B, = {xeR: Y x? <1}.
i=1

The general idea is to cover B, with a finite set of points such that
the maximum over this finite set is of the same order as the maxi-
mum over the entire ball.
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Definition 6.1.2. Fix K C R? and € > 0. A set N is called an e-cover of
K, if N C K and for any z € K, there exists x € N such that ||x —z|| < e.

Definition 6.1.3. The e-covering number of K is
N(e,K) := inf{N € N : 3 an e-cover of K of size N }

The following lemma gives an upper bound on the size of the
smallest e-cover of 1Bs.

Lemma 6.1.4. Fixe € (0,1). Then the unit Euclidean ball By has an
e-cover N of cardinality |N'| < (3/€)".

Figure 6.2: e-cover of a square. Here in
addition the points are at least € apart
from each other. Source: Wikipedia.

Proof. Consider the following iterative construction of the e-cover.
Choose x; = 0. For any i > 2, take x; to be any point in B, such that

| x; — x;|| > € for all j < i. If no such point exists, stop the procedure’. * The procedure needs to stop by
compactness of B,. If not, we would

This will create an e-cover. We now control its size. ; '
have a sequence (x,) in By, which

Since Hx -y H > eforall x,y € N, the Euclidean balls of radius then would need to have a convergent
€/2 and centered at points of A are disjoint. Moreover, subsequence. This would contradict the
assumption that the elements of this
U {Z + %Bz} C (1 + %)Bz- sequence are all at least € apart.
zeN

Thus, measuring volumes, we get

vol((1+ §)Ba) > vol( %{H%BZ}) = [N]vol(§B>)

or equivalently
(1+5)7 > V(5"

which gives the following bound

VI < a+5 < ()F

Recall from Corollary 5.2.7 that if X = (Xj,...,Xy) is a vector
of independent o-sub-Gaussian random variables then for any unit
vector u the variable #7X is o-sub-Gaussian. We can then introduce
the following general definition of sub-Gaussian vectors.

Definition 6.1.5. A random vector X is called o-sub-Gaussian if uTX is In this definition we do not require the
o-sub-Gaussian for any unit vector u. components of X to be independent

Theorem 6.1.6. Let X € R? be a mean-zero o-sub-Gaussian vector. Then
E[X|| = E(maxu™X) < 40Vd.
ucB,

Moreover, for any 6 > 0, with probability 1 — 6, it holds

IX|| < 40Vd+20,/2log(1/6).



126 ADVANCED THEORY OF STATISTICS

Proof. Let N be a 1/2-cover of BB, that satisfies || < 6. Next,
observe that for every u € By, there exists y € A and h such that
||h|| <1/2 and u =y + h. Therefore,

1
maxu™X < maxy'™X + max h™X = maxy™X + - maxh'™X.
ucB, yeN he%]Bz yeN 2 heB,

Therefore,

maxuTX < 2maxyTX, 6.
MGIBZ - yENy ( 3)

and so, using Proposition 6.1.1,

EmaxuT™ < 2EmaxyT™X < 201/2log |N| < 4oVd.

ucB; ye

The bound with high probability then follows because, using (6.3),

P(maxu™X >t) < P2maxy™X >1t) < |N|e*t2/(8"2) < Gl t?/(80%)

ueB, yGN

Plugging t = 40\/d + 20+/21og(1/5) we verify the bound. O

6.2 Rademacher complexity and bounds on suprema

In this section we are again concerned with the variable

n

LY £(X) — Ef(X)

i=1

Zy = sup — [Py — P .

feF

In Theorem 5.3.9, we showed that if F is uniformly b-bounded, we
get
P(Zy—EZy > 1) < exp{—15}. (6.4)

By setting 6 = exp{—%}, we gett = % log(1). In other words,
with probability at least 1 — J, we have

2b2 1
The second term on the right diminishes to 0 at the order 1/ Vn.
Since [EZ is unknown, we need to bound it. The three main tools
to construct such bounds are: symmetrization, discretization, and
chaining. We now discuss them in more detail.

Definition 6.2.1 (Rademacher Complexity). For a fixed collection xj :=
{x1,x0,..., %4}, x; € X, consider

Fx) ={(f(x1),--, f(xn)) : feF} SR (6.6)

< Exercise 6.5.1
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The empirical Rademacher complexity is defined as

n

Y eif(x)

i=1

R (F(x1)/n) i= e |Jsup]11

cF

] |

Taking expectation w.r.t. X1, Xy, ..., Xy, we obtain the Rademacher com-
plexity as
Ru(F) == ExRu(F(X])/n).

Consider the following basic bound.

Theorem 6.2.2 (Symmetrization). For any class of measurable functions
F, we have

E[P, —Pllr < 2Ru(F).

Proof. Suppose X, ..., X, are independent copies of Xj, ..., X,. Asa
result, we have

E|P,~Plr = Esup ii(f(&)—lﬁf(xm‘
feF i=1
= Esup| LY (f(X) —lEf(X§>)|

feF i

Il
—_

(consider the convex function ¢(y1,...,¥n) = sups |% Y (f(xi) —yi)))

Jensen

< E sup l ) (f(Xz)_f(X:))‘

fer|Mia

We have f(X;) — f(X]) 2 ei(f(X;) — f(X])) for all i. This is why we
call this the symmetrization argument. Thus we obtain

n

Ly ei(r(x) —f<><;>>|>

ni3

As a corollary, using (6.5), we get the following important result.

E|P, —P|r = 1E<sup
feFx

™=

IND

eif (Xi)

2[E | sup
(fe}' n

= 2R.(F).

i=1

O

Proposition 6.2.3. For any uniformly b-bounded class of functions F, any
positive integer n > 1 and any scalar t > 0, we have

IPy—Pllr < 2R (F) +t

with probability at least 1 — exp(—%). Consequently, as long as R, (F) =
0(1), we have ||IP, — P||x — 0 almost surely (i.e. F is a Glivenko-Cantelli
class for any IP).
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Equivalently, |P, — P||r < 2R, (F)+
by/ 2 log(1) with probability > 1 — 4.
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Proof. Let Z, = ||IPy
the earlier result and Theorem 5.3.9. In particular, convergence in

— P|| . The first part follows directly from
probability of ||IP, — IP|| r to zero follows easily. To get stronger
almost sure convergence we employ the Borel-Cantelli lemma. By
basic calculus, we have3

{2, — 0} = <—

<N (6.7)

N U N 2

N=1n=1m>n

To prove almost sure convergence, we show that the complement of
> L}
If n is large enough then 2R, (F) < ﬁ and so, for such n, taking

t= ﬁ we get P(E,;) = P(Z, >

the set in (6.7) has measure zero. For a fixed N let E, = {Z,

_n__
%) < e 20°N?. This implies that

Y P(E,) < co.
n>1

By the Borel-Cantelli lemma?#, for every N > 1, P(Uy_q Ny>uiZn <
%}) = 1. Thus, in (6.7), we have a countable collection of measure 1
events. This implies that their intersection has measure 1 too, proving
P(Z, —0) =1 O

To bound R, (F), we first fix xq,..,x, € X and bound the em-
pirical Rademacher complexity R, (F (x])/n). Second, if the upper
bound for R, (F(x})/n) does not depend on xy, ..., x,, then it auto-
matically becomes an upper bound for R (F).

E[sup,e 4 5 1fq €]
if A € R" is a set with finite elements. As a corollary from Proposi-

We now state a simple upper bound for R,(A) =

tion 6.1.1 we get the following bound.

Proposition 6.2.4 (Discretization). Suppose A is a finite subset of R"
with cardinality of |A|. Then

$- 2 2108
214)

i=1

Ru(A) =

3\»—\

[E max < max

acA

EZS’ZI

i=1

In Section 6.3 we show that the finite case already leads to deep
and interesting results. Later, in Section 6.4 we show more general
techniques.

6.3 Polynomial discrimination and VC dimension

In Proposition 6.2.4 we showed how to bound the Rademacher com-
plexity for a finite set A. In this section we exploit this result.

Definition 6.3.1 (Boolean Class). We say F is a Boolean (function) class
ifVf e FandVx € X, f(x) € {0,1}.

> Recall that Z,, % 0if Ve > 0 P(Z, >
€) — 0. Moreover, Z, 220 if P(Z, —
0)=1.

3Recall x, — 0if and only if VN > 1
In>1st. Vm > nlxy,| < % Also,
Usea Ex = {x : ast. x € E,} and
Naea Ex = {x : Vast. x € Eq}, which
is why quantificator statements easily
translate to set operations as in (6.7).

+B-C states that if }-,,>4
]P(ﬂnzl UmZn Em) =0.

P(E,) < oo then

< Exercise 6.5.2

Recall that if ¢; are independent 1-
sub-Gaussian then 1a"eis 1|a||-sub-
Gaussian.



MORE ADVANCED TECHNIQUES (1-2 WEEKS)

An important example is given by the binary classification dis-
cussed in Section 4.1.1 and the uniform empirical process.

Example 6.3.2 (Binary Classification). Consider a pair of random objects
(X,Y) having some joint distribution where X € X,Y € {0,+1}. A
classifier is a function g : X — {0,41} The error of the classifier is given
by

L(g) = P(g(X) #Y) = EL(g(X) #Y).

Thus, in binary classification problems, the functions of interest are of the
form 1(g(X) #Y), and {1(g(X) # Y) : ¢ € G} is a Boolean class for any
set of classifiers G.

Example 6.3.3 (Uniform Empirical Process). When deriving the asymp-
totic law of the empirical CFD, the function class of interest F = {1 _qo (*) :
t € R} is a Boolean class.

Now, fix a Boolean class F and points {x1,---,x,} in X. Then
F(x}) defined in (6.6) is a finite set, contained in {0, 1}", whose
cardinality is then at most 2. Applying Proposition 6.2.4, to A =
F(x})/n we obtain

e L A

Ru(F(x})/n) = ]Emax% ‘Zsif(xl-)

since the first term in Proposition 6.2.4 equals to sup . » /Y4 f2(x;)/n,

which is less than or equal to 1.

Of course, if |F(x})| ~ 2" then the bound in (6.8) is not very
interesting. It becomes interesting, for example, when the cardinality
of the function class grows only as a polynomial function of #n, as
formalized below.

Definition 6.3.4 (Polynomial Discrimination). The Boolean class F is
said to have polynomial discrimination if there exists a polynomial p(-) such
that for every positive integer n and every set of n points {x1,--- ,xn} , the
set F (x!') satisfies
FG)] < pln).
The significance of this property is that, together with inequal-
ity (6.8), it provides a straightforward approach to controlling the

Rademacher complexity, R, (F) = o(1). By Proposition 6.2.3 and
(6.8), we get the following result.

Proposition 6.3.5. If a Boolean class F has polynomial discrimination then
it is Glivenko-Cantelli class for any P. 5 5 c.f. Definition 4.1.2

The first important example is given by the empirical process.
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Proposition 6.3.6. The Boolean class F = {1{x < t} : t € R} satisfies
| F(x})| < n+ 1. In particular, it has polynomial discrimination and so F
is a Glivenko-Cantelli class for any IP.

But how does one check if a given Boolean class F has polynomial
discrimination in general? One of the most popular approaches is to
use the Vapnik Chervonenkis dimension, or the VC dimension for
short. We have the following lemma.

Definition 6.3.7 (VC Dimension). The VC dimension VC(F) of a class
of Boolean functions F on X is defined as the largest integer D such that

there exists a finite subset{xy,- -+ ,xp} of X satisfying F(xP) = {0,1}P. Note that it always holds that F(xP) C
{0,1}P
Definition 6.3.8 (Shattering). A finite subset {x1, -+ , X, }C X is said to

be shattered by Boolean class F if F (x]') = {0,1}", i.e., |F(x")| =2™.

Remark 6.3.9. By the definitions of VC dimension and shattering, we know
the VC dimension is the largest integer n for which there is a n-point set
{x1,- -+, xn} which can be shattered by F.

Example 6.3.10. Let F be the set of indicator functions of the form 1 _, 4 (x)
on R. Then VC(F) = 1. Indeed, if x1 < Xy then there is no f € F for
which (f(x1), f(x2)) = (1,0). By the same argument, no bigger set of
points in R can be shuttered.

The next lemma shows that any class with finite VC dimension has
polynomial discrimination with degree of at most the VC dimension.

Lemma 6.3.11 (Sauer’s Lemma). Suppose VC(F) = D, then for every
n > 1 and every collection {x1,- -, xn} of n points, we have

b= (5)+ (7))« ()

If k > n, we have (’,:) =0, and if D < n, we have

Fani< () + (1) (5) < (5)"

Proof. See Proposition 4.18 of © for the detailed proof. O ¢ Martin J. Wainwright. High-dimensional
statistics: A non-asymptotic viewpoint.
As an immediate corollary, we get the following result. Cambridge University Press, Cam-

bridge, 2019
Proposition 6.3.12. Suppose F is a Boolean class and VC(F) < D. Then

for n > D, we have
D en
< - i
Ru(F) < 24/ =1og (5)

D en
— < = —).
]EH]Pn ]PH]: 4 log( )

and so
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Proof. Combined with VC lemma and our previous upper bound
(6.8), we can obtain that for n > D

en\D en en
Ru(F) < \/210g2+210g(D) < \/Z(D—i—l)log(D) <2 Dlog(D),
n n n
where the second inequality follows because, for n > D, we have

2 < (%) and the last uses that D > 1. O

6.3.1 Binary classification revisited

Consider again the classification problem discussed in Section 4.1.1.
For a fixed family of classifiers C, we study sup,. [Ru(g) — R(8)],
where R(g) = P(g(X) # Y)and Ry(g) = 1 XL, 1(g(X;) # Yp).
The study of this quantity is well motivated by (4.2) and (4.3). This
corresponds to ||IP, — IP|| 7, where F is taken to be the class of all
functions 1(g(x) # y) as g varies over C (this class is uniformly
1-bounded), where the data are (X;, Y;) instead of X;. Using the
bounded differences inequality, Proposition 6.2.3, and Proposi-

tion 6.3.12, we get that with probability > 1 — 4

sup Ra(5) ~R(s)| = 2\/ VT tog i)+ 10w < 2 Ve By g

To make these bounds efficient in a wide variety of examples, we

formulate a bunch of results.
Lemma 6.3.13. In the setting above, VC(F) < VC(C).

