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Preface

These lecture notes are intended to give a concise introduction to modern real
analysis with a view towards applications in economics, finance, and statis-
tics. The main aim of these notes is to provide students with tools that are
essential to grasp basics of optimisation, fixed point theory, and vector calcu-
lus. Another important reason behind these lectures is to introduce student
into formal mathematical thinking.

The most popular real analysis textbooks are typically designed for first-
year undergraduates in mathematics. This affects the exposition. For exam-
ple, matrix algebra is used scarcely and some topological concepts are devel-
oped in full generality. Our lecture notes are intended for different audience.
The student is assumed to be familiar with standard algebra and calculus
concepts taught during the first years in Economics, Statistics and related
degrees. The topology in Rn is more streamlined and differentiation is build
around the idea of close connections between calculus and linear algebra.

The whole material is divided into two. The core part of the lecture will
take about 16 lectures. The second part can be used to complement the core
material with topics that are relevant for students.

Preparing these lecture notes we benefited from several excellent text-
books:

1. John H. Hubbard, Barbara Burke Hubbard, Vector Calculus, Linear Al-
gebra, and Differential Forms.

2. Charles C. Pugh, Real Mathematical Analysis.
3. Walter Rudin, Principles of Mathematical Analysis.

These notes also benefited from comments of Orestis Vravosinos, Miguel
Espinosa, Malachy Gavan, and Christian Brownlees.
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Part I

The core part of the lecture





Chapter 1

Preliminaries (2 lectures)

1.1 Foundations of mathematics

Mathematics is expressed in the language of set theory. A set is simply a
collection of elements. For example the set of natural numbers N consists
of all numbers 1, 2, 3, . . .. For a set A and element x we write x ∈ A if x
belongs to A and x /∈ A otherwise. For example 0 /∈ N but 10 ∈ N. Sets can
contain other sets. For example, the set of integers Z that consists of all
numbers of the form

. . . ,−3,−2,−1, 0, 1, 2, 3, . . .

contains all natural numbers. If A is contained in B, we write A ⊂ B and
say that A is a subset of B. Formally, we write A ⊂ B if x ∈ A implies that
x ∈ B. We have N ⊂ Z.

In mathematics sets have typically some further structure. For example,
two numbers can be added, subtracted, multiplied, or divided. The set of
natural numbers is closed under addition, meaning that the sum of two nat-
ural numbers is a natural number. It is not however closed under subtraction
since 2 − 3 /∈ N. The set of integers is closed under addition and subtrac-
tion but it is not closed under division because 3

2 /∈ Z. A minimal system
of numbers closed under basic arithmetic operations (addition, subtraction,
multiplication, division) is the set of rational numbers

Q =


m
n : m,n ∈ Z, n ∕= 0


=


m
n : m ∈ Z, n ∈ N


.

Although Q is closed under arithmetic operations, as we will see shortly, Q
is not good enough for calculus, which will lead us to the system of real
numbers R.

Quickly recall basic concepts of the set theory. For two sets A,B their
union is

A ∪B = {x : x ∈ A or x ∈ B},

3
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their intersection is

A ∩B = {x : x ∈ A and x ∈ B},

their difference is

A \B = {x : x ∈ A and x /∈ B}.

Exercise 1.1. Show that A ∩B = A \ (A \B).

For any collection of sets Eα, α ∈ A we define



α∈A

Eα = {x : x ∈ Eα for some α ∈ A}

and 

α∈A

Eα = {x : x ∈ Eα for all α ∈ A}.

For example, if A = [0, 1] and Eα = [α, 1 + α] then


α∈A Eα = [0, 2] and
α∈A Eα = {1}. The empty set is the set that has no elements and it is

denoted by ∅. A singleton is a set that contains only one element.
The complement of a set A is Ac = {x : x /∈ A} and we have the following

useful result.

Theorem 1.1 (De Morgan’s Law). Let {Eα} for α ∈ A is any collection
of sets, then  

α∈A

Eα

c

=


α∈A

Ec
α.

Proof. We will show that x lies in the set on the left if and only if it lies in
the set on the right. Indeed, x ∈


α∈A Eα

c
if and only if x /∈


α∈A Eα, or

in other words, for every α ∈ A, x /∈ Eα. This is if and only if x ∈ Ec
α for all

α ∈ A. ⊓⊔

De Morgan’s Law is the first mathematical statement in these notes that
required a proof. We discuss the concept of a proof more closely starting with
introducing some mathematical logic.

Statements in mathematics can be either true (1) or false (0). Thus, 2+2 =
4 is an example of a true statement, whereas 2+2 = 5 is false. For a statement
P by ¬P denote its negation, that is, the statement that is true if and only
if P is false. For example, the negation of x + 2 = 4 is x + 2 ∕= 4 and the
negation of m > n is m ≤ n. Conjunction of two statements P and Q,
denoted by P ∧Q is a statement that is true only if both P and Q are true.
Disjunction, denoted by P ∨Q, is a statement that is false only if both P
and Q are false. The conditional P ⇒ Q, is a statement that is false only
if P is true and Q is false. The conditional reads “P implies Q” and it says:
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if P is true then Q is true but Q can be true for other reasons. This is all
summarized in Table 1.1.

Table 1.1 The logical values for P ∧Q, P ∨Q and P ⇒ Q depending on the values
of P and Q.

P Q P ∧Q P ∨Q P ⇒ Q
0 0 0 0 1
0 1 0 1 1
1 0 0 1 0
1 1 1 1 1

Exercise 1.2. We write P ≡ Q if both P and Q have the same logical value.
Verify, using tables like Table 1.1, that irrespective of the logical value of P
and Q:

(i) ¬(P ∨Q) ≡ ¬P ∧ ¬Q,
(ii) ¬(P ∧Q) ≡ ¬P ∨ ¬Q,
(iii) P ⇒ Q ≡ ¬Q ⇒ ¬P ≡ ¬P ∨Q
(iv) ¬(P ⇒ Q) ≡ P ∧ ¬Q

Statements in mathematics often involve quantifiers. We write ∀ to denote
“for all” and ∃ to denote “there exists”. For example

∀n ∈ Z ∃q ∈ Q such that q > n

is an example of such a statement. Order of the quantifiers is important. For
example the statement

∀n ∈ N ∀m ∈ N ∃p prime such that nm < p

is true. Indeed, recall that p ∈ N is a prime number if the only natural
numbers dividing p and 1 and p itself (e.g. 3, 7, 11, 89). Now the statement
essentially follows from the fact that there exist arbitrary large prime num-
bers. Six different proofs of this fact can be found in Section 1.1 of Martin
Aigner, Günter M. Ziegler, “Proofs from THE BOOK”1. On the other hand,
the statement

∀n ∈ N ∃p prime such that ∀m ∈ N nm < p

is false.
Statements involving quantifiers can be negated easily. We simply swap ∀

with ∃ and negate the assertion. For example, the negation of

∀n ∈ N ∃p ∈ Q such that n < p

1 https://www.emis.de/classics/Erdos/textpdf/aigzieg/aigzieg.pdf

https://www.emis.de/classics/Erdos/textpdf/aigzieg/aigzieg.pdf
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is the statement
∃n ∈ N such that ∀p ∈ Q n ≥ p.

Make sure you understand why by starting with a single quantifier statement.
Nearly all mathematical assertions can be expressed as the conditional

P ⇒ Q. In order to prove such a conditional statement, it is sometimes easier
to prove ¬Q ⇒ ¬P , which is equivalent by Exercise 1.2. Such statement is
called contrapositive.

Exercise 1.3. Using the contrapositive statement prove that if n2 is an even
number then n must be even.

To prove a statement P it is often easier to show that ¬P implies a state-
ment which is false (and so ¬P must be false). This proof technique is called
proof by contradiction. We illustrate it proving two basic results.

Theorem 1.2. There are no solutions to x2 − y2 = 1 such that x, y ∈ N.

The negation of this statement is that there exists a pair of natural num-
bers x, y such that x2 − y2 = 1 and our proof begins by assuming that this
is true.

Proof. Suppose that x, y ∈ N and x2 − y2 = 1. Then (x − y)(x + y) = 1.
Since x > y we get that x − y, x + y ∈ N. The only possibility now is that
x−y = x+y = 1. This system of linear equations has only one solution x = 1,
y = 0. This leads to a contradiction because 0 is not a natural number. ⊓⊔

Our second example is the following result.

Theorem 1.3.
√
2 /∈ Q.

Proof. Suppose that
√
2 ∈ Q or, in other words,

√
2 = m

n with m ∈ Z and
n ∈ N where m and n have no common divisors. Since 2n2 = m2 it must
be that m is even, say m = 2k for some k ∈ Z. But then 2n2 = 4k2 and so
n2 = 2k2, which by Exercise 1.3 implies that n is even. However, if bothm and
n are even, they have a common factor, which leads to a contradiction. ⊓⊔

As you can see the structure of a proof by contradiction is rather simple:

Theorem. P .