Proof. We want to show that if F can shatter (x1,y1),..., (Xn, ¥n),
then C can shatter x1, ..., x,. For this, let 1,...,7, € {0,1}. We need
to obtain g € C such that g(x;) = #; fori =1,...,n. Define

0 = nil{y; = 0} + (1 — ;) U(y; = 1).

As F can shatter (x1,y1),...,(Xn, yn), there exists f € F, f(x,y) =
1(g(x) # y) for some g € C such that f(x;,y;) =6;,i =1,...,n. Then
g(x;) =n;, fori=1,...,n. This proves that C shatters x1,..., x;,. O

When the logistic function is used for this classification task, the
classifier is given by

1

glx) = Uh(x) >3},  h(x) = T1exF

or equivalently

gx) = 1{x"p>0}, PBeR™L
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Proposition 6.3.14 (Finite-Dimensional Vector Spaces). Let V be a d-
dimensional vector space of real-valued functions on X.7 Let C := {1(f > 7 For example, f = xTf with  running
0): f € V}. Then VC(C) < d. through IR”.

Proof. For any fixed collection {x1,---,x;41} of d + 1 points. Con-
sider 7 = {(f(x1), -+, f(x411)) : f € V}, then T is a linear subspace
of R?*! with dimension at most d. Therefore, there exists a nonzero
vector y € R+ such that

d+1
Y yif(x;) =0, forall feV. (6.9)
i=1

Without loss of generality, we assume that at least one y; is pos-
itive, k € {1,2,...,d + 1} (If not, we can lety’ = —y, theny’
satisfies both (6.9) and the assumption). Now suppose there exists
{x1,-++,x441} shattered by C, meaning that each possible sign pat-
tern of (f(x1),..., f(x441)) is possible. Then we can find a f € V

such that
flxi) = 0, ify; <0,
f(x;) < 0, ify; >0.
Thus we get Zfill yif (x;) < 0, which contradicts with (6.9). O

Suppose now that a logistic classifier is considered and d is the
dimension of the input space. Using these results, we conclude that
with probability > 1 -6

su B d(log(n) +1) 2 o 1
wpRas) — R(o) < 2y LD ¢ g

6.4 Chaining

The situation like described in Section 6.3 is very special. Typically
we do not have that the functions f € F all take values in a finite set.
In general, to exploit the discretization argument in Proposition 6.2.4
we need to work harder.

Suppose now that A C R" is arbitrary. Let N = N(J) be the ¢-
covering number of A with respect to the norm |a||,, := ||a]/+/n. A
naive approach for bounding R, (A) is as follows. Fix a é-covering
N of A and for every a denote by 71(a) the closest point in N to a we
get

o@D, il

Rn(A) = Esupl p
”() pn uGA\/ﬁ

uceA

sTu‘ < E[max e z|] + Efsup e (u—m(u))]] <
zeN UcA

where the last inequality follows by Proposition 6.2.4 and the Cauchy-

Schwarz inequality. This inequality holds for every  but N(J) mono-

tonically increases as & decreases.
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Get back to our problem of bounding the empirical Rademacher
complexity R(F(x})/n). In this section, we only assume that the
class F has a finite and integrable envelope function F: a function
such that |f(x)| < F(x) < oo, for every x and f € F.

Consider now the L (IP)-norm, || f|lp2 = +/P|f|?. Given a sub-
set F of the L, (IP)-space, we denote the J-covering number by
N(é,F,Ly(IP)). Note that

Ifllp,2 =

sup [Ifllp,2 < [IFllp,2
feF

which is the same as |ja||, witha = (f(Xj),..., f(Xx)). In other
words, N(9) for A = F(X})/n above is the same as N (4, F, Ly (IPy,)).
Thus,

2log N(9, F, Ly (IP
Ra(FXp) /) < || LENOTLED) iy

which implies

Ru(F(XT)/n)

IN

n

21 N (S F /f/L
(\/ ogsupp N( ||n lo2 2(Q)) +5) I Fllp,,2,

21og N(S||E||p, 2, F, Lo (IP
(\/ g N(8[|F|lp, 2, F, La( ”))+5> IFllp, 2

where the supremum is taken over all measures supported on a finite
set with n pointsS. From this, we can conclude the following result,
which we state without proof.

Theorem 6.4.1. Let F be a suitably measurable class of measurable func-
tions with supq N(O||F| 1,0y, F,L2(Q)) < oo for every s > 0. If
EF(X) < oo then F is IP-Glivenko-Cantelli.

A tighter bound on the Rademacher complexity can be obtained
using chaining.

Theorem 6.4.2 (Chaining). Suppose0 € A C R"andlet D :=
sup,¢ 4 |lal| /+/n. Then

16 D/2
2(A) < — log N(6)dé.
Ru4) < 2 | \/logN(o)

Proof. Let Ay, be a D/2™-covering of A with |A,,| = N(D/2™). We
have Ag = {0}. For every m > 0 let 7,,(a) denote the point in A,,
that is the closest to a. Note that

8 Note that this gives a trivial bound

on the Rademacher complexity
ER(F(X]/n)) because, by Jensen’s
inequality E||F|lp,» < ||F|lp2 and this
is the only term in the bound above that
depends on X.
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By Proposition 6.2.4, we have

210g(2|Am| - [Amtal) [ 7m11(a) — 7w (a)|]
1.7 _ & m+1 +
Elmax e’ (7tn1(2) = mm(a))] - < \/ . max NG
¢2log(2lAm+1lz) max 17om+1(@) —a+a —u(a)|
n aeA \/ﬁ
10g(|Am+1|)

IN

< 4 D\/log D/2m+1)).

This assures that

E[sup — \8 al] < Z E[max e (7t11(a) — mm(a)]]
aeA =0 acA "
log N(D/2m+1)
< 4 -
- E 2m n
D logN(D/2m+1)
S 16 Z 2m+2
D/2
< 16/ llogN
as claimed.

O

Theorem 6.4.3. Suppose there exists a function F such that |f(x)| < F(x)
forall f € F. Then

E(F(X)?) 1
E|P, —P|r < 8‘/f/o \/logsgpN((SHF|L2(Q),]:,L2(Q))d(5

where the supremum is taken over all measures supported on a finite set
with n points.

n

Proof. Consider a fixed sample (X;)" ; with the underlying distribu-
tion IP,,. Note that

sup ia% = sup\/iif( \/ ZF = IP,F2
i=1

acF (X)) i=1 feF

S|

By Theorem 6.4.2, conditionally on (X;)"_,

|41 [ogne
14

Figure 6.3: Illustration of the last bound
in the proof of Theorem 6.4.2.

\/IP,F2/2
E sup|— Xi)| < log N(6; F,L2(IP,))dé
fe}' i=1 ’ \f \/
8 1 ;
_ ﬁ\/]l’nl-"z/o Vlog N(§V/P, P2 F, 12(P,))ds
<

8 1
i VPR [ sup log N(§IFl2gy: 7, L(Q)
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To get the desired bound we now take the expectation with respect to
(Xi)!_,. By the Jensen inequality we get

2 2
. [PiF _ [JERX)
n n

which gives the desired result. O

We conclude stating the following result that shows that Proposi-
tion 6.3.12 can be strengthened.

Proposition 6.4.4. Suppose F is a Boolean class and VC(F) < D. Then
for any & > 0, we have
1

supN(3, F,L2(Q)) < ()27,
Q

where c1, ¢y are some positive (universal) constants, and the supremum is
over all probability distributions over X. Consequently,

D
E|[Py —Pllr < ¢y/—

for some universal constant c.

6.5 Exercises

Exercise 6.5.1. Let X € R"*“ be a random matrix with i.i.d. entries that
are o-sub-Gaussian. Denote by S"~1 the unit sphere in R" and by BY the
corresponding unit ball.

(i) Show that u' Xv is a o-sub-Gaussian random variable for any u € B},
RS ]Bg.

(ii) The operator norm || X|| is defined as || X|| := sup,,_., HH);Z\JIH' Show that

[X|| = max max u'Xv = maxmaxu’ Xo.
ues"~1pegi-1 u€B] veBd

(iii) Using (i) and (ii), show that there exists a constant C > 0 such that

E|IX|| < C(vn+Vd).

Exercise 6.5.2. Prove Proposition 6.2.4.
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7
Applications in statistics (1-2 weeks)

Please read Chapter 1 in * to build up some intuition for why high- " Martin J. Wainwright. High-dimensional
statistics: A non-asymptotic viewpoint.

L. . . . Cambridge University Press, Cam-

on a basic illustration for the results in the previous chapter. For bridge, 2019

dimensional statistics is important in general. In here we only focus

more details, see the lecture notes of Philippe Rigollet*, on which I *https://math.mit.edu/~rigollet/
based most of this chapter. PDFs/RigNotes17.pdf

7.1 Sub-Gaussian sequence model with sparsity

Consider the Gaussian sequence model, that is, let
Xi = ui+ei i=1,...,d, (7.1)

where €; ~ N(0,0?). This is the same model as we considered in
Section 2.5 in our discussion of the Stein’s paradox. Occasionally, we
will also relax the assumption of Gaussianity of € in which case we
refer to it a a sub-Gaussian sequence model.

Given a random sample X(l),. ., XM € RY from model (7.1), we
can estimate y by the sample mean Y = X,, = % er-‘:l X(). Note that
EY; = y; and var(Y;) = ¢2/n and thus, equivalently, we can consider
a Gaussian sequence model

Y; = HU;+e€;, i=1,...,d,

where var(e;) = ¢?/n or, more generally, a sub-Gaussian sequence
model for which ¢; is %—sub—Gaussian. We use the estimator 7 =

(Yl, ey, Yd) with the risk3 3 This formula already appeared in
(2.11).
d od
R(H, ﬁ) = E [Z 612] < —. The inequality becomes equality in the
i— n Gaussian case.

To think about this as a high dimensional problem, we let d, n be
both large in which case i may not be a good estimator unless 1 >> d.
In order to estimate p in the high-dimensional setting we will re-
quire some additional structure on . In Section 2.5 we saw a simple


https://math.mit.edu/~rigollet/PDFs/RigNotes17.pdf
https://math.mit.edu/~rigollet/PDFs/RigNotes17.pdf
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example of how explicit bounds on the entries of y can be exploited
by an estimator of the form CY with C diagonal.

Here we assume that y is sparse or most of its entries are small.
In this case, a natural estimator is given by hard thresholding. Hard
thresholding gives the estimator

i = Y|yl > 1) foralli=1,...,d.

Equivalently, the thresholding estimator is a solution to the problem: In each a; the function is Y? if a; = 0
and (Y; — a;)? + 72 otherwise. The
latter function is minimized at a; =

. Y; with the optimal value 72. Thus
the optimum of the whole function
depends on whether |Y;| > T or not.

d
i = argmin? |Y —a|>+ 72 )_1{a; # 0}
aeR i=
We will try to obtain risk bounds for hard thresholding. Note that,

by (6.1), with probability at least 1 — 4, Recall: €; is %-sub-Gaussian.
max|e| < o w =: T. (7.2)
1

The consequences of this inequality are two-fold. First, if p; = 0 then
1Y;| = |e;| < T with high probability. Thus, if we observe |Y;| > T
then it must correspond to y; # 0. Second, if |Yl-] < 7 then y; cannot
be too large because, by the triangle inequality,

il < Vil + lei] < 2.
Therefore, we loose at most 27 by taking fij =

Proposition 7.1.1. Let 127 be the hard thresholding estimator with thresh-
old 2t, where T is defined in (7.2) Then, (7.2) implies that

d
727 = ul* < 9) min{uf, 7}, (7:3)
i=1
In particular, (7.3) holds with probability > 1 — 6.4 4Recall that (7.3) depends on & through

(72).
Proof. We condition on the high probability event (7.2), which we call

€ in this proof. Fix index i and note that:

1. If |p;| < tthen (given &) |Yi| < |wi| + |Y; — pi| < 27 and so
ji27 = 0. In this case, (u; — f177)* = p?.

2. If |u;| > 37 then (given &) |Y;| > |ui| — |Y; — pi| > 27 and so

2T = Y;. In this case (y; — j127)? = €2 < 72,

3. If T < |p;| < 37, then

(= p)? = (YA > 27) —w)? = piA(|Y] < 27) +€1()Yi > 27) < max{e}, jf} < 9%

Putting these together, we see that (7.2) implies (7.3). O
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The next theorem shows how this can be exploited. It is conve-
nient to have the following standard notation:

an < by

~

means a, < Cb, forsome C > 0 and all n.

Theorem 7.1.2. Consider the same set-up as in Proposition 7.1.1. If (7.2)
holds, then the following statements hold:

(i) If [[ullo = s then

22l08RA/0) o polosld) g

R(p, 7?7) < 9512 = 180 2

(i) If min;egupp(y) [1i] > 3T, then

supp(7°7) = supp(p).

Equation (7.4) shows that in the sparse setting ji* may be consis-

SIOg( ) — 0, where s is the number of non-zero entries

tent as long as
of the vector p. Qulte surprisingly, this may happen even if d is expo-
nentially larger than #.

A natural question is whether sparsity is required for such a high-
dimensional consistency result. There are several examples showing

that this is not the case. To get a flavour of these results suppose that

l#l]1 < RforsomeR € R. Lett =0 108(2«1/5)

ll#ll1 < R, then the number of i such that |]/tl| > Tis at most R/ 7. By
Theorem 7.1.1, under the event £ defined in (7.2),

as defined in (7.2). If

d
) < 9) min{uf, 7*}

i=1

R, u

Thus, we can use the previous (conditional) risk bound to obtain:

R(A*, 1) < 9me{ﬂu %}

9Zr+92yl

it|pi|>T it|pi| <t
9R
< TT2+9 Yoot
irpi| <t
< 9RT+9T Y |uil
ity <7
< 18Rt = 18Ro w.

Note that we do not bound the risk
but the conditional risk. But here the
event we condition on holds with
high probability (1 — §) so this is still
informative.

Thus we get some guarantees on
support recovery.

Notice that the rate of convergence is
different from the sparse case, roughly
behaving as 1/+/7 instead of 1/n.
Nevertheless, this is still a strong, nice
and surprising result.
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7.2 Fixed design linear regression

Consider the standard linear regression problem
y = X0* +¢,

where X € R"™ is a fixed matrix, 0* € R? is a fixed vector and € is
a random vector such that each ¢; is an independent random variable
with Ee; = 0, var(e;) = ¢2. Given the data y, the least squares
estimator of 6* is obtained by minimizing

1 & 1
My (0) = %Z(%‘—XJG)Z = %Hy—Xf)Hz (7.5)
1

with respect to § € RY. If rank(X) = d (in part. n > d) then the
optimum exists and is unique. It is given by the well known formula

0 = (XTX)1XTy.

If n < d then the optimum is attained over an affine subspace of
positive dimension and so it is not unique. It is then customary to fix

0 = (XTX)"XTy,

where AT is the pseudo-inverse of A. In this case § minimizes the
norm over all the optimal points.

The quality of an estimator 6 is normally analysed in this context
I?

based on the mean square error [E||§ — 6*||2. For simplicity we will

first study the mean squared prediction error

~

MSE(XE) = L|X(E-67)|7 = @ )T(IXTX)E- 6. (76)

As we will see later, properly choosing the design also ensures that
|6 — 6%||2 is small as long as MSE(X®) is small.

We are now going to prove our first result on the finite sample
performance of the least squares estimator for fixed design.

Theorem 7.2.1. Assume that the linear model holds with € which is o-sub-
Gaussian. Then the least squares estimator 9 satisfies

E(MSE(X)) — %IEHX((?—G*)HZ <42l < 27,

where r = rank(XTX). Moreover, for any & > 0, with probability at least
1— 6, it holds

MSE(x8) < 32022/ +108(179)
- n

Proof. By definition

ly = X8|* < [ly —xe*|> =[] (7.7)

More generally, we could consider a
feature map ¢ : R — R and the
corresponding feature matrix ¥ € R"*¢
whose rows are obtained by applying
1 to the rows of X. The corresponding
model would be

y=Y¥0"+e.
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Moreover, denoting A = 6 — 6%,
ly — X8|> = ||X6* +e—XA||*> = | XA|> —2eTXA + |||
This, together with (7.7), allows us to conclude that
[XA||? < 2eTXA. (7.8)

Using the Cauchy-Schwarz inequality directly for the right-hand
side in (7.8) would be wasteful in the case when r < d. Instead,

let V. = [v1---v,] € R" be a matrix whose r columns form an
orthonormal basis of the column span of X. In particular, there exists
u such that XA = Vu and, denoting & = VTe, we have

€XA = eWVu = &u < [&]||ull = [&]|XAl,
where we used the fact that || Vu|| = ||u|| as VTV = I,. Using this
inequality in (7.8) gives that
XAl < 2|é| (7.9)

and so
T
E|[X(6 —6%)[]> < 4E[&]* = 4)_ E& < 4ro?,
i=1

where the last inequality follows from the fact that each entry &; =

v]e is zero-mean o-sub-Gaussian and Exercise 5.5.6. This concludes

the proof of the bound on E(MSE(X0)).
For the second statement note that, by (7.9),

P(MSE(X) > t) = P(||X(6—6")||> > nt) <P(||&]|> > nt/4) = P(||e]| > V/nt/2).

Since ||&|| = sup,, .2 #T€ we can use the last inequality in the proof of
Theorem 6.1.6 to conclude that

_nt_
P(|l&]| > Vnt/2) < 6'¢ 3207,
Taking t = 3202%“1/5) we verify that

P(MSE(X0) >t) < 6.

If r = d < n then bounds on prediction errors give bounds on
|6 — 6*||>. In this case B = 1XTX has rank d and, using (7.6), we get
MSE(X9)

Tmin(B)

where Ymin(B) is the minimal eigenvalue of B. Theorem 7.2.1 can

16 —6%> < (7.10)

be therefore used to bound || — 6*||? directly. By contrast, in the
high dimensional setting B is not positive definite and we need more
structure.

141
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7.3 Constrained least squares estimator

Let K C R? be a symmetric convex set5. If we knew a priori that 5 Symmetric means that K = —K.
6* € K, we may prefer a constrained least squares estimator 6x
defined by
fx € argmin |ly — X6|°.
k € argmin [y — X9

The equivalent of inequality (7.8) still holds, that is, || X(x — 6*)||> <
2e "X (0 — 6*). Further,

[X(6k — 6%)]*> < 2¢"X(fx —6%) < 2 sup €' X,
9eK—K
where K — K = {x —y : x,y € K}. Itis easy to see that since K is
symmetric and convex K — K = 2K so that + Exercise 7.6.1

2 sup €' X8 = 4supe'v
#eK-K veXK
where XK = {X0 : 6 € K} C R". This is the measure of the size
of XK. If e ~ N(0, I), the expected value of the above supremum is
called the Gaussian width of XK.

{1 constrained least squares Assume here that K = By is the unit /;
ball of R?. Recall that it has exactly 2d vertices ey, ..., £ey, where ¢;
is the i-th canonical unit vector. It implies that the set XIB; is also

a polytope with at most 24 vertices that are contained in the set
{—X1,X1,..., X4, Xy}, where X; is the i-th column of X.

Theorem 7.3.1. Suppose 0* € B1. Moreover, assume the conditions of The-
orem 7.2.1 and that the columns of X are normalized so that max; [|X;|| <
/. Then the constrained least squares estimator O, satisfies

_ 1 - . logd
E[MSE(Xfp,)] = —E||X(8s, —6)[* S oy/=2=.

Moreover, for any 6 € (0,1), with probability 1 — 6, it holds

MSE(X0p,) < o M.

Proof. From the considerations preceding the theorem, we got that

|X(0p, —6%)|* < 4 sup €'o.
veXBy

Moreover, because XIB; is a polytope, we have

sup €' v = max |e' X
Z)EX]Bl 121,‘..,d
Since € is o-sub-Gaussian®, then for any column X; such that || X;|| < 6 Recall this multivariate definition

given before Theorem 6.1.6.
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/1, the random variable € " X; is (/n0)-sub-Gaussian. Therefore,
applying Proposition 6.1.1, we get

E sup €' v < o4/2nlog(2d),

veXIB,

which gives the claimed bound on E[MSE(X0, )]. Again by Proposi-
tion 6.1.1 we get that, for any ¢t > 0

P(||X(fp, —0")||> >4t) < P(sup e v>1t)< 2de1/(2%n)
veXBy

From this we conclude”
P(MSE(X8) > t) < 2de "t*/(320%),
To conclude the proof, we find t such that

zdefntz/(’ﬂaz) S 5 RN t2 Z 320_210g(2d) +320_210g(1/5) .
n n

O

Note that the proof of Theorem 7.2.1 also applies to fp, so that 0,
benefits from the best of both rates

E[MSE(Xp,)] < min{%,/ '8},

This is called an elbow effect. The elbow takes place around r ~

Vnlogd.

7.4 LASSO regression

The focus of this section is on the situation when the true parameter
vector 0* is sparse. In this case, even if n < d it may be possible to
control the error of recovering 6*. Building upon (7.5), we consider
the regularized estimator

oo O T 2
0 = argmin { J;[ly — X6|> + Al }, (7.11)

where A > 0 is a fixed penalty parameter. This is called the LASSO
regression problem.

The LASSO regression problem is a convex problem but it is not
differentiable. By standard convex duality theory assures that, for
any given A > 0, the LASSO problem (7.11) is equivalent to the
constrained problem

minimize 4|y —X6||* subject to [|8]; < R (7.12)

for some R > 0. This observation aids some intuition behind what
the LASSO estimator is actually doing (contemplate the side figure).

7 Recall from (7.6) that MSE(X0) =
X0 — )12,

< Exercise 7.6.2

Although the optimum is not given

in a closed form, there is a simple
numerical algorithm that can be used
for optimization. The algorithm relies
on the observation that if d = 1 then
the optimum is given in a closed form.
Using this fact, we can run a coordinate
descent algorithm where at each step
we update one coordinate of 6 keeping
the other coordinates fixed.

Sparsity
inducing
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There are three main problems related with the analysis of the

LASSO estimator. One focuses on ||§ — 6*|| to establish high-dimensional

consistency. The other focuses on the prediction performance ||X(6 —
6*)|| as analysed for the least squares estimator in the previous sec-
tion. Finally, we can study how the LASSO regression in recovering
the true support of 6*. Below we briefly focus on the first and the
last.

7.4.1 High-dimensional consistency

Recall that M,,(8) = 4|y — X6|%. In the discussion surrounding
(7.10) we argued that if the spectrum of %XTX (and so the Hessian of
M,,(0)) is bounded away from zero, a bound on the predictive error
provide bounds on MSE(f). Considering the dual problem (7.12)
with R satisfying ||6*|l; < R, we could conclude something similar
for the LASSO estimator. In the high-dimensional setting 1 XTX is
not positive definite. However, using the fact that 6* is sparse, we
need enough of curvature of M, only in some directions.

The Hessian matrix V2M, () = 1XTX is positive definite with
minimal eigenvalue at least « if

1

1
~ATXTXA = E||XA||2 > k|A>  forall A e RY.

As we said, if n < d, there is no ¥ > 0 for which this condition holds.
Instead, for any S C {1,...,d} and « > 0 define

Ca(S) = {AeRT: Al < (1+a)]As]1}.

We say that the matrix X satisfies the restricted eigenvalue (RE)
condition over S with parameters (x, «) if

1
E||XA||2 > «||A|>  forall A € Cyu(S).

Suppose that:

(A1) The vector 6* is supported on a subset S C {1,...,d} with
|S| =s.

(A2) The design matrix satisfies the restricted eigenvalue condition
over S with parameters (x,3).

Theorem 7.4.1. Under assumptions (A1) and (A2) any solution of (7.11)
for Ay > 2| X2€ || oo we have

~ i 3
180 =61l < Zv/5hn.

Large portion of ||Al|; is due to Ag. In
other words ||Agc ||l1 < af|Ag]|1

Region |y| <= |x|/2

1o0f

-10f, L L L .
-1.0 -0.5 0.0 0.5 1.0

Figure 7.1: Suppose thatd = 2,60 =
(x,y),S = {1},and « = ;. Then

Ca(8) ={(xy) : Iyl < 3lxI}-
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Proof. We first show that, if A, > 2| XTTe ||eo then the error A = 8 — 6*
belongs to C3(S). Let L(8;Ay) = 2-||ly — X0||? + Au||0]/1. We have
~ 1
L®An) < LOA) = 5-lle]l® + Anl6|1-
With A = § — 0* we get
ly — X0]1* = ly — X0 — XA||> = [|le — XA|>
We can use it in the previous expression to conclude
1 ~n2 1 T ~ * a
0 < |IXAI? < XA+ A, (6"~ 10l).  (7.13)
n n
Since 0* is S-sparse, we can write
1071 = ll6lls = [165lx — 1165 + Asll — [[Ase s
Substituting this into (7.13) gives
1 2 2 TYA * SN A
0 < IXAR < ZeTxB+2, (1163 — 0§+ As s — Bl
XTe ~ ~ ~
< 2| 1Al + 200 (13slh - 1sh)
< Au (3185l — 1Bl ).
where the last inequality follows from the choice of A,. The fact that
3| As|li — ||Age|li > 0 establishes that A € C3(S) so that the RE
condition can be applied. Doing so, we conclude that
~ 1, ~ ~ -~ ~
KIAIR < LIXBIP < Au (318s] ~ [Bslh) < 3]s
Since || Ag|l1 < /s||As|| < v/5]|Al|, the conclusion follows. O
We now show how this result can be applied in the classical lin-
ear Gaussian model for which the noise vector € has ii.d. N(0,0?)
entries. More generally, the same calculation applies when ¢ is o-sub-
Gaussian.
In addition, we assume that X satisfies the RE condition and that it
is C-column normalized, meaning that8 8 Exercise 7.6.3 partially motivates this
assumption.
max ||X]- | <Cvn, + Exercise 7.6.3
]

where X; denotes the columns of X. With this set-up, the random
variable || 1XTe||c corresponds to the absolute maximum of d zero
mean Gaussian variables, each with variance at most C2¢02/n. Conse-
quently from standard sub-Gaussian tail bounds in Proposition 6.1.1

2

__ntt
P(H%XTeIIw > t) < 2de 27,
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Plugging, t = Co ( ZIZg 4y 5) we easily verify that

P <|}lXTe||oo >Co <1/ % +(5>) < 2en0/2 forall 6 > 0.

Consequently, if we set

Ap = 2@@/@ +0)

then Theorem 7.4.1 implies that

16 —6°| < 65’#{\/21‘31gd+5}

with probability at least 1 — 20 15/2,

7.4.2  Model recovery consistency

Here we again focus on the deterministic design. For variable selec-
tion consistency the restricted eigenvalue condition is replaced by a
closely related condition.

(A3) Lower eigenvalue: The smallest eigenvalue of the sample co-
variance submatrix indexed by S is bounded below

1
'Ymin(;XEXS) > Cmin > 0.

(A4) Mutual incoherence: There exists « € [0,1) such that

max || (XGXs) XXl <

Note that condition (A3) is rather mild and it is required to get iden-
titifiability even if S is known in advance. The second condition is
more subtle and roughly it says that no variables in 5¢ are too cor-
related with the support variables. This is form of orthogonality
((XIXs)'XIX; is a projection of X; on the span of Xs), which is actu-
ally unlikely to hold in big datasets.