Proof. Suppose not P . Then. . . Then. . . Then. . . Contradiction. □

Now try it by yourself generalising the proof of Theorem 1.3.

Exercise 1.4. Generalize Theorem 1.3 and show that
√
p /∈ Q for every

prime number p ≥ 2.



1.2 Real numbers 7

Another common proof technique is the proof by induction. Suppose
that we have a sequence P (n) of statements indexed by natural numbers n
and we want to show that P (n) is true for all n ∈ N. We then first prove it
for n = 1. Next, we show that the fact that it holds for some n implies that
it holds for n+ 1. For example, to prove that

1 + 2 + · · ·+ n = n(n+1)
2 (1.1)

holds for all n ∈ N we first make sure (1.1) holds for n = 1 (easy). Now
suppose (1.1) holds for some n. We want to show that it holds for n+1, that
is,

1 + 2 + · · ·+ n+ (n+ 1) = (n+1)(n+2)
2 .

But this follows immediately because

1 + 2 + · · ·+ n+ (n+ 1) = n(n+1)
2 + (n+ 1) = (n+1)(n+2)

2 .

Exercise 1.5. Show that n! > 2n for all n ≥ 4.

1.2 Real numbers

Natural numbers N are used to count objects. In order to allow basic arith-
metic operations, we need to extend natural numbers to the rational numbers
Q. The set of rational numbers is however not sufficiently rich; for example,
we have seen that

√
2 /∈ Q. In order to do calculus, we will work over the set

of real numbers R. This section provides a basic understanding of why the
reals are special.

Definition 1.1. Let E ⊂ R. If there exists β ∈ R such that x ≤ β for all
x ∈ E then E is said to be bounded above and β is called an upper bound
of E.

Definition 1.2. Let E ⊂ R be bounded above. Suppose there exists α ∈ R
such that:

(i) α is an upper bound of E
(ii) if γ < α then γ is not an upper bound of E.

Then α is called the supremum of E. We write α = supE.

Exercise 1.6. In the same way we can define bounded below, lower bound,
and infimum inf E. Write carefully those definitions.

Example 1.1. If E = {0, 1} ⊂ R then supE = 1 and inf E = 0. If E = {x ∈
Q : x ≤ 0} then E has no lower bound and supE = 0. Indeed, 0 is clearly
an upper bound and there is no smaller upper bound because 0 ∈ E.
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Slightly more sophisticated examples are given in the end of this section.

Exercise 1.7. Show that if the supremum of E exists then it is necessarily
unique.

The reason why we added “Suppose there exists” as part of the definition
of the supremum is that it is not a priori clear that such a number exists for
every E. For an illustration of what can be the issue define the maximum of E
as maxE = {α ∈ E : α ≥ x for all x ∈ E}. Then for E = {n−1

n : n ∈ N} the
maximum does not exists, which leads to the following corrected definition.

Definition 1.3. Let E ⊂ R. Suppose that there exists α ∈ E such that α ≥ x
for all x ∈ E. Then α is called the maximum of E.

Exercise 1.8. Show that if E ⊂ R is a finite set then maxE exists.

Exercise 1.9. Let E ⊂ R. Show that if maxE exists then maxE = supE.

One of the most important properties of the real numbers is that every
set bounded above admits the supremum, which means that “Suppose there
exists” can be removed from Definition 1.2. Although it is often proven from
the first principles, to simplify the discussion, we state it as an axiom.

The completeness axiom: Every nonempty subset E of R that is
bounded from above has a supremum in R.

We list some consequences of this axiom that will be frequently used in
this course.

Theorem 1.4. ∀x ∈ R ∃n ∈ N such that n > x.

Proof. We proceed by contradiction. Suppose there exists x ∈ R such that
x ≥ n for all n ∈ N. Then x is the upper bound of N. Then, there exists
α = supN. Since α − 1 < α, α − 1 is not an upper bound of N and so there
exists n ∈ N such that n > α− 1, but then n+ 1 ∈ N and n+ 1 > α, which
contradicts the fact that α is an upper bound of N. ⊓⊔

Theorem 1.5. ∀x > 0 ∃n ∈ N such that 0 < 1
n < x.

Proof. By the previous theorem there is n ∈ N such that n > 1
x . But this

means that 1
n < x. ⊓⊔

This result shows in particular that the interval (0, x) always contains a
rational number. With a little bit of extra work we get the following.

Theorem 1.6. For any two real numbers x < y, there exists a rational num-
ber q such that x < q < y.
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Proof. If x, y have different signs then the theorem is obviously true with
q = 0. If x, y ≤ 0 then we can apply the theorem to −x,−y so, without loss
of generality, we can assume 0 ≤ x < y. The case x = 0 was covered in the
previous theorem so assume 0 < x < y. By Theorem 1.5, there exists n1, n2 ∈
N such that 0 < 1

n1
< y− x and 1

n2
< x. Let n = max{n1, n2}. We will show

that for some k ∈ N we have x < k
n < y. The set E = {k ∈ N : k ≤ nx} is

non-empty (1 ∈ E) and bounded above by nx. By Theorem 1.4 there exists
m ∈ N such that m > nx so E must be finite (at most m− 1 elements). Let
l = supE = maxE (c.f. Exercises 1.8 and 1.9) then l ≤ nx and l + 1 > nx.
Together with the fact that n(y − x) > 1 this implies that

nx < l + 1 ≤ nx+ 1 < nx+ n(y − x) = ny.

We conclude that x < l+1
n < y. ⊓⊔

We close this section with a couple of examples.

Example 1.2. Let E = {x ∈ Q : x < 0}. This set has no lower bound but 0 is
an obvious upper bound. To show that supE is actually equal to 0 we need
to show that no smaller upper bound is possible. Suppose α < 0 and α is an
upper bound of E. This is impossible because, by Theorem 1.6, there exists
a rational number q such that α < q < 0. We conclude that 0 is indeed the
supremum.

Example 1.3. If E = { 1
n : n ∈ N}. Then supE = 1 and inf E = 0. Indeed, 1

is an upper bound and so it has to be the supremum because 1 ∈ E. It is also
clear that 0 is a lower bound. The fact that there is no larger lower bound
follows by Theorem 1.5.

Denote by R the extended real line. As a set, R is simply equal to R ∪
{−∞,+∞}, where −∞,+∞ are formal symbols. For every x ∈ R we set
−∞ < x < +∞, which extends the ordering in R to R. We also extend
the basic arithmetic on R to R in an obvious way. We require that both the
addition and the multiplication are commutative on R. Moreover,

x+ (+∞) = +∞, x+ (−∞) = −∞,

(+∞) + (+∞) = +∞, (−∞) + (−∞) = −∞,

To extend multiplication, apart from commutativity we require that

x(±∞) =






±∞ if x > 0,

0 if x = 0,

∓∞ if x < 0.

(+∞)(+∞) = (−∞)(−∞) = +∞, (+∞)(−∞) = −∞.
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For any x, y ∈ R we define x − y as x + (−y) whenever it is defined. Note
that for example (+∞)− (+∞) is not defined. Finally, we define division on
R

x/y = 0 if x ∈ R and y ∈ {−∞,+∞}.

(±∞)/y = (1/y)(±∞) if y ∈ R \ {0}.

The only surprise in the list is that 0 times ±∞ is 0.

1.3 The Euclidean space

Let k ∈ N then by Rk denote the set of k-tuples of real numbers x =
(x1, . . . , xk), where xi are the coordinates of x. Any two k-tuples can be
added together x + y = (x1 + y1, . . . , xk + yk) and multiplied by a scalar
λ · x = (λx1, . . . ,λxk). We say that Rk forms a vector space (more on that
in Section 5.1) and call x a vector.

For any two vectors x,y ∈ Rk we define their (standard) scalar product
〈x,y〉 as

〈x,y〉 = x1y1 + · · ·+ xkyk ∈ R.

Directly from the definition it follows that the scalar product is symmetric,
that is, 〈x,y〉 = 〈y,x〉 for all x,y ∈ Rk.

Exercise 1.10. Show that the scalar product is bilinear, that is, for all
x,y, z ∈ Rk and α,β ∈ R

〈αx+ βy, z〉 = α〈x, z〉+ β〈y, z〉

and
〈x,αy + βz〉 = α〈x,y〉+ β〈x, z〉.

The scalar product induces the Euclidean norm of x

x :=

〈x,x〉 =


x2
1 + . . .+ x2

k.

The norm x is interpreted as the length of the vector x. This is confirmed
by the basic properties it satisfies.

Exercise 1.11. Let x,y ∈ Rk, α ∈ R. Show that

(i) x ≥ 0 and x = 0 if and only if x = 0.
(ii) αx = |α|x.

The following fundamental inequality will be used many times in this
course.

Theorem 1.7 (Cauchy-Schwarz inequality). For every x,y ∈ Rk we
have that
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|〈x,y〉| ≤ x y.

Moreover, the inequality is strict unless x = λy for some λ ∈ R.

Proof. The inequality trivially holds (as equality) when y = 0k so suppose
y ∕= 0k. For every λ ∈ R

x− λy2 =

k

i=1

(xi − λyi)
2 ≥ 0. (1.2)

Using bilinearity and symmetry of the scalar product (c.f. Exercise 1.10), we
get

λ2y2 − 2λ〈x,y〉+ x2 ≥ 0. (1.3)

Think about the expression on the left as a function of λ; this is a quadratic
function with a strictly positive coefficient of λ2. Therefore it achieves a
unique minimum at

λ∗ = 〈x,y〉
y2 .

Since the inequality in (1.3) holds for every λ, it also holds for λ∗, which gives

〈x,y〉2
y2 − 2 〈x,y〉2

y2 + x2 ≥ 0.

Rearranging gives that 〈x,y〉2 ≤ x2y2, which implies the Cauchy-
Schwarz inequality. Note that the inequality (1.2) is actually always strict
unless x− λy = 0k, which completes the proof. ⊓⊔

Another elementary inequality that will be frequently used is the triangle
inequality.

Theorem 1.8 (The Euclidean triangle inequality). For any x,y ∈ Rk

x+ y ≤ x+ y.

Proof. Using bilinearity and symmetry of the scalar product we get

x+ y2 = 〈x+ y,x+ y〉 = 〈x,x〉+ 〈y,y〉+ 2〈x,y〉

and the Cauchy-Schwarz inequality further gives

〈x,x〉+ 〈y,y〉+ 2〈x,y〉 ≤ x2 + y2 + 2x y = (x+ y)2.

Taking square roots on both sides establishes the triangle inequality. ⊓⊔

Using the norm, we can compute the Euclidean distance between any
two elements x,y of Rk as the norm x− y. The set Rk equipped with this
distance function is called the Euclidean space. Denote d(x,y) = x− y.
Directly from the properties of the norm it follows that the Euclidean distance
satisfies
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1. positive definiteness: d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y.
2. symmetry: d(x, y) = d(y, x).
3. triangle inequality: d(x, z) ≤ d(x, y) + d(y, z).

In the next section we generalize the concept of the Euclidean space, where
Rk can be possibly replaced with another set X with a distance function
d : X ×X → R satisfying the three basic axioms above.



Chapter 2

Topology in metric spaces (2 lectures)

Metaremark: It is fine to focus in this course only on the Euclidean space. In
this case, reading through the following section, simply ignore the definition
of a metric space: Further on, whenever we mention a metric space X with a
distance d, think of Rk with the Euclidean distance. Almost the whole course
can be followed assuming X = Rk.

2.1 Cardinality of sets

If X,Y are two sets then a function f : X → Y is called a bijection if it is
one-to-one and onto, that is,

(i) if f(x) = f(x′) then x = x′,
(ii) for every y ∈ Y there exists x ∈ X such that f(x) = y.

In that case we say that X and Y are bijective, or that they have the same
cardinality. A set X is finite if it is bijective with {1, . . . , d} for some d ∈ N.
If X is bijective with N we say that X is countable. If X is either finite
or countable we say that X is at most countable. If X is not at most
countable we say it is uncountable.

Directly by definition, X is countable if we can enumerate its elements as
X = {x1, x2, x3, . . .}. Then f(n) = xn is the defining bijection between N
and X.

Exercise 2.1. Show that Z is countable.

Exercise 2.2. Show that if X is countable then X2 is countable.

Theorem 2.1. Every infinite subset of a countable set is countable.

Proof. IfX is countable then the elements ofX can be arranged in a sequence
{xn}n∈N. If E ⊂ X is infinite then let n1 be the smallest index such that

13
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xn1 ∈ E. Since E is infinite, there exists the smallest n2 > n1 such that xn2 ∈
E. We proceed recursively obtaining the sequence {xnk

}k∈N. The function
f(k) = xnk

establishes bijection between N and E. ⊓⊔

Exercise 2.3. Show that Q is countable.

Exercise 2.4. Prove that if A is a countable set and B its finite subset then
A \B is countable.

Not all sets are countable. For example R is not. To see this we first show
the following.

Theorem 2.2. Let A be the set of all binary sequences. Then A is uncount-
able.

Proof. Suppose A is (infinitely) countable and let f : N → A be the cor-
responding bijection. Let (bn)n∈N be a binary sequence such that, for every
n ∈ N, 1− bn is equal to the n-th element of the sequence f(n). By construc-
tion, (bn)n∈N is not equal to of the sequences f(m), m ∈ N, and so it does
not lie in the image of f (f cannot be a bijection). ⊓⊔

Theorem 2.3. The set [0, 1] is uncountable.

To prove this result, use the binary representation of the real numbers.
We omit the details.

Exercise 2.5. Let A be an uncountable set and let B be a countable set.
Show that A \B is uncountable.

2.2 Sequences in metric spaces

A metric space X is a set, the elements of which are referred as points of
X, together with a function d : X ×X → R satisfying:

1. positive definiteness: d(p, q) ≥ 0 and d(p, q) = 0 if and only if p = q.
2. symmetry: d(p, q) = d(q, p) for all p, q ∈ X.
3. triangle inequality: d(p, q) ≤ d(p, r) + d(r, q) for all p, q, r ∈ X.

The function d is called the distance function (or a metric); d(p, q) is the
distance between p and q.

The canonical example is the Euclidean space whereX = Rk and d(x,y) =
x−y. The fact that this is indeed a distance function was shown in the end
of Section 1.3. Another example is the discrete metric space where X is an
arbitrary nonempty set and d(p, q) = 1 for all p ∕= q. The following exercise
gives further examples important in applied mathematics.
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Exercise 2.6. Let X = Rk and define

dsum(x,y) =

k

i=1

|xi − yi|, dmax(x,y) = max
i=1,...,k

|xi − yi|.

Show that both dsum and dmax define distance functions on Rk.

For any p ∈ X and r > 0 the neighborhood of p of radius r is

Nr(p) := {q ∈ X : d(p, q) < r}. (2.1)

In the Euclidean space Nr(p) is simply an open ball with center p and radius
r. But for different metric spaces Nr(p) may look nothing like a ball.

Exercise 2.7. Draw the neighborhood N1(02) in the real plane R2 with met-
rics dmax and dsum.

A sequence of points in a metric space X is a list p1, p2, . . ., where the
points pn lie in X. We write (pn) or (pn)n∈N. More formally, a sequence of
points in X is any map f : N → X. The n-th element of the sequence is
f(n) = pn.

Definition 2.1. The sequence (pn) converges to p ∈ X if

∀ > 0 ∃N ∈ N such that ∀n ≥ N d(pn, p) < .

We write pn → p or limn→∞ pn = p; p is called the limit of (pn). If (pn) does
not converge, we say it diverges.

In other words: for every  > 0 (think  very small) there exists a moment
in the sequence N ∈ N such that from this moment on all elements in the
sequence lie in the  neighborhood of p.

Exercise 2.8. Show that the sequence xn = 1
n in R converges to 0 as n → ∞.

Show that the sequence xn = (−1)n diverges.

Exercise 2.9. Suppose that pn = p for all n ∈ N, that is, (pn) is a constant
sequence. Show that pn → p.

Proposition 2.1. pn → p if and only if d(pn, p) → 0.

Proof. It follows directly by writing down the definition of pn → p and
d(pn, p) → 0. ⊓⊔

Proposition 2.1 allows to reduce convergence analysis to real sequences.
The following simple results will be very useful in this context.

Lemma 2.1. For every real number λ if xn → x then λxn → λx.
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Proof. If λ = 0 then λxn is a constant sequence and converges to zero. If λ ∕= 0
fix  > 0 and ∃N ∈ N such that |xn − x| < /|λ| for all n ≥ N . For every
such n also |λxn − λx| = |λ||xn − x| <  which establishes convergence. ⊓⊔

Lemma 2.2. If (xn), (yn) are two real sequences such that xn → x, yn → y
then also xn + yn → x+ y.

Proof. Fix  > 0 and let N ∈ N be such that |xn − x| < /2, |yn − y| < /2
for all n ≥ N . For every such n we then have

|(xn + yn)− (x+ y)| ≤ |xn − x|+ |yn − y| < .

⊓⊔

Exercise 2.10. Let (xn) and (yn) be two real sequences Suppose 0 ≤ xn ≤
yn for all n ∈ N. Show that if yn → 0 then xn → 0.

Proposition 2.2. If (pn) converges to p then p is unique.