Recall that for a vector w € R?, ||w||ec = max; |w;]. If W € RF*! is a
|W;||1, where W; is the i-th row of W.

matrix then |[W||e = max;_1

Theorem 7.4.2. Consider an S-sparse linear regression model for which the
design matrix satisfies conditions (A3) and (A4). If

2
[ Y

1 -1
X (I = Xs(XIXs)7'XT ) €

A

7
(o]

then 8 has the following properties:
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(a) Uniqueness: There is a unique optimal solution )
(b) No false inclusion: This solution has its support set S contained within

the true support set S.
(c) loo-bounds: The error A satisfies

18]l < [1(XEX5) ™ XEelloo + [|(XEX5) ™ leoAn =2 B(An, X).

(d) No false exclusion: The lasso includes all i € S such that |0}] >

B(Au, X), and hence is variable selection consistent if min;cg 07| >

B(Ay, X).
Corollary 7.4.3. Consider the S-sparse linear model based on a noise vector
€ with zero-mean i.i.d. o-sub-Gaussian entries, and a deterministic design
matrix X that satisfies (A3) and (A4), as well as the C-column normaliza-
tion condition. The LASSO estimator with

2C 2log(d —
Ay = g { Og( s) + (5}
1—« n
for some & > 0. Then 0 is unique with its support contained within S (no
type I errors), and satisfies the {oo-error bound
Bsllo < — 214/ 282 15 L4 [ (2XTXs) o
" v/Cmin n nes

all with probability at least 1 — 4e~"9*/2,

Both results are left without a proof, see Chapter 7 in 9 for details. 9 Martin J. Wainwright. High-dimensional

statistics: A non-asymptotic viewpoint.
Cambridge University Press, Cam-

7.5 Random matrices bridge, 2019

7.5.1  Spectral norm of sub-Gaussian random matrices

Let A € R™", then [[A|| = maxy <1 ||Ax| is called the operator
norm of A. Using the variational characterization of the norm, we get

Al = y' Ax.

max
IxlI<1 [yl <1
Lemma 7.5.1. Let N be an e-covering of BYy. Then

1
max ||Ax]| < ||A|| € —— max||Ax]|.
xeN 1—€ xeN

If, in addition, M is an e-covering of B} then

max y'Ax < ||A|| <

T
max Ax.
xeEN, yeM 1 —2€ xeN,yeM Y
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Proof. For the first statement — we used this argument already in the
proof of Theorem 6.1.6. For the second statement, use the fact that
| Ax[| = maxy|<1 y ' Ax and that (1 —¢€)? > 1 — 2e. O

Proposition 7.5.2. Let A € R™*" be a random matrix with independent,
mean zero, o-sub-Gaussian entries. Then, for all t > 0

JAll < So(Vim+ i+ 1)

with probability > 1 — e~

Proof. First, consider }-coverings M, N of BY and BY. By Lemma 6.1.4,
we can assume |[M| < 12" and |N| < 12". By Lemma 7.5.1,

| Al < 2maxyerxen'y ' Ax. By Lemma 5.2.4, each y ' Ax is o-sub-
Gaussian. By the union bound we conclude

2

u?
P(|A|l > u) < P( max yTAXZ 5) < 12" Me™ 802
yeMxeN

Take u* = 50 (y/m+ /n+t). Then

25
IP(HAH > M*) < 12m+ne—§(m+n+t2) < €_t2.

We note also that E||A|| < 50(y/m + /n). This follows from
Proposition 6.1.1. Indeed,

E||A| < 2E[ max y'Ax] < 204/2log12mtn < 5¢v/m+n,

yEMXEN

from which the conclusion follows.

7.5.2  Recovering communities in the stochastic block model

We consider a basic version of the stochastic block model. This is a This section is adapted from:

model for random graphs on #n nodes, which are divided into two Roman Vershynin. High-dimensional
probability: An Introduction with Ap-

o plications in Data Science, volume 47.
g < p < 1. Each edge i — j appears independently with probability Cambridge University Press, 2018

equal-sized communities. The model comes with two parameters 0 <

p if i,j are in the same community and g if they are in two different
communities.

We represent a graph with an adjacency matrix A € {0,1}"*",
where

P(A; = 1) = BA; — p ifi,j lie in the same community,

e g if 7,j lie in different communities.
If the vertices are ordered so that the first /2 belong to the first
community then [EA has a simple block structure

EA — pia’ qui'| 11 0| |p q| |17 0f
g1’ p11’ 0 1| g p| |07 1T
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where 0,1 € R"/2 are vector of zeros and ones. Denote

uy = 1 Uy = 1 01 = L1/11 Uy = L1/12
1 7 _1 7 ﬁ 7 \/ﬁ 7

where v1, v, are the normalized versions of w1, up with ||v1|| = ||o2| =
1. It is then easy to check that

EAv, = n’%rqvl and EAv, = n%vz.

In other words, u1, u; are the eigenvectors of EA with eigenvalues
A= nPTH and A, = nZ51 respectively. Since EA has rank 2, all other
eigenvalues are zero.

Consider now situation when we observe A but the community
structure is unknown. If we observed IEA, we could compute the
eigenvector corresponding to the second largest eigenvalue and then
we could assign vertices to communities according to whether the
corresponding entry in this eigenvector is positive or negative. A
natural question is what happens if we do the same on the observed
matrix A.

By the Weyl’s theorem we know that for any two symmetric ma-
trices max; [A;(S) — A;(T)| < ||S — T||. We have a similar result for
eigenvectors.

Theorem 7.5.3 (Davis-Kahan). If S, T are symmetric n x n matrices. Fix
i and suppose min;; |A;(S) — A;(S)| = & > 0 then
2||S — T
5
Note that the sine of an angle being small means that the angle

sin (£{vi(5),v(T)}) <

between v;(S) and v;(T) is either close to 0 or close to 71. We can
always find 6 € {—1,1} such that the angle between v;(S) and 0v;(T)
is close to zero.

Proposition 7.5.4. With the same assumption as in Theorem 7.5.3, there
exists 0 € {—1,1} such that

23/2|S—T
Joy(5) — oy | < 2 =T,
Proof. Letu = v;(S), v = 0v;(T), where 6 is fixed so that uTov > 0.
Note that ||u| = ||v]| =1 and ||u — v||> = 2(1 — u " v). Moreover, using
the formula cos(Z(u,v)) = u'v we get

sin?(Z(u,v)) = 1—(u'v)? > 1-u'v = Hu — 0%
By Theorem 7.5.3, we then conclude

8||S — 7|
52

from which the result follows. O

|u—o|* < 2sin®(£(u,0)) <

149
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We are going to use this result with S = EA and T = A. To use the
David-Kahan theorem, we first check that A, (the second eigenvalue
of EA) is well-separated from the rest of the spectrum, that is, from
A1 and 0. We have

6 = min{A; — Ay, Ar — 0} = nmin{&1,q} = np.

In SBM A;;’s are independent. Since |A;; — EA;j| < 1, it follows
that A;; — [EA;; are independent 1-sub-Gaussian random variables. It
follows that

|A—EA| < 10(v/n+1t)

with probability > 1 — et By Proposition 7.5.4, there exists 8 €
{—1,1} such that

[0i(EA) — 6v;(A)[| <

PRIAZEAL 32 (1, 1)
) - no\n
with probability > 1 —e~*. Take ¢ = /7 to conclude that

C
v

[0:(EA) — 0v;(A)|| < (C:=5-27/2)
with probability > 1 —e™".
Let u; = +/nv;. Note that the entries of u;(EA) are £1, so if

signs of u;(EA) and 6u;(A) do not agree, they constribute > 1 to
lu;(EA) — u;(A)||>. We know that, with high probability,

CZ
[ui(EA) — 6u; (A)||* < 2

and so there cannot be more than % (a constant) of entries that con-
tribute more than 1!
We conclude that, with high probability, we can correctly classify

all but finite number of vertices. We formulate this as a theorem.

Theorem 7.5.5 (Spectral clustering for SBMs). Let A ~ SBM(n, p,q)
with p > q and min{tfracp —q2,q} =: u > 0. Then with probability
> 1 — e " the spectral clustering algorithm identifies communities of A
correctly up to C?/ u? misspecified vertices.

7.5.3 Covariance matrix estimation

The basic problem can be formulated as follows. Suppose X € R"*¢
such that each row x; is i.i.d. Ny(0,X). The sample covariance matrix
is defined as

R
Zn = E‘inxi = EX X
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This is a random positive semi-definite matrix whose expectation
satisfies

o 1
EL, = EZIEXZ-XIT = X

The question we ask is how fln concentrates around X. Ideally, we
would also like to relax the Gaussianity assumption.

Concentration can be measured in various norms. If we use the
operator norm, the general idea is to use the following variational
representation: If Q € S% then

IQlI = sup [0TQo].

[o]=1
Thus
-~ -~ 1 5
|20 —Z| = sup [0T8,0 —0T%0| = sup |= ) (v7x)* —vTZ0|.
loll=1 loll=1 " i=1
Let F be the class of functions f(x) = (vTx)? for ||v| = 1. Since
Ef(x) = v"Xv, we can rewrite
~ 12
IZ0 =2l = sup |-} f(xi) = Ef(X)].
feF i=1

Note that the spectrum of £, is directly related to the spectrum of
X. We have

~

Ymax(Zn) = Ymax (%XTX) = (Omax( ﬁx))z
and

Ymin (ZH) = ')’min( %XTX) = (Umin( ﬁx) )2'
Since singular values are continuous functions of its matrix argu-
ment, we then expect that

U’max(ﬁx) = \/’Ymin(in) ~ \/’)’min(z) = 7min(\/i)'
Indeed, we have the following result.

Theorem 7.5.6 (The Gaussian case). Suppose X € R"*“ such that each
row x; is i.i.d. from Ny(0,X). Then for every § > 0

]P<U’max(\/1£X)) 2 (1+5)7max(\/i)+ tI‘(nZ)> < e—n62/2

and, if n > d, we also have

]P<o'min(\}ﬁx) < (1_5)7min(\/i)— tr(}f;)) < efn§2/2

151
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Proof. The proof, as many results of that form has two step. First we
show that Umax(ﬁX)) concentrates around its expectation. Second,
we provide bounds on this expectation that allow us to conclude the
given formulas.

Step I: We can write X = W+/Z, where W has i.i.d. standard
normal rows. The first part can be shown as in Example 5.4.4. By
Weyl’s theorem W +— amax(ﬁw\/i) is Lipschitz with parameter

L= ﬁ”x/fﬂ By Theorem 5.4.1

P (0max(—=X) > Eomax(-=X)) +1) < e "/ CIED,

WG
Taking t = +/[|Z]]4,

]P(U—max(%)() Z]E(Tmax(%X))—i- 1)) < o 10%/2.

Preparing for the second part of the proof, note that if we could show
that ]E(O'max(ﬁ)()) <VIZ| + () we would be done.

n 7

1
NG

Step II: We want to show that ]E(O'max(ﬁX)) < VIZ] + “(TZ)

We use the following variational characterization

1 1
o, —X) = max max uT(—=X)v.
max( 77 X) lul|=1 ol =1 (Z=X)

Let S"~1 < IR" be the set of vectors with unit norm. Consider the
zero-mean Gaussian process

Zuw = uT(=X)v  for (u,0) € §" 1 x 471,

Consider the induced metric on §"~1 x §4-1

d((n,0), (u,0)) = \/E(Zup — Zu )

We have
E(Zuo = Zw,w)* < |1 Z[[lu— o'+ [[o—2'|3.

We construct another Gaussian process Y;, ,, whose covariance func-
tion is equal to this right-hand side. O

7.6 Exercises

Exercise 7.6.1. Show that if K C R is convex and symmetric (K = —K)
then K— K = {x —y : x,y € K} is equal to 2K = {2x : x € K}.

Exercise 7.6.2. Show that the proof of Theorem 7.2.1 applies to the estima-
tor O, .
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Exercise 7.6.3. Suppose X € R4 is a design matrix, whose rows are
independent observations of a d-variate mean zero distribution for which
all marginal distributions are o-sub-Gaussian. Show that that, for every
j, the j column X; of X satisfies ||X;|| < 4o+/n + t with probability >
1— e /(8%
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8
Classical large sample theory

This section will be mostly based on a few chapters from *. We will
be relying on basic definitions and results on convergence in proba-
bility theory.

8.1 Preliminaries

We consider vectors with values in X C R™. The set X’ forms a met-
ric space with the induced metric d(x,y) = ||x — y|| (but any other
equivalent metric is fine). The inequality x < y is meant coordi-
natewise. Many of the results discussed here can be generalized to
arbitrary measure spaces with the underlying Borel measure (open
sets are measurable).

Recall that a sequence of random vectors X, converges in distribu-
tion to X, denotes X,, ~ X, if

P(X, <x) — P(X<x),

for every point x for which the limit CDF x — P(X < x) is contin-
uous. Convergence in distribution is often called the weak conver-
gence. Moreover, X, converges to X in probability, denoted X, 5 X,
if foralle >0

P(d(X,,X) >€) — 0.

You have studied various equivalent formulations of weak conver-
gence. The one useful for us is given in item (iv) in the next lemma.

Lemma 8.1.1 (Portmanteau Lemma). We have X,, ~ X if and only if
any of the following conditions holds:

(i) Ef(Xn) — Ef(X) for all bounded, continuous functions f,
(i) Ef(X,) — Ef(X) for all bounded, Lipschitz functions f ,

(iii) UminfEf(X,) > Ef(X) for all nonnegative, continuous functions f,

*A. W. van der Vaart. Asymptotic
statistics, volume 3 of Cambridge Series
in Statistical and Probabilistic Mathe-
matics. Cambridge University Press,
Cambridge, 1998
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(iv) liminfP(X, € U) > P(X € U) for every open set U C X,

(v) limsupP(X, € B) < P(X € B) for every closed set B C X,

Proof. See Lemma 2.2 in >. O

The following result should be also known.
Theorem 8.1.2 (Continuous mapping). Let g : X — R" be continuous.
(i) If Xy ~ X then g(Xy) ~ g(X).
(i) If X, 5 X then g(X,) > g(X).
Proof. (i). Let U C R™ be an open set. Since g is continuous, ¢~ (U)
is open in X. By Portmanteau lemma,

liminfIP(g(X,) € U) = liminflP(X, € g~1(U))

P(X € g~ (U)) =P(g(X) € U).

v

Using the Portmanteau lemma again, we conclude that g(X;,) ~»
8(X).

(ii). Fix e > 0. For each § > 0 let B be the set of x for which
there exists y with d(x,y) < 6, but d(g(x),g(y)) > €. If X ¢ Bs and
d(g(Xn),8(X)) > €, then d(X,, X) > 6. Consequently,

P (d(g(X,),g(X)) > €) < P(X € Bs) +P(d(Xy, X) = ).

The second term on the right converges to zero as n — oo for every
fixed 6 > 0. Because B; N X | @ by continuity of g, the first term

converges to zero as § — 0. O

It is important to remember basic relations between different no-
tions of convergence.

Theorem 8.1.3. Let X, X and Yy, be random vectors. Then
(i) Xn D> X implies X, ~ X.

(i) Xp 5 ¢ for c € R if and only if X, ~ c.

(iii) if Xy ~ X and d(Xu, Yn) L 0, then Yy, ~ X.

Moreover, if X, ~ X and Y, — ¢ then
(iv) Xpn+ Yy~ X+c,
(v) X, Y, ~ cX.
(i) Y71 Xy ~ ¢ 1X provided c # 0.

The second part of the theorem is called the Slutsky lemma. For a
proof see Theorem 2.7 and Lemma 2.8 in 3.

> A. W. van der Vaart. Asymptotic
statistics, volume 3 of Cambridge Series
in Statistical and Probabilistic Mathe-
matics. Cambridge University Press,
Cambridge, 1998

3 A. W. van der Vaart. Asymptotic
statistics, volume 3 of Cambridge Series
in Statistical and Probabilistic Mathe-
matics. Cambridge University Press,
Cambridge, 1998

< Exercise ??
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Example 8.1.4 (t-statistic). Say (X ) is a series of i.i.d. random variables
with EX; = p and var(X;) = 0. Let X, = + ¥; X; and let
2 _ 1y 52
Sp=-— Z(Xi - Xn)'

i3

Then _
= Xn—p
iy = e EVH=T ~ N(0,1).
n

To prove this, note that by CLT we have /n(X, — u) ~ N(0,02). Also,
by the law of large numbers X, LA u and %ZXIZ LA EX? = 0 + % By
the continuous mapping theorem X3 LN 2, which together with the Slutsky
lemma implies that

1 S
S
i=1

Hence, we have

no1vni ) 1N(O o?)
n Sy !

= N(0,1).

We say that X, is bounded in probability if for every e > 0 there
exists M € R such that

supP(||Xy]| > M) < e
n

By Prohorov’s theorem if X;, ~ X for some X then it is bounded in
probability (prove it!). Conversely, if X, is bounded in probability
then for some subsequence X, we have X;, — X for some X.
We now introduce a special notation. Write X,, = op(1) if X, 20
and X, = Op(1) if X, is bounded in probability. More generally, <+ Exercise 8.6.2

X, =o0p(R,) means X, =Y,R,and Y, =o0p(1),
X, = Op(R,) means X, =Y,R, and Y, = Op(1).

Remark 8.1.5. It is clear that X,, = op(1) implies X, = Op(1). Indeed, fix
€ > 0, if X, = op(1) then, for any My > 0, there exist N € IN such that
P(||Xn|| > M) < € foralln # N. Let My, ..., Mn_1 be any numbers
such that P(|| X, || > My) < e. Taking M := max{My, M3, ..., Mn_1}
we get that P(|| X, || > M) < € forall n € N.

< Exercise 8.6.3
The following result allows us to effectively work with Taylor + Exercise 8.6.4

series expansions.

Lemma 8.1.6. Let R : X — R be a continuous function and let X,; be a
sequence of random vectors with values in X and such that X,, = op(1).
Then, for every p > 0,
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(i) if R(h) = o(||h||P) as h — 0, then R(Xy,) = op([| X ||P),
(ii) if R(h) = O(||h||P) as h — 0, then R(Xy,) = Op(||Xn||P).

Proof. Define g(h) as g(h) = R(h)/||h||P for h # 0 and g(0) = 0. Then
R(Xn) = g(Xon) || Xul|-

(i) By assumption, g is continuous at zero, and so it is continuous ev-

erywhere. By the continuous mapping theorem, g¢(Xy) LA g(0) =
0.

(ii) By assumption, there exists My and é > 0 such that [g(h)| < My
whenever ||| < 6. Thus, for every n, P(|g(Xn)| > My) <
P(||Xy|| > ) = 0, and so the sequence g(Xj,) is bounded in prob-
ability by exactly the same argument as we used in Remark 8.1.5.

O

8.2 Delta Method

Suppose an estimator T}, for a parameter 6 is available but the quan-
tity of interest is ¢(0) for some known function ¢. It is natural to use
the plug-in estimator ¢ (T} ). For example, if T}, is the MLE for 6 then
¢(T,) is the MLE for ¢(0). But how do the asymptotic properties of
¢(Ty) follow those of T;?

The continuous-mapping theorem implies that if T;, is consistent
for 6 and ¢ is continuous, then ¢(T},) is consistent for ¢(6). Here we
show that a much stronger statement is true if ¢ is differentiable: if
Vn(T, —6) ~ T then \/n(¢(Ty) — ¢(0)) ~ ¢p(T), where ¢, is the
linear mapping representing the derivative of ¢ at  (cf. Section A.3).
In particular, asymptotic normality is preserved as a linear transfor-
mation of a Gaussian vector is Gaussian.

Theorem 8.2.1. Let U C RFopenandlet ¢ : U — R™ be a map
differentiable at 0 € U. Let T, be random vectors taking values in U. If
'n(Ty — 6) ~ T for numbers r, — oo, then 1, (¢p(Ty) — §(0)) ~ ¢p(T).
Moreover, the difference between r, (¢p(Ty) — ¢(0)) and ¢p(ry (T — 6))
converges to zero in probability.

Proof. Because r,,(T, — 0) converges in distribution, we have r, (T, —
6) = Op(1) and so T, — 0 = op(1). By differentiability of ¢, R(h) =
PO+ h) —¢(0) — ¢'(h) satisfies R(h) = o(||h]|) as h — 0. Lemma 8.1.6
allows to replace the fixed /1 by a random sequence and gives

¢(Tu) = @(0) — pp(Tu = 0) = R(Tu —0) = op(||Tu —0])).

Multiply this with r, and note that op (7, ||T, — 6||) = op(1) because
tn(Ty — 0) = Op(1). This gives the last statement of the theorem. Be-
cause linear maps are continuous, the continuous mapping theorem
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gives that ¢p (1, (T, — 0)) ~> ¢,(T). By the Theorem 8.1.3(iii) we get
that 7, (¢(T) — ¢(0)) has the same weak limit. O

Some basic examples of that you saw in the first semester.

Example 8.2.2. The delta method may be useful in a wide range of sce-
narios. For example, suppose that we want to obtain asymptotic confi-
dence intervals for some parameter but the asymptotic distribution de-
pends on 6. More concretely, suppose X1, ..., Xy are i.i.d. Poiss(0). Then
Vn(X, —0) ~ N(0,0). By the delta method \/n(f(Xn) — f(6)) ~
N(0, (f'(6)%0)). If we solve for f'(8) = C/+/0 we get f(8) = V6,
C =1/2and then

Vi(v/Ry — VB) = N(O, 7).

Therefore we can easily construct the asymptotic confidence interval for /0

as \/ Xn £ Z"‘/ 2. This example easily generalizes.

L < Exercise 8.6.5
As an 1mp0rtar1t application of the delta method we show that

the MLE in the exponential family has an asymptotically Gaussian
distribution. Recall that in the exponential family (1.1) it holds that

Eo(t(X)) = u(6) = VA(0),  varg(t(X)) = V(6) = V>A(6).

Suppose that the random sample Xj, ..., X}, is generated from IPg,.
Denote t, = 1 Y ; t(X;). By the central limit theorem, it follows that

ViViy(60) = Vn(ts —u(60)) ~ Na(0,V(6p)). (8.1)
Using the delta method we conclude.

Theorem 8.2.3. The MLE 8, in the exponential family (1.1) based on the
sample X1, ..., Xy, satisfies /(6 — 6g) ~ N(0,V=1(6))).

Proof. As noted above v/n(t, — u(6y)) ~ N(0,V(6p)). The delta
method, applied with ¢ = u~!, implies that \/n(8, — 6p) also
converges in distribution to a Gaussian distribution. The fact that
0, =
1(6y) is the inverse of the Jacobian of y at 6, which is equal to
V2A(6)) = V(8). Thus, <p;(60)(T) = V~1(8) - T. Now it is
straightforward to check that the asymptotic covariance matrix is
V=1(8y). O

u~1(t,) is part of Proposition 1.3.6. The Jacobian of u~! at

With small amount of extra work, this result can be generalized
to curved exponential families for which the canonical parameter 0
is parametrized in a smooth way by a lower dimensional parameters
7. Denote by T the MLE in this smaller model and assume that the
sample is generated from the parameter 8y = 6(7) corresponding to
7. Taking the first-order expansion around 7y gives + Exercise 8.6.6
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0 = Velu(8(Tn)) = Velu(6(T0)) + V2Lu(8(70))(Tn — T0) +0p (]| To — Tul))-

Multiply now this equation by /7 and use Exercise 8.6.6 to conclude
that

—V2u(0(70)) - V(T — 0) = VnVeln(8(T0)) +o0p(1).  (8:2)

By the chain rule, V¢, (0(7p)) = (g—g(‘ro))TV@(B(ro)), and so,
using (8.1), we get

VAV by (6(70) ~ N (0,(32(70))" - V(60) - (7o) -

By Slutsky Lemma (Theorem 8.1.3(iv)), the left-side expression in

(8.2) also converges in distribution to the same Gaussian. By Exer-

cise 8.6.7 we conclude that \/n(T, — 7¢) is asymptotically normal + Exercise 8.6.7
with mean zero and the covariance matrix equal to the inverse of the

Fisher information matrix g—g(TO)T -V (6p) - g—g(ro).

8.3 M-estimators

In this chapter Xj, ..., X, are iid. P where P € P, with P = {IPy :
6 € ©} such that

1. ® Cc R4 open,
2. densities of Py are p(-,0), 6 € O.

M-estimators were defined and discussed in Section 4.1.2. In this
section we discuss basic asymptotics of this class of estimators.

8.3.1  Consistency

In order to develop some general asymptotic theory of M-estimators
we start by discussing their consistency. Under minor conditions the
law of large numbers will give us that

M, (6) & M(6) for every 6, (8.3)
where M(0) = Emyg(X). It is reasonable to expect that the sequence
of maximizers 6, of M, converges in probability to the maximizer of
M. However, pointwise convergence in (8.3) is too weak because 6,
depends on the whole function 6 — M,,(6). We present approach
based on the assumption of the uniform convergence of M, to M:
IMy — M||oo % 0, where

My — Mleo := sup [M,(0) — M(6)].
0c®
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Theorem 8.3.1. Let {M,,} be a sequence of random functions, continuous

on ©. Say || My — M||e L0, where M is some non-random continuous
function on ©. Then

1. If T, 5 T* then M, (T,) 5 M(T*).

2. Ift* = argmax M(t) uniquely and T,, € argmax M, (t), then T, LA
.

Proof. 1. By the triangle inequality
|Mn(Tn) - M(T*)| < |Mn(Tn) - M(Tn)‘ + |M(Tn) - M(T*)‘

The second term on the right goes to zero in probability by the con-
tinuous mapping theorem. The first term goes to zero by the uniform
converge hypothesis in the theorem because |M, (T,,) — M(Ty,)| <
IMy — M||o 0. We conclude that |My (T,) — M(T*)| 5 o0or, equiv-
alently M, (T,) 2 M(T*). 2. For some € > 0, let Ko = K N (Be(t*))",
where Be(t*) is a ball of radius € around #*. Let m = M(t*) and let
me = sup;cy_ M(t). Since t* is unique § := m —me > 0. From
uniform convergence, there is some N s.t. for alln > N we have
My — M||eo < $. We can therefore infer the following:

5 ) )
supMy(t) < supM(t)+ - = me+=5 = m—
teKe teKe 2 2 2
and
% s O )
M, (T,) = maxM,(t) > My(t*) > M(t*) — = = m— ~.
teK 2 2

By these two inequalities we get that T, ¢ K¢, and thus T, € Be(t*).
Hence, |[M;, — Mlloo < 6 = ||T, — t*]| < e = P(|T, — ]| > ¢€) <
P(|My — M|leo) > §) = T B 1. O

The assumption of uniform convergence holds for the log-likelihood
function in exponential families but is typically too strong, especially
when @ is not compact.

Example 8.3.2. Consider the problem of estimating the variance using the

sample variance s3 = % Y, x2. This corresponds to optimizing the function

2
s
M, (c) =logo + ﬁ
2
with M(o) = logo + %, where 03 is the variance of the sample. Note that

My, (0) — M(0)| is unbounded for o > 0. Nevertheless, consistency follows
directly by the law of large numbers.
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Under some regularity conditions it is possible to get a fairly uni-
versal approach that does not require uniform convergence. Suppose
that mg(x) is twice continuously differentiable with respect to 6 on
the open parameters set ® and consider a Taylor series expansion
of VM, at the true data generating 6. Since © is open then the M-
estimator 0,, satisfies VMn(én) = 0 and so

0 = VMyu(6y) + V>M,(8,) (6, — 6p), (8.4)

where 6, lies between 8, and 6. By the law of large numbers, as long
as Egovmgo (X) < 0,

VM, (60) 5 Eg VM, (6)).
To establish consistency of 0, using (8.4) it suffices to have that:
(i) Eg VM, (6p) = 0and
(i) (V*Mu(6))~" = Op(1).