Proof. Suppose that p, p′ be two distinct points such that pn → p and pn →
p′. By Proposition 2.1, d(pn, p) → 0 and d(pn, p

′) → 0. By the triangle
inequality

d(p, p′)
△
≤ d(p, pn) + d(p′, pn).

By Lemma 2.2, the right hand side of this inequality converges to 0. This
is only possible if d(p, p′) = 0 for otherwise taking  = d(p, p′) would give a
contradiction with this convergence. We conclude that p = p′. ⊓⊔

Remark 2.1. In the above proof we introduced a convention that an inequality

that follows from the triangle inequality is written as
△
≤ .

A set E ⊂ X is bounded if there exists p ∈ X and r > 0 such that
E ⊂ Nr(p). A sequence (pn) in X is bounded if its range is a bounded set.

Proposition 2.3. Every convergent sequence is bounded.

Proof. Suppose pn → p then there exists N ∈ N such that d(p, pn) < 1 for
all n ≥ N . Put

r = max{1, d(p, p1), . . . , d(p, pN )}

then d(p, pn) ≤ r for all n ∈ N and so the range of (pn) is contained in
Nr(p). ⊓⊔

We conclude this section by discussing subsequences.

Definition 2.2. Let (pn) be a sequence in a metric space X. Let (nk) for
k ∈ N be a sequence of natural numbers such that n1 < n2 < . . . Then the
sequence (pnk

), that is, pn1 , pn2 , . . . is called a subsequence of (pn). If (pnk
)

converges as k → ∞, its limit is called a subsequential limit of (pn).
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For example if xn = (−1)n then (xn) does not converge but it has two
subsequential limits −1 and 1.

Proposition 2.4. We have pn → p if and only if pnk
→ p for every subse-

quence (pnk
).

Proof. Since (pn) is its own subsequence, the left direction is immediate.
For the forward direction note that for any  > 0 there exists N ∈ N such
that d(p, pn) <  for all n ≥ N . Fix a subsequence (pnk

) and let K ∈ N
be any natural number such that nK ≥ N (it must exist because (nk) is a
strictly increasing sequence of natural numbers). Then for all k ≥ K we have
d(p, pnk

) < . Since  was arbitrary, we conclude that pnk
→ p as k → ∞. ⊓⊔

The concept of subsequences is useful to define limit inferior and limit
superior.

Definition 2.3. Let E ⊆ R be the set of subsequential limits of a real se-
quence (xn). Define

lim inf
n→∞

xn := inf E, lim sup
n→∞

xn := supE.

Exercise 2.11. Show that xn → x if and only if lim infn→∞ xn = lim supn→∞ xn.

2.3 Point sequences in Cartesian products

Let Xi for i = 1, . . . , k be metric spaces with distance functions di respec-
tively. There are three natural ways to define a distance function on the Carte-
sian product X = X1 × · · · ×Xk. For p = (p1, . . . , pk) and q = (q1, . . . , qk)
in X define

dE(p,q) =

d1(p1, q1)2 + · · ·+ dk(pk, qk)2

dmax(p,q) = max
i=1,...,k

di(pi, qi)

dsum(p,q) = d1(p1, q1) + · · ·+ dk(pk, qk)

Exercise 2.12. Show that these three formulas define valid metrics on X.

In some aspects the three metrics are similar. We have the following result.

Proposition 2.5. dmax ≤ dE ≤ dsum ≤ kdmax.

Proof. Dropping the smaller terms inside the square root shows that dmax ≤
dE ; comparing the square of dE and the square of dsum shows that the latter
has the terms of the former and the cross terms besides, so dE ≤ dsum; and
clearly dsum is no larger than k times its greatest term, so dsum ≤ kdmax. ⊓⊔
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This sequence of inequalities has very important consequences.

Theorem 2.4. Let X = X1×· · ·×Xk be a product of k metric spaces (Xi, di).
The following are equivalent for a sequence pn = (p1n, . . . , pkn) in X =
X1 × · · ·×Xk:

(i) (pn) converges with respect to the metric dmax.
(ii) (pn) converges with respect to the metric dE.
(iii) (pn) converges with respect to the metric dsum.
(iv) For every i = 1, . . . , k the sequence (pin) converges in Xi.

Proof. By Proposition 2.1, pn → p in X with a metric d if and only if
d(pn,p) → 0. By Proposition 2.5,

0 ≤ dmax(pn,p) ≤ dE(pn,p) ≤ dsum(pn,p) ≤ kdmax(pn,p).

Thus, converging any of the three metrics to zero implies convergence to zero
of the other two, which shows equivalence of (i),(ii), and (iii).

To show that all four items are equivalent, it is enough to show (i) ⇔ (iv).
Item (i) means that maxi=1,...,k di(pin, pi) → 0. Equivalently, di(pin, pi) → 0
for all i, which is another way to say that pin → p for all i. ⊓⊔

Remark 2.2. If convergence in one metric is equivalent to convergence in an-
other metric we say that these metrics are equivalent. Theorem 2.4 implies
that dE , dmax, and dsum are equivalent on X.

Corollary 2.1 (Convergence in Rk). A sequence of vectors (xn) in the
Euclidean space converges if and only if each component sequence (xin) con-
verges, 1 ≤ i ≤ k. The limit of the vector sequence is the vector

x = lim
n→∞

xn =

lim
n→∞

x1n, . . . , lim
n→∞

xkn


.

2.4 Closed sets and open sets

Recall that Nr(p) denotes the neighborhood of p of radius r, see (2.1). We
say that p ∈ E is an interior point of E ⊂ X if Nr(p) ⊂ E for some r > 0.

Definition 2.4. E is an open set (in X) if each point of E is an interior
point of E.

Example 2.1. Three examples of open sets: (i) the open interval (0, 1) is an
open set, (ii) Rk, (iii) the set of n× n matrices that are invertible.

Exercise 2.13. Show that for every r > 0 and every p ∈ X, the neighbor-
hood Nr(p) is an open set.
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A point p ∈ X is a limit of E1 if there exists a sequence (pn) in E such
that pn → p. Every p ∈ E is a limit of E because it is a limit of the constant
sequence (pn) where pn = p for all n ∈ N.

Definition 2.5. E is a closed set (in X) if it contains all its limits.

Example 2.2. Three examples of closed sets: (i) closed interval [0, 1], (ii) Rk,
(iii) the set of orthogonal n× n matrices.

Remark 2.3. The underlying metric space is important in the above defini-
tions. For example, (0, 1) is open in X = R but it is closed (and open) in
X = (0, 1). Make sure you understand why.

The following simple lemma will be used in many proofs.

Lemma 2.3. If (pn) is a sequence in X such that d(p, pn) < 1/n for all
n ≥ 1, then pn → p.

Proof. Follows immediately from Proposition 2.1. ⊓⊔

A point p ∈ E is an isolated point of E if there exists a neighborhood
Nr(p) such that Nr(p)∩E = {p}. For example, the point (0, 0) is an isolated
point of E = {(x, y) ∈ R2 : x3 − x2 − y2 ≥ 0}, see Figure 2.1.

Fig. 2.1 The set of points satisfying x3 − x2 − y2 ≥ 0.

The following lemma gives an alternative characterization of the isolated
point.

1 Note that this notion is not the same as the limit point in Rudin’s book. In this we
follow the book of Pugh.
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Lemma 2.4. A point p ∈ E is an isolated point of E if and only if for every
sequence (pn) in E converging to p there must exist N ∈ N such that pn = p
for all n ≥ N .

Proof. If p is an isolated point of E then N(p) ∩ E = {p} for some  > 0.
For the definition of convergence to be satisfied, there must exist N ∈ N such
that pn = p for all n ≥ N .

For the opposite direction suppose that p is not an isolated point. Then
for each n ∈ N the neighborhood N1/n(p) contains a point pn ∈ E such that
pn ∕= p. By Lemma 2.3, pn → p. For this sequence there does not exist N ∈ N
such that pn = p for n ≥ N . ⊓⊔

Exercise 2.14. If E is a finite set of points then all points of E are isolated
(why?). Conclude that every finite set of points is closed.

There are examples of infinite sets whose all points are isolated. For ex-
ample, the set of natural numbers N is closed in X = R.

Theorem 2.5. E ⊂ X is open if and only if the complement of E is closed.

Proof. “⇒” Suppose pn → p and pn ∈ Ec, we need to show that p ∈ Ec.
Well, if p /∈ Ec then p ∈ E, and since E is open, there exists r > 0 such
that d(p, q) < r implies q ∈ E. Since pn → p we have d(pn, p) < r for large
n, which implies pn ∈ E, contrary to the sequence being in Ec. We conclude
that p must lie in Ec, which proves that Ec is closed.