In Exercise 8.6.8 we show that (i) holds when my(x) = —log pg(x)
(MLE) as well as my(x) = ||§ — §(X)||>, where 6(X) is an unbiased es-
timator of the parameter 6. More generally, (i) holds if 6y minimizes
the function 6 — IEg,mg(X). Thus, typically (ii) remains the main
regularity assumption that needs to be checked in order to establish
consistency.

8.3.2  Asymptotic normality

We will now discuss asymptotic normality of M-estimators assuming
that 6, is a consistent estimator and ® C R is open. If ¢y in (4.5)

is twice differentiable then there is a standard approach for prov-
ing asymptotic normality based on the Taylor series expansion. As
earlier, suppose that

)= L LW(K) ¥0) = Byo(X) = ¥ (0)

and assume that § 5 0, where
Y.(6,) =0, ¥(6)=0.
Taylor’s theorem gives
0="¥u(6s) = ¥n(60) + V¥ (60)(0x — 60) + Ru,
where R, = op(||6,; — 6p||). In other words,

V¥ (00)vVn(fy —60) = —v/n¥u(6o) — VnRy,

< Exercise 8.6.8
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By the central limit theorem, as long as, B(6)) := IE‘PGO(X)‘I’gO (X)
has finite entries,

*\/E\Pn(én) ~ N(OrB(QO))'

By the law of large numbers, as long as xA(6) := EV,,(X) has
finite entries, then
V¥u(60) > A(60)

Under suitable regularity conditions /nR, = op(1), in which case we
can use the Slutsky lemma to conclude that

Vn(6, —6) ~ N(0,A(6)) "B(69)A(6) 7). (8.5)

The conditions that assure that /7R, = 0p(1) may be complicated in
general. However, they will hold if ¥}, is sufficiently smooth.

A special case of interest is the maximum likelihood estimator. In
this case yg(x) = Vlog py(x) and so

Eyg(X) = EVE,(0),  EVye(X) =EV2,(6).

Under some regularity conditions the maximum likelihood estima-
tor is consistent and asymptotically normal: as in (8.5), with

A(Qo) = *IEGO [szn(eo)] and B(Qo) = ]Ego [an(eo)an(eo)T] .

In this case B(6p) is the variance of the score also known as the Fisher
information matrix. If log pg(x) is twice continuously differentiable,
we can write

V2 log py(X) = ,99<1X>VZP9<X> — (Vlog ps(X))(V log pe(X)).

Since

]Eepe(lx)VZPG(X) = / Vng(x)dx _ V2 / PQ(X)dx _o,

we conclude that in this case A(8) = B(8) and so the MLE 8, satisfies

Vn(6, —60) ~ N(0,B(6o)"). (8.6)

It is of considerable interest to establish asymptotic normality
also in the case when ¥, is not twice differentiable. But we will not
discuss this case in more detail here. + Exercise 8.6.9

8.4 Generalized likelihood ratio test

The tests in Chapter 3 have strong optimality properties but require
conditions on the densities for the data and the form of the hypothe-
ses that are rather special and can fail for many natural models.

165



166 ADVANCED THEORY OF STATISTICS

By contrast, the generalized likelihood ratio test introduced in this
chapter requires little structure, but it does not have exact optimality
properties. Use of this test is justified by large sample theory.

Let the data Xy, ..., X, be iid. with common density p, for 0 € ©.
We want to test Hy : 6 € @g versus H; : 6 € ©1, where ©y C ©; C O.
Note that the hypotheses are nested.

A sensible extension of the idea behind the likelihood ratio test, as
discussed in Proposition 3.1.1, is to base a test on the log-likelihood
ratio
o HPoc0; [Tiq po(Xi)

SupPyee, [1iz1 Po(Xi)

As before, the null hypothesis is rejected for large values of the statis-
tic. Let £,(0) = 1Y logpe(X;) be the log-likelihood function and
suppose both suprema are attained. If 8, is the optimum over ®; and

~

0,0 is the optimum over ©p then
An = 1(n(8y) — £u(80)).

We next give an example that can be viewed as the limiting situa-

A= M(Xyq, ..., Xy) =

tion for which the approximation is exact:

Example 8.4.1 (The Gaussian sequence model). Lef Yy, ...,Y;, be
independent with Y; ~ N (yi,aé) where oy is known. In other words,

Y - (Yl,...,Yn) ~ Nn(}l,agln).

This model is sometimes called the Gaussian sequence model and will be one
of the important examples in our discussion of high-dimensional problems.
We are now interested in testing whether w = (p1, ..., Un) is a member of
a q-dimensional linear subspace Lo C R", versus the alternative that y €
L~ Lo where L is an r-dimensional linear subspace of R? and Ly C L,
r>q.

Transform to canonical form by setting U = QY, where Q € R"*" is
an orthogonal matrix with the first q rows spanning Lo and the first r rows
spanning L. By construction, U ~ Nn(Qy,agln), where the mean vector
7 = Qusatisfies; = 0fori > g+ 1,...,n under Hy, and ; = 0 for
i>r+1,...,nunder Hy.

Set0; = ni/og,i =1,...,vand X; = U;/op,i = 1,...,n. Then
X ~ N(6,1,). Moreover, the hypothesis Hy is equivalent to Hy : 6; = 0 for
i > q+ 1, and the alternative is Hy : 6; = 0 for i > r 4 1. The log-likelihood
for X ~ N(6,1,) is

1 1
0(6) = —3log(2m) — 5l — 0],

and so arg maxgep £(0;x) = arg minge@ ||x — 0||%. Under H,

T
20 = 2(0(8) —€(B0)) = ), X~ X
i=q+1
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It is a remarkable fact that x2_; holds as an approximation to the
null distribution of 2A, quite generally when the hypothesis is a
g-dimensional submanifold of an r-dimensional parameter space.
Some of the sufficient regularity conditions under which this holds
were briefly discussed in Section 8.3.1 (e.g. ® open, log py(x) twice
continuously differentiable with respect to 6, some conditions on the
behavior of the hessian V2¢,, around 6 € ®).

Theorem 8.4.2 (Wilk’s theorem). Consider testing Hy : 0 € ®q versus
Hj : 0 € ©1, where ®y C ©1 C O and ©, O are manifolds of dimension
q and r respectively. Under the same conditions guaranteeing asymptotic
normality of the two MLEs, we have under the null hypothesis,

20, ~ ngq'

Sketch of the proof. For simplicity, we assume that ®; = @. Let 8, be
the MLE over @ and 8,, be the MLE over ©. Directly by definition

200 = 20(Ln(B) — €u(Bo))-

Applying the first order Taylor expansion of ¢, at 6, and using the
fact that V4, (6,) = 0, we find that

N

~ 1 4 ~ ~ ~ o
én(en) - én(&),n) - _E(Gn - 90,11)Tv(%€n(9n)(9n - 90,11)/

where 0, = lies between 6, and 0,,. By asymptotic normality 8, LA
6y and 6, L 6y and so also 8, L 6o. Hence, we argue that

~V30,(8,) L —E[V30u(80)] = I(60).

(This statement is actually a bit subtle and may require some further
regularity assumptions.) Therefore

Zn(fn(én) - én(éo,n)) = ﬁ(én - éO,n)T (—Véfn(én)> \/ﬁ(én - éO,n)~

In the case when r = d, 6y, = 6 since there is no maximization and
then

Vb, —60) ~ N(0,1(6))" )

from the asymptotic normality of the MLE. Now putting together the
pieces:

Vi — 80 (= V36 ) ) VB = 80) = Y22 = 1%

where Z; ~ N(0,1). The case when r < d does not give much more
insight, but a lot more algebra. O
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Example 8.4.3 (Exponential families). Suppose that the observations are
sampled from a density py in the d-dimensional reqular exponential family

po(x) = h(x)el®()-A0),

Let ® C R be the canonical parameter space, and consider testing a null
hypothesis ®y C © wversus its complement. The log-likelihood ratio statistic
is given by
Ay =nsup inf ((0 — 6y, t,) — A(0) + A(6p)) -

6@ €@
Note that the Kullback-Leibler divergence of the measures Pq, and Py is
equal to

K(6,60) = Eglog ;’i = (0 — 0o, Egt(X)) — A(8) + A(6)).
6o

If the maximum likelihood estimator € © exists, then Ey(t(X)) = Fy
by Proposition 1.3.6. Comparing the two preceding displays, we see that the
likelihood ratio statistic can be written as

A = n inf K(6,6p).
" ne()lg@o (6, 60)

This formula can be used to study the asymptotic properties of the likelihood
ratio statistic directly.

8.5 Limits of Bayesian procedures

In this section 0 will denote a random parameter rather than a vector.
If 0 possesses a density 77, then the density of the posterior distribu-
tion of 6 is given by Bayes’ formula

_ T p(Xil6)7(6)
J I, p(Xi6)7(6)d0

which is a random kernel in the same sense as randomized decision

(01, ..., Xn) 8.7)

rules; c.f. Definition 2.2.1. This expression may define a probability
density even if 77 is not a probability density itself. A prior distribu-
tion with infinite mass is called improper.

We pose the question, under what conditions are Bayes methods
asymptotically consistent/efficient. We start with an example.

Example 8.5.1. X ~ Bin(#n,0) with prior 6 ~ Beta(a,b), that is, 1(0) =

rr((”ﬁi(f)) 0°~1(1 — 0)P~1. Since the posterior satisfies

7_[(9|x) . 9a+x—1(1 . 9)b+n—x—1l

it must be equal to Beta(a + x,b + n — x). Since the mean in Beta(a, b) is
715/ the Bayes estimate under the squared lossx (c.f. Proposition 2.3.5) is:
a+x

o = BO) = T
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If we assume that the true value of 0 is 6y,

V(8 —0g) = ﬁ(ﬁ—%) +i (a—(a+b)il(>.

a+b+n

Note that \/n(% — 8y) ~ N(0,00(1 — 8y)) since % is MLE of 6 and

p
M (a—(@+b0)X) Bo.

Therefore the Bayes estimate is asymptotically consistent and efficient for all
aand b.

Bernstein-von Mises theorem theorem guarantees that the random
kernel 77(8|Xy, ..., X,) in (8.7) is “close” to N(8,, (nI(6p))~!), where
0, is the MLE and 6y is the true value.

Theorem 8.5.2 (Bernstein-von Mises). Assume that the prior density 1t
is continuous and strictly positive and the standard regularity conditions for
asymptotic normality of the MLE 8, hold. Then the conditional density of
V(8 — 0, given Xy,. .., X, converges to the PDF of N(0, (I(6))~1).

Proof. (Proof sketch, see Section 5.5 in 4 for details) Condition on 4 Peter J. Bickel and Kjell A. Doksum.
Xy, ..., Xn. Letov = \/H(G _ én) so that 6 = én ey \/ﬁ Denote Mathematical statistics—basic ideas and

selected topics. Vol. 1. Texts in Statistical
. v Science Series. CRC Press, Boca Raton,
f(ZJ) = 7T(7Tn + Vi |Xlr tees X'rl) FL, second edition, 2015

so that

n

log f(v) = const+ nty (8, + \%) + log 7t (8, + ﬁ) (8.8)

v

i

Using the second order expansion of ¢, (én + %) around 6,, and

using the fact that V£,,(8,) = 0 we get
nly(0n + %) = nly(6,) + Lorv2 (6n)v
n n ﬁ n n 2 n n 7

where 8, = 8, + % for t € (0,1). Plugging this to (8.8) gives

1 A A
log f(v) = const+ EUTVZEn(Gn + %)v + log 7t(6, + %) (8.9)

This holds for any fixed v € R? and so, by (8.9), the conditional
distribution of v = \/n(8 — 6,,) is proportional to

A 1 A
7(0n + %) exp{—EUT(—VZEn(Gn + %))U}
Since 0, converges in probability to 8, v/+/n converges to zero and
under appropriate uniformity conditions, —V2¢, (6, + tv//n) con-
verges to I(6p). Therefore, expression (8.9) after normalizing con-
verges to the density of N(0, (I(6p))~!). O
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8.6 Exercises

Exercise 8.6.1. Say X, ~ X € RY and Y, ~ ¢ € RF (constant)
and let f : RY x RE — R™ continuous almost everywhere. Show that

f(Xn/Yn) ~ f(X, c).
Exercise 8.6.2. Argue that X, 5 x if and only if d(X,,, X) = op(1).

Exercise 8.6.3. Show that:

op(1) +op(1) = op(1)
op(1) +0p(1) = Op(1)
op(1)Op(1) = op(1)
(1+0p(1)7" Op(1)
op(Rn) = Rpop(1)
Op(Ry) = R,Op(1)
op(Op(1)) = op(1).

Exercise 8.6.4. Let (X,,) be a random sequence in R™. Show that X,, =
0p(1) if and only if each coordinate sequence is op(1).

Exercise 8.6.5. Let Xy,..., X, beiid. EX; = u, var(X;) = 1. Find
constants such that r, (X2 — ay) converges in distribution when yu = 0 and
when p # 0.

Exercise 8.6.6. Show that \/n(T, — t9) = Op(1). Conclude that T, LN

To.

Exercise 8.6.7. Show that in exponential families

—V20,(8(t0)) B (o))" V(8p) - 2 ().

Exercise 8.6.8. Show that (i) in the bottom of Section 8.3.1 holds when
mg(x) = —log pg(x) (MLE) as well as mg(x) = ||6 — 5(X)||?, where 5(X)
is an unbiased estimator of the parameter 0.

Exercise 8.6.9. Let Xq,..., Xy be a random sample from N(p, 1), where it
is known that y > 0. Show that the MLE is not asymptotically normal un-
der y = 0. Why does this not contradict our result on asymptotic normality
of the MLE?
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A
Real Analysis

The Advanced Theory of Statistics is a technical subject. It is then im-
portant to actively look for high-level insights. This allows not only
to understand the material better but also to see how the presented
results may be generalized. Part of the goal of this lecture is to help
students look for such insights.
In this appendix we briefly cover some fundamental concepts
that help to understand many parts of theoretical statistics. These
are: differentiation in vector spaces and convexity. This exposition
assumes certain level of mathematical maturity on the level of a basic
real analysis course. For more details, we refer to
https://pzwiernik.github.io/docs/RealAnalysisNotes.pdf.

A.1 Vector spaces

A set V is a vector space if (i) 0 lies in V (ii) for any two x,y € V also
x+y eV, Gii)ifx € Vand A € Rthen A - x liesin V. A general
abstract definition of a vector space is more complicated because

it needs to explain what we mean by 0 and what we mean by the
algebraic operations + and -. Here however, we always work with
variations of the following three examples (Examples A.1.1-A.1.4),
where all these objects are naturally defined.

Example A.1.1 (The Euclidean space RY). The real space R? with ele-
ments x = (x1,...,x4), X; € R, is an example of a vector space. We define
the standard inner product as

(x,y) == xqy1+---+x5y4  forall x,y € R

The vector space R? equipped with the induced norm ||x|| := /(x,x) is
called the Euclidean space. Every subset of RY given by linear equations
also forms a vector space with the induced norm.

In general, an inner product on a vector space V is a function from


https://pzwiernik.github.io/docs/RealAnalysisNotes.pdf
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V x V to R that must satisfy the following three conditions for all
x,y,zcV

1. (x,y) = (y,x) (symmetry)

2. (ax+ By, z) = a(x, z) + B(y, z) (linearity in the first argument)
3. (x,x) > 0 and is zero only if x = 0. (positive definiteness)

The inner product space induces a norm in the standard way
X[ =/ (o x)

but not all norms are obtained in this way. Every vector space with a
given norm becomes a metric space with distance function satisfying

d(x,y) = ||x—vy| for x,y € V.

Example A.1.2 (The space of m x n matrices). The space R™*" of all
real m X n matrices also forms a vector space. The standard inner product is

m n
<A, B> = 2 Z Al]Blj = tr(ABT) fOT’ all A,B € R™>™,

i=1j=1
The induced norm is the Frobenius norm || A||r := \/(A, A) but for matri-
ces we typically work with the operator norm instead

A := max [|Ax]|.
[Ix[I=1

A special case is the vector space S™ of all m x m symmetric matrices with
the inner product induced from R™>™:

" = {AcR™™: A= AT}

Exercise A.1.3. Show that tr(ABT) = Y%, Y3y AjjBjj forall A,B €
]Rmxn.

All finite dimensional vector spaces are similar and behave like the
Euclidean space IR“. In particular, defining a metric space structure
is straightforward. In more complicated situations we may need to
work a bit extra. Consider the following important example.

Example A.1.4 (L? functions). The set of all measurable functions

f & — Ronsomeset X also forms a vector space with addition de-
fined pointwise (why? what is the zero of this vector space?). The natural
candidate for an inner product, namely

(£,8) = [ flxgx)dp

does not need to satisfy positive definitedness and it may not be a well-
defined function to R.

Instead, we will work in a smaller functional space L*>(X) of all mea-
surable functions satisfying [ f2(x)du < o0, where two functions are
identified if they differ on a subset of measure zero. In this space, (f, )
defines a valid inner product.
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A.2  Continuity and semicontinuity

A.2.1  Continuity
Continuity is one of the most fundamental concepts of real analysis.

Definition A.2.1. If f : X — Y is a mapping between metric spaces then
f is continuous at x € X if for every sequence (x,) in X, x, — x implies
f(xn) = f(x). We say that f is continuous if it is continuous at every x.

Proposition A.2.2. Composition of continuous functions is continuous.

Proof. Follows easily from the definition. We leave the details as an
exercise. O

There are various equivalent definitions of continuity and it is
important to be aware of them. The sequential definition is typically
the easiest both conceptually and operationally. However, in this
course we will also be using two other definitions, which we discuss
next.

The standard way of defining continuous functions is, so called,
(€, 6)-condition.

Theorem A.2.3. A function f : X — ) is continuous at x if and only if
ve>035>0 (dlxy) <o = d(f(x),f(y) <e).

Another important reformulation of continuity builds on the con-
cept of preimage. Let f : X — ) be given. The preimage of a set
VCclYis

FYV) == {xe X f(x) eV} (A.1)

For example, if f : R> — R is defined by f(x,y) = x> + y* + 2 then
the preimage of the interval [3, 6] is the annulus in the plane with
inner radius 1 and outer radius 2.

Theorem A.2.4. A function f : X — Y is continuous if and only if the
preimage f~1(V) of any open set V. C Y is open in X.

A.2.2 Semicontinuity and Fatou’s lemma

A closely related notion to continuity of a function is that of semicon-
tinuity. Recall that R = [—oo, +0] is the set of extended real numbers
with the usual definition of algebraic operations that incorporate the
two extra “numbers” —co, +00. Let X’ be any metric space.

Definition A.2.5. A function f : X — R is lower semicontinuous at p
if, for € > 0, p is an interior point of {x : f(x) > f(p) — €}. Similarly, f

is upper semicontinuous at p € X if, for every real € > 0, p is an interior
point of the set {x : f(x) < f(p) +€}.
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Recall that for a real sequence (s,),eN the set E of subsequential
limits is the set of s € R such that some subsequence of (s,) con-
verges to s. We define liminf, ;. s, = infE and limsup,_, s, =
sup E. This definition can be extended to functional limits. Consider
all sequences x, — p and the corresponding converging subse-
quences f(xy, ). Then liminf,,, f(x) is the inferior of the set of all
such subsequential limits. The upper functional limit limsup, _, , f (x)
is defined analogously.

There are important alternative ways to formulate semi-continuity.

Exercise A.2.6. Show that f : X — R is lower semicontinuous at p € X
if and only if liminfy_,, f(x) > f(p). Similarly, f : X — R is upper
semicontinuous at p € X if and only if limsup,_,, f(x) < f(p).

This exercise immediately gives us the following result.

Theorem A.2.7. A function f : X — R is continuous at p if and only if it
is both upper and lower semicontinuous at p.

We say that a function is lower (upper) semicontinuous if it is
lower (upper) semicontinuous at every point p € X

Exercise A.2.8. Show that f : X — R is lower semicontinuous if and
only if {x : f(x) > y} is open for every y € R, or equivalently, when
{x: f(x) <y} is closed.

Lower semi-continuity’ is an essential concept in convex analysis.
In probability it appears, for example, in the Fatou’s lemma, which
we will use in later chapters.

Theorem A.2.9 (Fatou’s Lemma). Given a measure space (X, F,u) and
aset U € F,let {f,} be a sequence of measurable nonnegative functions
fn: U — [0, +o00]. Define the function f : U — [0, 0] by setting

f(x) =liminf f,(x)  forallx € U.

n—o0

Then f is measurable, and also

/ufdu < lim inf /ufn(x)dy,
where the integrals may be infinite.

In particular, this last statement is saying that Z(f) = [, fdu
is lower semicontinuous. Namely, for every measurable f and a se-
quence f, that converges pointwise to f (lim, f,(x) = f(x) for all
x e k),

Z(f) < limint Z(f,)

(c.f Exercise A.2.6).

* For more on semicontinuity see
https://pzwiernik.github.io/docs/
RealAnalysisNotes.pdf.
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A.3 Differentiation

Given a function f : V — R, from a vector space V, we may be
interested in a local behaviour of f around some point a € V. The
fundamental tool is given by the directional derivative. If u is a vector
in V, then the directional derivative of f at @ € V in the direction
ucVis

Duf(a) = lim flast t”t) —fla), (A.2)

If the directional derivative D, f(a) exists, it depends only on the
behaviour of f in a small open neighbourhood U C V of a and so the
function does not need to be defined over the whole V. The sign of
the derivative has an important interpretation: if D, f(a) > 0 then the
value of the function increases as we move infinitesimally from a in
the direction u.

Remark A.3.1. In infinite dimensional spaces the directional derivative is
typically called the Gateaux derivative.

If f: V — Ris differentiable at a the directional derivarives exist
and then

fla+tu) = f(a)+tDyf(a)+r(tu),

where the remainder 7 satisfies lim;_,q @ = 0 (in other words

r(tu) = o(t)). This gives a simple “algebraic” way of computing the
directional derivatives. Before we give some examples, we note that
with a choice of an inner product on V, we get

Duf(a) = (Vf(a)u), (A.3)
where Vf(a) € V denotes the gradient of f at a. *

Exercise A.3.2. Use the Cauchy-Schwarz inequality and (A.3) to show that
V f(a) is the direction of the steepest increase of f locally around a.

Example A.3.3. Let f : R? — R be given by f(x) = xTAx for A € %
Then
flx+tu) — f(x) = t(uTAx + xTAu) 4+ o(t),

which gives that Dy f (x) = uTAx + xTAu = (2Ax,u) and so V f(x) =
2Ax.

Example A.3.4. Let f : R™" — R be defined by f(A) = tr(A?). Then
fA+tU) — f(A) = t(tr(UA) + tr(AU)) + o(t),
which gives that Dy f(A) = 2tr(UA) = (2AT,U) and so Vf(A) = 2AT.

A slightly more involved matrix example is given as an exercise.
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Exercise A.3.5. Consider the function f(¥) = logdet(X) defined for all
Y € S™ that are positive definite. Find the gradient of this function (it is

an element of S™). Hint: Computing Dy f(X) consider the eigenvalues of
12y,

We also have an infinite-dimensional example.

Example A.3.6. Let f : L>(R) — R be defined by f(¢) = [ ¢?(x)dx =
| @l|? then, for every u € L2(R),

flo+tu) = flg) = 2t [ g(x)ulx)dx+o(t),

which gives that Dy f (¢) = 2 [ ¢(x)u(x)dx = 2(¢, u) and so Vf(¢) =
2¢.

The infinite dimensional case is extremely important in semipara-
metric and nonparametric statistics but it also appears in the theory
of optimal statistical procedures. This may require a bit more care-
ful treatment but we will introduce relevant concepts of functional
analysis along the way. The message we tried to convey above is that
very often it is useful to think about this inifite dimensional case as a
special case of the standard analysis on R?.

To conclude this section we generalize (A.3) by defining the
derivative as a linear map.

Definition A.3.7. Suppose U is open in R", f : U — R™. The function
f is differentiable at a € U with derivative f., if fi : R" — R™ is a linear
function and

flat+h) = f(a)+ fo(h)+r(h),
where the remainder r(h) satisfies

].im % - Om.
Jm

If f is differentiable at every a € U, we say that f is differentiable in U.
Exercise A.3.8. Check if the above examples are differentiable.

Proposition A.3.9. Let f : U — IR, where U is an open subset in R", be
differentiable at a € U. If u € R" then

Duf(a) = fo(u).

Proof. Since f/, exists
fla+tu)—f(a) = fu(tu) +r(tu)
r(tu)

with =~ — 0ast — 0. Dividing by ¢ and taking the limit, we get
that
fl(u) = lim[8t=S@ _ p rg).

t—0 £
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Exercise A.3.10. Given the same set-up as in Proposition A.3.9, show
that ' (u) = Jf(a) - u, where Jf(a) is the Jacobian of f at a, that is
Jf(a) € R™" and its (i, )-th entry is 52 f;.

]






B
Convex Analysis

B.1  Convexity and hyperplane separation

Let V be a vector space. Recall that a set C C V is convex if for any
two points x,y € C and for all A € (0,1)

zy == (1-A)x+Ay € C.

The point z, can be rewritten as z, = x+ A(y — x) so, as A varies
from 0 to 1, z) moves from x to y along the segment joining x and
y. This gives a geometric interpretation of convex sets: for any two
points in the set, the segment between these two points is contained
in the set.

Given a non-empty subset C C R¥ we define the distance to C
function dc : RF — R by

de(x) = ylrelg [x =yl

This function is well defined because for every x € RF the set {||x —
y|| : y € C} C Risbounded from below (by zero) and so its
infimum is well-defined. The following result is fundamental for
many applications of convex analysis.

Theorem B.1.1 (Minimum distance to a set). (1) Let E,F C RX. Then
dr : E — Ris Lipschitz continuous function with constant 1 (in
particular, it is continuous).

(2) If Fis closed, then
Vx € E 3y € F such that dp(x) = ||x —y||.

(3) If F is also convex, for every x such y is unique in F.

Proof. (1) Let x1,x, € E. By the triangle inequality, ||x; — y|| <
%1 — x2]| + ||x2 — y||. If y € F then dp(x;) < ||x1 — y|| and so

dr(x1) < |lxg — x| + [lx2 — y|-
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Since the inequality holds for every y € F. Take infimum over all

y € Ftogetthatdp(x;) < [[x1 — x2| + dp(x2). In the same way,
starting with ||x; —y|| < [[x1 — x2|| + ||*1 — y||, conclude that df(x;) <
llx1 — x2|| + dp(xq). It follows that |dp(xq) — dp(x2)| < [lx1 — x2]|,
which implies Lipschitz continuity of dr.

(2) Let x € E and fix y, € F. We have dr(x) < ||x — y,|| = r. Define
F = Fn N,(x), where N,(x) is the closed ball of radius r around
x. Since F is closed and N, (x) is compact, F is also compact. Since

|x — y|| is a continuous function of y, there exists y; € [ such that
infyer [|x -yl = [lx =y -

(3) Let y; and y, in F be such that ||x — y,|| = [|x — y,|| = dr(x).
Define p = y, —y;and h : [0,1] = Rby h(A) = ||x —y; — Ap|>
We have /1(0) = h(1) and also, because F is convex, y; + Ap € F for
A € [0,1] and so h is minimized at A = 0 and A = 1. Since h(A) is a
quadratic function with nonnegative coefficient ||y, — y,||* of A2, this
is only possible if y; = y5. O

Proposition B.1.2. Let E,F C R with F closed and convex. Let ¢ : E —
F be given by g(x) = arginf,cr ||x — yl|. Then g is a well-defined and

llg(x2) —g(x1)|| < |2 —x1||  forall x1,x; € E. (B.1)
In particular, g is a continuous function.