“⇐” Now assume that Ec is closed and take any p ∈ E. We want to show
that p is an interior point of E. If there is no r > 0 such that d(p, q) < r
implies that q ∈ E then we can take r = 1/n for n ≥ 1 to construct a
sequence pn ∈ Ec such that d(pn, p) < 1/n. By Lemma 2.3, this sequence in
Ec converges to p ∈ E. This contradicts closedness of Ec. ⊓⊔

The topology T of a metric space X is the collection of all its open sets.

Theorem 2.6. T has three properties:

(a) Every union of open sets is an open set.
(b) The intersection of finitely many open sets is an open set.
(c) ∅ and X are open sets.

Proof. (a) Let G =


α∈A Gα, where A is arbitrary and all Gα are open. If
p ∈ G then p ∈ Gα for some α. Since Gα is open, p is an interior point of
Gα, that is, there exists r > 0 such that Nr(p) ⊂ Gα. But then Nr(p) ⊂ G
and so p is an interior point of G. Since p was arbitrary, G is open.

(b) Let G =
n

i=1 Gi. If p ∈ G, then p ∈ Gi for all i = 1, . . . , n and there
exist neighborhoods Nri(p) ⊂ Gi for some ri > 0. Take r = min{r1, . . . , rn}
then r > 0 and Nr(p) ⊂ Gi for all i and so Nr(p) ⊂ G, which proves that G
is open.

(c) In both cases clearly all points are interior. ⊓⊔
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An infinite intersection of open sets does not need to be open. For example,
let Gi = (− 1

n ,
1
n ) then G =

∞
i=1 Gi = {0}, which is not open (in R).

Exercise 2.15. Show that every intersection of closed sets is closed.

Exercise 2.16. Show that every open subset of R is an at most countable
union of open intervals.

Let E be a subset of a metric space X. Its closure, interior, and boundary
are defined as follows:

1. closure E is the set of limits of E.
2. interior E◦ is the set of all interior points of E.
3. boundary ∂E = E ∩ Ec.

Theorem 2.7. The closure of E ⊂ X is a closed set and E = E if and only
if E is closed.

Proof. Suppose that pn → p and each pn lies in E. We claim that p ∈ E.
Since pn is a limit of E there is a sequence (pn,k)k∈N in E converging to pn
as k → ∞. Thus, for every n ∈ N there exists qn = pn,k(n) ∈ E such that

d(pn, qn) <
1
n . Then

d(p, qn) ≤ d(p, pn) + d(pn, qn) → 0 as n → ∞

and so qn → p, which implies that p ∈ E. For the second part: “⇒” is part
of the first statement. “⇐” follows from the definition of a closed set. ⊓⊔

Exercise 2.17. Show that the boundary of E is closed.

Exercise 2.18. Show that the interior E◦ of E is the largest (with respect
to inclusion) open set contained in E. More precisely, E◦ is is an open set
contained in E with the property that U ⊂ E and U open implies that
U ⊂ E◦. Conclude that E0 is the union of all open sets contained in E.

Exercise 2.19. Similarly like in the exercise above show that E is the small-
est closed set containing E. In other words, E is the intersection of all closed
sets containing E.

We finish this section with an important result on subsets of the real line.

Theorem 2.8. If E ⊂ R is bounded above, then supE ∈ E. If E is bounded
below, then inf E ∈ E. Hence supE and inf E lie in E if E is closed.

Proof. We proof only the sup-part of the statement and the arguments for
infimum are similar. Let α = supE. If α ∈ E then α ∈ E. Assume α /∈ E.
Since α is the least upper bound, for every n ∈ N there exists xn ∈ E such
that α − 1

n < xn < α. By Lemma 2.3, the sequence (xn) converges to α

and so α is a limit of E (lies in E). The second part follows directly from
Theorem 2.7. ⊓⊔
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Continuity (2 lectures)

3.1 Functional limits and continuity

So far we have studied metric spaces. Now we add to this picture also map-
pings between metric spaces.

Definition 3.1 (Functional limit). Let X,Y be metric spaces. Let E ⊂ X
and f : E → Y and suppose that p is a limit of E but not an isolated point
of E. Then we say that f(x) → q as x → p, or limx→p f(x) = q if for every
sequence (pn) in E such that pn ∕= p and pn → p we have f(pn) → q.

To understand why we rule out the possibility for p to be an isolated
point recall from Lemma 2.4 that if p is an isolated point then there is no
sequence in E such that pn ∕= p and pn → p. In particular, the condition in
the definition would hold for every real q!

Remark 3.1. If limx→p f(x) exists then it is unique because limn→∞ f(pn) is
unique.

Example 3.1. Let f and g be real-valued functions given by

f(x) =


1 x = 0

0 otherwise
and g(x) =


1 x ≥ 0

0 otherwise

then limx→0 f(x) = 0 however limx→0 g(x) does not exist.

Example 3.2. Let f : R → R be given by f(x) = |x|
x . Then limx→0 f(x)

does not exist. For example, taking sequences xn = 1
n and x′

n = − 1
n we get

f(xn) = 1 and f(x′
n) = −1 for all n and so f(xn) → 1, f(x′

n) → −1.

Exercise 3.1. Let f, g : R → R. Conclude from Lemma 2.2 that if limx→p f(x) =
q and limx→p g(x) = q′ then limx→p(f + g)(x) = q + q′.

Proposition 2.1 has the following translation to functional limits.

23
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Remark 3.2. We have f(x) → q if and only if dY (f(x), q) → 0.

In the following example we discuss a more abstract situation to emphasise
some subtle points in the definition of the functional limit.

Example 3.3. If a is a real number, then limx→a
a2−x2

a−x = 2a; in particular the
limit exists. In this problem we investigate to what extent this still holds for
matrices. Let A ∈ Rk×k be a square matrix. What does it mean to say that

lim
X→A

(A−X)−1(A2 −X2) exists?

We follow the definition of the functional limit. Let F (X) = (A−X)−1(A2−
X2). The domain of F (X), denoted by E, is the set of all X ∈ Rk×k such
that A−X is invertible. Although A /∈ E, A is a limit point of E. With this
notation limX→A F (X) exists if there exists a matrix B such that for every
sequence Xn of matrices in E that converges to A, with Xn−A invertible, we
have F (Xn) → B (a suitable distance for matrices to define convergence is
discussed in Section 5.4). Now consider some special cases. If A is the identity
matrix Ik, we can use the same trick as in the univariate case and rewrite
(I2k −X2) = (Ik −X)(Ik +X), which gives

(Ik −X)−1(I2k −X2) = Ik +X.

Therefore, if Xn → Ik as n → ∞, then (Ik−X)−1(I2k−X2) → B = 2Ik. Now
suppose that k = 2 and

A =


0 1
1 0


.

For this A we can easily find two different sequences Xn in E for which the
limits of (A−Xn)

−1(A2 −X2
n) are different. For example


1
n 1
1 1

n


and


1
n 1
1 − 1

n


.

We now introduce one of the most fundamental concepts of real analysis.

Definition 3.2. A function f : E → Y is continuous at a point p ∈ E if
for every sequence (pn) such that pn → p also f(pn) → f(p). We say that f
is continuous if it is continuous at every point p ∈ E.

Proposition 3.1. For any fixed y ∈ Rk the function f(x) = x − y is
continuous. Taking y = 0 gives that the norm is a continuous function.

The proof is left as an easy exercise.

Lemma 2.4 shows that if p is an isolated point of E ⊂ X then for every
pn → p we also have that f(pn) = f(p) from certain point on. In particular,
f is continuous at p. If p is a limit of E but not an isolated point of E then
we have the following
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Proposition 3.2. If p is not an isolated point of E and f : E → Y then f
is continuous at p if and only if limx→p f(x) = f(p).

Exercise 3.2. Prove Proposition 3.2.

Exercise 3.3. Let f : X → Y . Show that if there exists M ∈ R such that
dY (f(p1), f(p2)) ≤ MdX(p1, p2) for any two p1, p2 ∈ X then f is continuous.

The following result follows easily from the definition.

Theorem 3.1. A composition of continuous functions is continuous.

Proof. Let pn → p. Since f is continuous, f(pn) → f(p). Since g is continuous,
we get that g(f(pn)) → g(f(p)) and therefore g ◦ f is continuous. ⊓⊔

We are often studying mappings f : E → Rm, where E ⊂ X. Every such
function is given by specifying its components fi : E → R for i = 1, . . . ,m.
We write f = (f1, . . . , fm). The following result shows that studying limits of
f can be reduced to studying limits of its components.

Theorem 3.2. Let f : E → Rm, where E ⊂ X. Suppose p is a limit of E but
not an isolated point of E. Then

lim
x→p

f(x) = q ⇐⇒ lim
x→p

fi(x) = qi for all i = 1, . . . ,m.