Proof. Because F is closed and convex, Theorem B.1.1 assures that g
is a well-defined function, that is, for each x € E there is a unique
y € Fsuch that g(x) = y. To show (B.1), take p = g(x2) — g(x1);

c.f. Figure B.1. The set of points g(x;) + tp for t € [0,1] lies in F, by
convexity, and so

h(t) = [l — g(x1) — tpl?
has a minimum at ¢ = 0. This is a quadratic function in t with a
strictly positive coefficient of t2. The only way for such a function to

Figure B.1: Illustration of the proof of
Proposition B.1.2
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have a minimum at ¢t = 0 is that its derivative at t = 0 is nonnegative,
or, in other words, the coefficient of ¢ is nonnegative. This coefficient

is —2(p,x1 — g(x1)), which implies that (p,x; — g(x1)) < 0. In a sim-
ilar way, we show that (p, x> — g(x2)) > 0. But these two inequalities
imply that

(px2—x1) > (p.g(x2) —g(x1)) = |pl*

The Cauchy-Schwarz inequality gives that (p,x; — x1) < ||p||||x2 —
x1||. This implies that ||p|| < |[x2 — x1]|, which is precisely (B.1).
O

We say that two sets A, B C R are separated by a hyperplane if
there exists p # 0 and ¢ € R such that forevery x € A,y € B we
have (p,x) < c < (p,y). The separation is strict if the inequalities can
be made strict. The following theorem is one of the most important
results of convex geometry.

Theorem B.1.3 (Hyperplane Separation Theorem). Let C and K be dis-
joint non-empty convex sets in RX. Then they are separated by a hyperplane.
Let C be closed and K compact. Then C and K are strictly separated by a
hyperplane.

Note that compactness of K in the second part of Theorem B.1.3 is
necessary. For example A = {x € R?: x; <0}, B={x € R? : x; >
0,xp > 1/x1} are closed but not strictly separated.

Proof. We prove the second part of the theorem leaving the first part
as an exercise. By Theorem B.1.1, dc(x) is a continuous real-valued
function on K and so it achieves its minimum. Call it xy € K. By
Theorem B.1.1(c) there is exactly one y, € C such that d¢(xg) =
% — o |- Set p = %0 — . Then p # 0 and 0 < [[p[2 = (p, x0 — y,)
so

(p.x0) > (P yo)

so it suffices to show that (p,x) > (p,xo) for every x € K and
(p.y) < (p,y,) forall y € C. We show the second, the first is similar
and follows from convexity. Let y € C and sety, = (1 — A)y, + Ay.
Then

X0—Yy = X0~ Yo~ My—yo) = p—AMy—yo)
and so

Ixo =92 I? = llp = Aly —yo)lI* =

Ay = yoll* = 2,y — yo) + I pII*-

This is a quadratic function of A that achieves its minimum at A = 0
(by construction!). This implies that the derivative of this function
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at zero must be nonnegative. This derivative is equal to the coeffi-
cient of A which is 2(p, y, — y). This implies that (p,y) < (p,y,) as
claimed. O

Exercise B.1.4. Show that each closed convex set is an intersection of closed
half-spaces.

B.2  Convex functions and optimization

A function f defined on a convex set C C V with values in Ris
convex if

F(A=A)x+Ay) < 1=A)f(x)+Af(y) forallx #y € C,A € (0,1).

Moreover, f is strictly convex if the inequality is always strict. A
function f is (strictly) concave if —f is (strictly) convex.

Exercise B.2.1. Let S' be the set of all symmetric m x m that are positive
definite. Show that the following functions are convex:

(@) f:RY— R defined by f(x) = ||x||.

(b) f:8" — Rdefined by f(X) = —logdet(X).
(c) L:L*(R) — Rdefined by L(f) = [ f*(x)dx.
Ave they strictly convex?

We now discuss the most important features of convex function.
Note that we never assume that V is a finite-dimensional space.

Proposition B.z.2. If f : C — R is convex and L C V is a linear subspace
then f restricted to C N L is also convex.

Proof. This follows directly from the definition. O

Theorem B.2.3 (Jensen’s inequality). Suppose f : C — R is a convex
function and let X be a random variable with P(X € C) = 1 and EX < oo.
Then f(E(X)) < E(f(X)). If f is strictly convex then the inequality is
strict unless X is constant almost surely.

Proposition B.2.4. If a is a local optimum of a convex function f, then f is
a global optimum.

Proof. We argue by contradiction. If x, y are two local optima with
f(x) < f(y) (y is local but not global) then, for every A € (0,1),
f(zp) < f(y). This contradicts local optimality of y. O

Proposition B.2.5. Let g : C x A — R be such that g(x,a) is convex in
x € C for every fixed . Then the function

f(x) = supg(x,)
aceA

(defined as the pointwise supremum) is a convex function.
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Proof. Exercise. O

Example B.2.6 (Fenchel conjugate). Let f(x) be a convex function on C.
Then the function

gl y) = (xy) - f(x)
is concave in x and linear (and so also convex) in y. Using Proposition B.2.5
we get

fry) = sup{{x,y) - f(x)}

xeC
is a convex function. The function f* is called the Fenchel conjugate of f.
Note that the Fenchel inequality follows easily:

fO+f ) = (xy)  forallx,y.

For a simple example, take f(x) = x2.

Proposition B.2.4 suggests that optimizing convex functions is
much easier than optimizing general functions. However, the study
of local behaviour of convex functions is easy also for a different
reason. Define a one-sided directional derivative

Dif(a) — lim L8t =f(a) (B.2)
t—0t t
If the directional derivative D, f(a) in (A.2) exists then the one-sided
derivative exists and they are equal. But there are important exam-
ples when the directional derivative does not exist but the one-sided
derivative does.

Exercise B.2.7. Show that at the origin none of the directional derivatives
of f(x) = ||x||1 exists but all the one-sided derivatives do.

The importance of one-sided directional derivatives comes from
the fact that if D} f(a) is positive then the function is increasing
when we move infinitesimally from a in the direction #. This can be
used to easily provide necessary conditions for a local optimum even
in the constrained setting.

Theorem B.2.8. Let f : C — R U {oo} be convex, and let x,y € dom(f).
Then for every z), = (1 — A)x+ Ay, A € (0,1), the one-sided derivative
Dj_y f(z) exists and is an increasing function of A.

We claim that this result is true also over infinite-dimensional
spaces. Our proof of Theorem B.2.8 starts with the following lemma.

Lemma B.2.9. Let ¢ : [0,1] — R be convex. Consider the “chords”
0<p<g<land0<s<t<1,withp <sandq <t Then

?(q

¢(p) _ o) —¢(s)

I—s

)_
q—

=
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Proof. Since p < q <'t, then

t—q q-p
< 1 Tr 7
¢W)_t7p¢W)+tip¢U)
This is equivalent to
— t) —
Mwi¢@)§¢07¢@) (B.3)
q-p t—p

Now, apply this inequality to the function (A) = ¢(1 — A) and the
points 1 —t < 1—s <1 — p. The result may be rewritten as

o(t) —¢(p) _ () = ¢(s)
t—p — t—s

Together with (B.3), this is the required inequality. O

Proof of Theorem B.2.8. Let ¢(A) = f(z,) and apply Lemma B.2.9 for
the points p = s = A < g <t to obtain

9(q) —o(A) _ ¢(t) — 9(A)
g—A =  t=A
It follows that () = (¢(q) — ¢(A))/ (g — A) is an increasing function

of g, g > A. Note that

p) =t H{f(za +tx—y) = fz1)}, t=q-A
Applying Lemma B.2.9 to the points p < s = g = A < t shows that

(M) —¢(p) _ () —¢(A)

¥(p) = Ay S foa = ().
Hence, 1(t) is increasing and bounded below to t > A, and thus,
li t
A v

exists. Equivalently the one-sided derivative D,‘Ly(z )) exists for

A € (0,1). By taking limits in the inequality in Lemma B.2.9, namely
g — pt,t = sT, we see that ¢'(p) < ¢'(s) (one-sided derivatives)
for almost all p and s with p < s. Thus D;y(z )) is an increasing
function of A. O

Exercise B.2.10. Show that any convex function defined and finite on a
convex set C must be continuous on its interior. Although this result is
general, for simplicity, you can focus on its one-dimensional version.
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We now informally state an important result, which gives a fun-
damental understanding of a large family of optimization problems.
Often we optimize a function over a convex set C given by bunch
of linear constraints together with inequality constraints g;(x) < 0
fori € 7 with g; convex. If the functions g; are all continuously
differentiable and all one-sided derivatives in (B.2) exist then a is a
local minimum of f if and only if D;j f(a) > 0 for all u such that
Dygi(a) <0 for all i such that g;(a) = 0 (active constraints).
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C
Probability

C.1  Continuity of probability

In what follows we fix a probabiliy space (Q2, B,IP). If A, is a se-
quence of events then we say that (A;) increases to A if A, C A, 41
foralln € Nand A = U,>1 An-

Proposition C.1.1. If (A,) is a sequence of events increasing to A, then

lim P(A,) = P(A).

n—oo

Proof. Clearly Ay = Ay N Ayyq foralln € IN. Let Ag =@, C; = Ay,
and define C,;;1 = A,4+1 \ Ay. Notice that Cq, Cy, ... are disjoint with

n (e ) (e}
UC]‘:An and UC]:UA]:A
j=1 j=1 j=1

Using the fact that IP is countably additive, we conclude

o () n n

P(A) = P(JC) = LP(C) = Jim Y P(C) = lim P(JC)) = lim P(4,).
=1 j=1 j=1 =1

O

This immediately gives the following result.

Proposition C.1.2. Both the CDF F(t) = P(X < t) of X and its survival
function G(t) = P(X > t) are right-continuous.

Proof. Let (t,) be any monotone sequence such that £, > t and
t, — t. Then the events A, = {X > t,} satisfy A, C A, for all
n € N. Since U,en An = {X > t} we have that (A,) increases to
{X > t}. By Proposition C.1.1,

lim P(X > t,) = P(X > 1).

n—oo
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Since t, is otherwise arbitrary, we conclude lim,_,;+ G(x) = G(f)
and so the survival function is right-continuous. The claim for the
CDF follows immediately as

lim F(x) = lim (1-G(x)) = 1— lim G(x) = 1—-G(t) = F(t).

x—tt+ x—tt x—tt

Remark C.1.3. Using the same approach we can show that the functions
P(X < t) and P(X > t) are left-continuous. We leave it as an exercise.

C.2  Martingales

Let X3, ..., X, be independent random variables with values in X.
Let { F}>, be a sequence of o-fields, 7 = o(Xy,..., Xi). Let
{Yi}32, be a sequence of variables such that Y} is Fj-measurable
(we say that {Y}° ; is adapted to the filtration F; = o(Xq, ..., Xi)).

Definition C.2.1. Given a sequence {Y} };> , adapted to the filtration
Fr = 0(Xq,..., Xy), the pair { (Y, Fi) } vy is a martingale if, for all
k>1,

E(|Yk]) < oo and E[Ysq|Fi] = Y.

Example C.2.2 (Simple random walk). A particle jumps either one step
to the right or one step to the left with the corresponding probabilities p and
q =1 — p. Assume that the subsequent moves are independent of each other.
Define Sy = X1 + ... + Xp. It is clear that E|S,| < n and

E[Sy411X1,..., Xn] = Su+(p—q),
and so Y, = S, — n(p — q) defined a martingale with respect to X.

Example C.2.3 (Likelihood ratio). Let p1, po be two mutually absolutely
continuous densities, and let X1, X, ... be an i.i.d. sequence from py. For
eachk € N let Y, = Hf‘:l % be the likelihood ratio based on the first
k samples (c.f (3.15)). Then the sequence is a martingale with respect to

{Xi}32 . Indeed,

pl(Xk+1:| X))
E[Yji1|Fi] = E = Yo
[ k+1| k] |:PO(Xk+1) i1 PO(Xz) ¢

i P1(Xi1 7
using the fact that ]E[PO(XkJrl)} =1

There are many cases of interest in which the martingale condi-
tion E(Yiyq ;k) = Y} does not hold, being replaced instead by an
inequality: E(Yy 1|Fx) > Y for all k, or by E(Yy.1|F;) < Y for all k.
Sequences satisfying such inequalities have many of the properties of
martingales. Recall x* = max{0,x} and x~ = — min{0, x}.
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Definition C.2.4. Given a sequence {Y}3> | adapted to the filtration
Fr = 0(Xq,..., Xk), the pair {(Yy, Fi) }32q is a submartingale if, for all
k>1,

]E(Y]j) < oo and ]E[Yk+1|fk} > Ykr

or a supermartingale if, for all k > 1,
]E(Yk_) < oo and ]E[Yk+1|]:k} <Y,

We call the pair {(Si, F¢)};>; predictable if Sy is Fr-measurable
for all k. We call a predictable process { (S, i) }5-; increasing if
Sy =0and P(Sgyq > S¢) =1 for all k.

Theorem C.2.5 (Doob decomposition). A submartingale Yy with finite
means may be expressed in the form

Yy = Mg+ 5,

where My is a martingale and Sy is an increasing predictable process. This
decomposition is unique.

A closely related notion to martingales is that of a martingale
difference sequence, which is an adapted sequence {Ay, F}7> ; such
that forall k > 1,

]E|Ak| S co and ]E(Ak+1|./_"k) =0.

If {Yy} is a martingale then Ay = Y} — Yj_; is a martingale dif-
ference sequence. In our case, this easily follows from the fact that
Ex(Ex11(2)) = ExZ.
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