Proof. We have limx→p f(x) = q if and only if for every (pn) such that pn → p
also f(pn) → q. By Corollary 2.1 the sequence f(pn) converges to q if and
only if each fi(pn) converges and

lim
n→∞

f(pn) = ( lim
n→∞

f1(pn), . . . , lim
n→∞

fm(pn)) = (q1, . . . , qn).

The last equality gives that limx→p fi(x) = qi for all i = 1, . . . ,m. ⊓⊔

This implies that continuity can also be checked component-wise.

Theorem 3.3. Suppose that f : E → Rm where E ⊂ X. Then f is continuous
if and only if each component fi : E → R is continuous.

Proof. If p is an isolated point of E then all functions are continuous at this
point. Otherwise f is continuous if and only if limx→p f(x) = f(p) (Proposi-
tion 3.2). By Theorem 3.2 this is equivalent to limx→p fi(x) = fi(p), which
is equivalent to all fi being continuous. ⊓⊔
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3.2 Continuity of arithmetic in R

We will now discuss continuity of basic arithmetic operations in R. Addition
is a mapping Sum : R× R → R that assigns to (x, y) the real number x+ y.
Subtraction and multiplication are also such mappings. Division is a mapping
R× (R \ {0}) → R that assigns to (x, y) the number x/y.

Theorem 3.4. The arithmetic operations of R are continuous.

Proof. Let (xn, yn) → (x, y). By Corollary 2.1, equivalently xn → x and
yn → y. The fact that xn + yn → x+ y follows by Lemma 2.2. The proof for
subtraction is exactly the same. To show that multiplication is continuous
note that

|xnyn − xy| ≤ |xn − x| |yn|+ |x| |yn − y| ≤ B(|xn − x|+ |yn − y|),

where B is some positive number that bounds both |x| and |yn| for all n ∈ N
(B exists by Proposition 2.3). Using Lemma 2.1 and Lemma 2.2, the right
hand side converges to zero. We conclude that multiplication is also contin-
uous.

For division, since yn → y with y, yn ∕= 0, there exists N ∈ N such that
|yn−y| < |y|/2 for all n ≥ N . Since ||yn|− |y|| ≤ |yn−y|, we get |yn| > |y|/2,
and so 1

|yny| < 2
|y|2 for all n ≥ N . As a result, we can bound above the

following expression for all n ≥ N

xn

yn
− x

y

 =
xny−xyn

yny


△
≤ |xn−x| |y|+|x| |yn−y|

|yny| ≤ B(|xn − x|+ |yn − y|),

where B is some positive constant. This again implies continuity. ⊓⊔

Definition 3.3. If f, g : E → R, E ⊂ X, then f+g, f−g, f ·g are real-valued
functions on E with values (f+g)(x) = f(x)+g(x), (f−g)(x) = f(x)−g(x),
and (f ·g)(x) = f(x)g(x). For all points such that g(x) ∕= 0 we can also define
f/g through (f/g)(x) = f(x)/g(x).

Theorem 3.5. The sums, differences, products, and quotients of real-valued
continuous functions are continuous (as long as the denominators are not
equal to zero).

Proof. Take, for example, the sum f + g where f, g : E → R are continuous.
It is the composition of functions

E
(f,g)−→ R× R Sum−→ R

x → (f(x), g(x)) → f(x) + g(x),

where the first arrow is continuous by Theorem 3.3 and the second by Theo-
rem 3.4. Thus, the composition is continuous by Theorem 3.1. The proof for
f − g, fg and f/g is the same. ⊓⊔
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Theorem 3.5 has a counterpart in Rk.

Theorem 3.6. If f ,g : E → Rk are continuous functions then f + g and
〈f(x),g(x)〉 are continuous.

Proof. If f , g are continuous then all components fi, gi are continuous. By
the previous theorem, fi + gi are continuous for i = 1, . . . ,m and so f + g is
continuous. For the scalar product: since all figi are continuous, so is their
sum. ⊓⊔

Exercise 3.4. Show how Proposition 3.1 now follows directly from Theo-
rem 3.6.

Exercise 3.5. Show that all polynomial functions are continuous.

The proof of Theorem 3.4 can be also recycled to prove the following result.

Proposition 3.3. Let f, g : E → R, E ⊂ R open, and p ∈ E. Suppose
limx→p f(x) = a, limx→p g(x) = b then

lim
x→p

(f + g)(x) = a+ b, and lim
x→p

f(x)g(x) = ab.

Moreover, if b ∕= 0 then also limx→p
f(x)
g(x) = a

b .

Proof. We prove that limx→p f(x)+g(x) = a+b all other cases being similar.
Since limx→p f(x) = a and limx→p g(x) = b for every sequence xn → p such
that xn ∕= p we have f(xn) → a and g(xn) → b. By the proof of Theorem 3.4
the sum f(xn) + g(xn) = (f + g)(xn) converges to a+ b. ⊓⊔

Example 3.4. In Example 2.1 we learned that the set of invertible n × n
matrices is open in Rn×n. Proving this without discussing continuity may be
tedious. Continuity gives us tools to provide a simple argument. A matrix
A is invertible if and only if det(A) ∕= 0. It is then enough to show that the
set {A : det(A) = 0} is closed. Since det(A) is a polynomial in the entries of
A, it is a continuous function on Rn×n. If An → A with det(An) = 0 then
continuity implies that also det(A) = 0, which shows that {A : det(A) = 0}
is closed.

Exercise 3.6. Suppose that f : X → R is a continuous function. Show that
the set of zeros of f is a closed set. How about any level set of f?

3.3 Alternative characterizations of continuity*

The standard way of defining continuous functions is, so called, (, δ)-
condition. For completeness of the discussion we formulate it as a theorem.
We then discuss other popular characterisations of continuity that have some
advantages.
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Theorem 3.7. A function f : X → Y is continuous at p if and only if

∀ > 0 ∃δ > 0 s.t.

d(p, q) < δ ⇒ d(f(p), f(q)) < 


.

Proof. Suppose that f satisfies the (, δ)-condition condition and pn → p.
Then f(pn) is a sequence in Y . The condition implies that for every  > 0,
there exists δ > 0 such that d(x, p) < δ implies d(f(x), f(p)) < . Convergence
implies that there exists N ∈ N such that d(pn, p) < δ for all n ≥ N . Then
also d(f(pn), f(p)) <  and so f(pn) → f(p), which shows continuity of f .

We prove the converse in contrapositive form: if f does not satisfy the
(, δ)-condition then there exists  > 0 such that for all δ > 0 we have a point
q such that d(p, q) < δ and d(f(p), f(q)) ≥ . Taking δ = 1/n for n ∈ N we
construct a sequence qn converging to p (by Lemma 2.3) such that f(qn) does
not converge to f(p). This shows that f is not continuous. ⊓⊔

Another important reformulation of continuity builds on the concept of
preimage. Let f : X → Y be given. The preimage of a set V ⊂ Y is

fpre(V ) := {p ∈ X : f(p) ∈ V }. (3.1)

For example, if f : R2 → R is defined by f(x, y) = x2 + y2 + 2 then the
preimage of the interval [3, 6] is the annulus in the plane with inner radius 1
and outer radius 2.

Theorem 3.8. A function f : X → Y is continuous if and only if the preim-
age fpre(V ) of any open set V ⊂ Y is open in X.

Proof. Suppose that f is continuous on X and let V ⊂ Y be open. We need
to show that every point p ∈ fpre(V ) is an interior point of fpre(V ). Since
V is open, f(p) is an interior point of V , that is, there exists  > 0 such
that dY (f(p), y) <  implies that y ∈ V . By Theorem 3.7, there exists δ > 0
such that dX(p, x) < δ implies that dY (f(p), f(x)) < , or in other words,
f(x) ∈ V . Thus, x ∈ fpre(V ) as soon as dX(p, x) < δ. This proves that x is
an interior point.

Conversely, suppose that fpre(V ) is open in X for every open set V in Y .
Fix p ∈ X and  > 0. The set V = {y : dY (f(p), y) < } is a neighborhood
in Y and so open. Since fpre(V ) is open, there exists δ > 0 such that x ∈
fpre(V ) as soon as dX(p, x) < δ. But if x ∈ fpre(V ). then f(x) ∈ V and so
dY (f(x), f(p)) < . This is precisely the definition of continuity of f at p as
characterized by Theorem 3.7. ⊓⊔

Exercise 3.7. Prove that a function f : X → Y is continuous at p ∈ X if
and only if for any open V ⊂ Y such that p ∈ fpre(V ) the point p is an
interior point of fpre(V ).

Exercise 3.8. Prove that a function f : X → Y is continuous if and only if
the preimage fpre(C) of any closed set C ⊂ Y is closed in X.
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3.4 Semicontinuity*

Discussing correspondences in Chapter 13 we will find conceptually useful
to derive the following alternative way of thinking about continuity of real-
valued functions.

Definition 3.4. A function f : E → R is is lower semicontinuous at p
if p is an interior point of the set {x : f(x) > f(p) − }. Similarly, f is
upper semicontinuous at p ∈ E if for each  > 0, p is an interior point of
{x : f(x) < f(p) + }.

Recall the definition of limit inferior and limit superior given in Defini-
tion 2.3. This definition can be extended to functional limits of real valued
functions. Namely, consider all sequences xn, xn → p, xn ∕= p and all con-
verging subsequences f(xnk

). Then lim infx→p f(x) ∈ R is the infimum of the
set of all such subsequential limits.

The following result offers a useful reformulation of Definition 3.4.

Theorem 3.9. The function f : E → R is lower semicontinuous at p ∈
E if and only if lim infx→p f(x) ≥ f(p). Similarly, f : E → R is upper
semicontinuous at p ∈ E if and only if lim supx→p f(x) ≤ f(p).

Remark 3.3. The condition lim infx→p f(x) ≥ f(p) can be translated as fol-
lows

xn → p =⇒ lim inf
n→∞

f(xn) ≥ f(p).

Proof of Theorem 3.9. We will provide the proof for lower semicontinuity. For
the right implication, let xn ∈ E be any sequence such that xn → p and f(xn)
converges (limn→∞ f(xn) = q). By the definition of lower semicontinuity, for
every  > 0 there exists N ∈ N such that for every n ≥ N f(xn) > f(p)− .
Since this holds for an arbitrary , we conclude that q ≥ f(p). This proves that
lim infx→p f(x) ≥ f(p). For the other implication, suppose that for some  > 0
p is not an interior point of x : f(x) > f(p)−}. Then, there exists a sequence
xn → p such that f(xn) ≤ f(p)− . In particular, for any subsequence (xnk

)
such that f(xnk

) converges, the limit is less than or equal to f(p)−. But this
implies that lim infx→p f(x) ≤ f(p)−  < f(p), which is a contradiction. ⊓⊔

As a corrollary, we get the following characterization of continuous func-
tions.

Theorem 3.10. A function f : E → R is continuous at p if and only if it is
both upper and lower semicontinuous at p.

We say that f : E → R is upper semicontinuous if it is upper semicontin-
uous at every p ∈ E.

Exercise 3.9. Show that f : E → R is upper semicontinuous if and only if
{x : f(x) < a} is open for every a ∈ R.





Chapter 4

Compactness and completeness (2
lectures)

4.1 Compact sets

The following is probably the most important concept of real analysis.

Definition 4.1. A subset E of a metric space X is (sequentially) compact
if every sequence (pn)n∈N in E has a subsequence (pnk

)k∈N that converges to
a limit in E.

Every finite set is compact because a sequence (pn) contained in a finite set
repeats a term infinitely often, and the corresponding constant subsequence
converges.

Theorem 4.1. Every compact set is closed and bounded.

Proof. Suppose that E is a compact subset of the metric space X and that p
is a limit of E. There is a sequence (pn) in E converging to p. By compactness,
some subsequence (pnk

) converges to some q ∈ E. But every subsequence of
a convergent sequence converges to the same limit and so p = q and p ∈ E.
Thus E is closed.

To see that E is bounded, choose and fix any point p ∈ X. Either E is
bounded, or else, for each n ∈ N there is a point pn ∈ E such that d(p, pn) ≥
n. Compactness implies that some subsequence (pnk

) converges. Convergent
sequences are bounded by Proposition 2.3, which contradicts the fact that
d(p, pnk

) → ∞ as k → ∞. Therefore pn cannot exist. ⊓⊔

Exercise 4.1. Show that the intersection of arbitrarily many compact sets
and the union of finitely many compact sets is compact.

Theorem 4.2. The closed interval [a, b] ⊂ R is compact.

Proof. Let (xn) be a sequence in [a, b] and set

C = {x ∈ [a, b] : xn < x only finitely often}.

31
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Equivalently, for all but finitely many n, xn ≥ x. Since a ∈ C we know that
C ∕= ∅. Clearly b is an upper bound on C. By the least upper bound property
of R there exists c = supC with c ∈ [a, b]. We will show that a subsequence
of (xn) converges to c. Let n1 = 1. For every k ≥ 2, the interval (c− 1

k , c+
1
k )

contains infinitely many elements of (xn); for otherwise c + 1
k ∈ C, which

contradicts c being an upper bound for C. This means that we can always
pick nk > nk−1 such that |xnk

− c| < 1
k . This subsequence converges to c by

Lemma 2.3.
⊓⊔

To pass from R to Rk we think about compactness for Cartesian products
equipped in one of the induced metrics introduced in Section 2.3.

Theorem 4.3. The Cartesian product of two compact sets is compact.

Proof. Let (an, bn) ∈ A×B be given where A ⊂ X and B ⊂ Y are compact.
There exists a subsequence (ank

) that converges to a ∈ A as k → ∞. The
subsequence (bnk

) has a sub-subsequence (bnk(l)
) that converges to some point

b ∈ B. The sub-subsequence (ank(l)) continues to converge to the point a.
Thus, by Theorem 2.4,

(ank(l)
, bnk(l)

) −→ (a, b)

as l → ∞. This implies that A×B is compact. ⊓⊔

Corollary 4.1. The Cartesian product of k compact sets is compact.

Proof. Write A1×A2×· · ·×Am = A1×(A2×· · ·×Am) and perform induction
on m. ⊓⊔

Corollary 4.2. Every k-cell [a1, b1]× · · ·× [ak, bk] in Rk is compact.

As a corollary we get the following important result.

Theorem 4.4 (Bolzano-Weierstrass). Every bounded sequence in Rk has
a convergent subsequence.

Here is a simple fact about compact sets.

Theorem 4.5. Every closed subset of a compact set is compact.

Proof. If E is a closed subset of the compact set K and if (pn) is a sequence
of points in E then clearly (pn) is also a sequence in K, so by compactness of
K there is a subsequence pnk

converging to a limit p ∈ K. Since E is closed,
p lies in E, which proves that E is compact. ⊓⊔

Now we come to the first partial converse of Theorem 4.1, which works in
the special case of Rk.

Theorem 4.6 (Heine-Borel). A set K ⊂ Rk is compact if and only if it is
closed and bounded.
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Proof. The forward direction follows from Theorem 4.1. For the other di-
rection: Boundedness implies that K is contained in some k-cell, which is
compact by Corollary 4.2. Since K is closed, Theorem 4.5 implies that K is
compact. ⊓⊔

The Heine-Borel Theorem states that closed and bounded subsets of Eu-
clidean space are compact, but it is important to remember that a closed and
bounded subset of a general metric space may fail to be compact. For exam-
ple, the set N of natural numbers equipped with the discrete metric is closed
in itself, and it is bounded. But it is not compact. For example, consider the
sequence 1, 2, 3, . . .

If E1 ⊃ E2 ⊃ · · · ⊃ En ⊃ En+1 ⊃ . . . then (En) is a nested sequence of
sets. Its intersection is

∞

n=1

En = {p : p ∈ En for each n}.

For example, we could take En to be the disc {z ∈ R2 : z ≤ 1/n}. The
intersection of all sets En is then the singleton {0}.

Theorem 4.7. The intersection of a nested sequence of compact nonempty
sets is compact and nonempty.

Proof. Let (En) be such a sequence. By Theorem 4.1, each En is closed.
The intersection of closed sets is closed. Thus


En is a closed subset of the

compact set E1 and so it is also compact by Theorem 4.5. It remains to show
that this intersection is nonempty.

Since En are nonempty, we can from each En choose a point pn. The
sequence (pn) lies in E1. Compactness of E1 implies that (pn) has a convergent
subsequence (pnk

) converging to p ∈ E1. Now fix n ≥ 2. The sub-subsequence
of (pnk

) with all nk ≥ n lies in En and so, since En is closed, p ∈ En. Since
n was arbitrary, p ∈


n≥1 En and so


En is nonempty. ⊓⊔

In general, without compactness a similar result cannot hold. For example,
the following two sets are empty:

∞
n=1(0,

1
n ),

∞
n=1[n,∞).

The diameter of a nonempty set E ⊂ X is the supremum of the distances
d(x, y) between points in E

diam(E) = sup
p,q∈E

d(p, q).

For example, both (0, 1) and [0, 1] have diameter 1.

Corollary 4.3. If in addition to being nested, nonempty, and compact, the
sets En have diameter that tends to 0 as n → ∞ then E =


En is a single

point.



34 4 Compactness and completeness (2 lectures)

Proof. For each n ∈ N, E is a subset of En, which implies that E has diameter
zero. Since distinct points lie at positive distance from each other, E consists
of at most one point, while by Theorem 4.7 it consists of at least one point. ⊓⊔

4.2 Open coverings*

In our discussion of compact sets we followed Charles Pugh. The standard
approach is more topological and may be occasionally useful in some aspects
of analysis like measure theory; c.f. Chapter 10.

A collection U of subsets of X covers E ⊂ X if E is contained in the
union of sets in U . We say that U is an open covering of E if U covers E
and all sets in U are open. If V also covers E and each set in V also lies in U
we say that V is a subcovering of E.

If every open covering of E has a finite subcovering, we say that E is
covering compact. The point is here that such a finite subcovering must
exist for every open covering of E. Just the fact that a finite open covering
exist is obvious as a single (open) set X covers every set in X.

Theorem 4.8. If X is a metric space and E ⊂ X is covering compact then
E is sequentially compact.

Proof. Suppose E is covering compact but not sequentially compact. Then
there exists a sequence (pn) in E with no converging subsequence. It follows
that each point q ∈ E has a neighborhood Uq with only finitely many elements
of (pn) in it. The collection {Uq : q ∈ E} is an open covering of E. By covering
compactness, there is a finite subcovering Uq1 , . . . , Uqm of E. Since each Uqi

has finitely many elements of (pn) in it, it follows that (pn) has finitely many
elements, a contradiction. ⊓⊔

The opposite implication of Theorem 4.8 also holds. The proof relies on
the concept of a Lebesgue number. A Lebesgue number of a covering U of
E is a positive real number λ such that for each p ∈ E there is some U ∈ U
with Nλ(p) ⊂ U . Having one number that works for all p ∈ E is a very strong
requirement and, in general, if E is not compact cannot be achieved.

Lemma 4.1. Every open covering of a sequentially compact set has a Lebesgue
number λ > 0.

Proof. Suppose not, that is, U is an open covering of a sequentially compact
set E, and yet for every λ > 0 there is p ∈ E such that no U ∈ U contains
Nλ(p). Take λ = 1/n for n ∈ N and let pn ∈ E be a point such that no
U ∈ U contains N1/n(pn). By sequential compactness there is a subsequence
(pnk

) that converges to some q ∈ E. Since U is an open covering, there exists
U ∈ U and r > 0 such that Nr(q) ⊂ U . If k is large then d(pnk

, q) < r/2 and
1/nk < r/2, which implies by the triangle inequality that
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N1/nk
(pnk

) ⊂ Nr(p) ⊂ U,

a contradiction. ⊓⊔

Theorem 4.9. If X is a metric space and E ⊂ X is sequentially compact
then E is covering compact.

Proof. Let U be an open covering of a sequentially compact E. By Lemma 4.1,
U has a Lebesgue number λ > 0. Choose any p1 ∈ E and some U1 ∈ U such
that Nλ(p1) ⊂ U1. If E ⊂ U1 then {U1} is a finite subcovering and the
theorem is proved. Otherwise, there exists p2 ∈ E \ U1. Let U2 ∈ U be such
that Nλ(p2) ⊂ U2. Now either E ⊂ U1 ∪ U2 in which case we are done, or
otherwise, we continue producing a sequence (pn) in E and a sequence (Un)
in U such that

Nλ(pn) ⊂ Un and pn+1 ∈ E \ (U1 ∪ · · · ∪ Un).

We will now show that such sequences must lead to contradiction. By sequen-
tial compactness there is a subsequence (pnk

) that converges to some p ∈ E.
For a large k, d(pnk

, p) < λ and so p ∈ Nλ(pnk
) ⊂ Unk

. All pnl
with l > k lie

outside Unk
, which contradicts their convergence to p. ⊓⊔

4.3 Continuity and compactness

Next we discuss how compact sets behave under continuous transformations.

Theorem 4.10. If f : X → Y is continuous and K is a compact subset of
X then f(K) is compact. That is, the continuous image of a compact set is
compact.

Proof. Suppose that (qn) is a sequence in f(K). For each n choose a point
pn ∈ K such that f(pn) = qn. By compactness of K there exists a sub-
sequence (pnk

) that converges to some point p ∈ K. By continuity of f it
follows that

qnk
= f(pnk

) → f(p) ∈ f(K)

as k → ∞. Thus, every sequence (qn) in f(K) has a subsequence converging
to a limit point in f(K), which shows that f(K) is compact. ⊓⊔

The following important result is an immediate corollary.

Theorem 4.11. Let f : X → R be a continuous function. If X is compact
then there exist points p, q ∈ X such that f(p) = infx∈X f(x) and f(q) =
supx∈X f(x). In other words, f attains its optima.
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Proof. By Theorem 4.10 f(X) is compact and so bounded and closed. By
Theorem 2.8 it contains its supremum and infimum. ⊓⊔

A function f : X → Y is a bijection if it is one-to-one and onto, that is,
(i) if f(x) = f(x′) then x = x′, and (ii) ∀y ∈ Y ∃x ∈ X such that f(x) = y.
If f : X → Y is a bijection then we define its inverse f−1 : Y → X as the
function satisfying f−1(f(x)) = x. For example if f : R → R is defined by
f(x) = 2x then f−1(x) = x/2.

Definition 4.2. If f : X → Y is a bijection and f is continuous and the in-
verse function f−1 : Y → X is also continuous then f is a homeomorphism.
We say that X and Y are homeomorphic.

Theorem 4.12. If X is compact and f : X → Y is a continuous bijection
then f is a homeomorphism.

Proof. We need to show that f−1 : Y → X is continuous. Suppose that
yn → y in Y and let xn = f−1(yn), x = f−1(y). We must now show that
xn → x. Suppose (xn) does not converge to x. Then

∃ > 0 ∀N ∈ N ∃n ≥ N d(xn, x) ≥ .

In particular, there is a subsequence (xnk
) contained in X that lies outside

of the neighborhood N(x). This and the fact that X is compact implies
that (xnk

) has a convergent subsequence xnkl
→ x′ ∕= x. By continuity of f ,

f(xnkl
) → f(x′). However, f(xnkl

) = ynkl
→ y = f(x) and so f(x) = f(x′)

and x = x′ because f is a bijection. This gives a contradiction. ⊓⊔

Compactness of X is essential in Theorem 4.12. Consider the following
example.

Example 4.1. Let C = {(x, y) ∈ R2 : x2 + y2 = 1}. The function f(t) =
(cos(t), sin(t)) is a continuous bijection from [0, 2π) to C. However, the inverse
is not continuous. Consider a sequence (pn) in C converging to p = (1, 0) from
below. Then f−1(pn) → 2π and f−1(p) = 0.

4.4 Cauchy sequences and completeness

A sequence (pn) in a metric space X is a Cauchy sequence if

∀ > 0 ∃N ∈ N such that ∀m,n ≥ N d(pm, pn) < .

If pn converges then it is Cauchy, which can be showed directly by the triangle
inequality. The opposite may not be true. For example, the sequence rn of
rational numbers
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1.4, 1.41, 1.414, 1.4142, 1.41421, 1.414213, . . .

given by finer and finer decimal expansion of
√
2 is Cauchy. Given  > 0

choose N > − log10 . If m,n ≥ N then |rm − rn| ≤ 10−N < . Nevertheless,
(rn) does not converge in Q.

Often in real analysis we want to show that a sequence converges but
without computing explicitly the limit. Showing that a sequence is Cauchy
may be easier, and so it is important to develop conditions under which a
Cauchy sequence converges.

Definition 4.3. A metric space is complete if every Cauchy sequence in X
converges.

Start with the following exercise.

Exercise 4.2. Show that every Cauchy sequence is bounded.

Theorem 4.13. Rk is complete.

Proof. If (pn) is Cauchy then it is bounded. By Theorem 4.4 (pn) has a
subsequence (pnk

) that converges some point p. We will show that pn → p.
Since (pn) is Cauchy there exists an N such that if n,m ≥ N then

d(pn, pm) < /2. Since pnk
→ p as k → ∞, there exists n∗ = nk for some k

such that d(p, pn∗) < /2. There are infinitely many such n∗ and so we can
safely assume that n∗ ≥ N . Now for every n ≥ N we have

d(p, pn)
△
≤ d(p, pn∗) + d(pn∗ , pn) ≤ 

2 + 
2 = ,

which completes the verification that (pn) converges.
⊓⊔

Exercise 4.3. Let a ∈ (0, 1) and consider the real sequence sn = 1 + a +
· · ·+ an =

n
k=0 a

k. Show that sn is Cauchy. Argue that sn → 1
1−a .

Exercise 4.4. Let C[0, 1] denote the space of all bounded real-valued func-
tions on [0, 1] ⊂ R. Prove that this space is a metric space with d(f, g) =
supx∈[0,1] |f(x)− g(x)|. Then prove that this space is complete.





Chapter 5

Basic linear algebra (2 lectures)

5.1 Vector space and its dimension

A subset V ⊂ Rk is a vector space if (i) 0k lies in V (ii) for any two x,y ∈ V
also x+ y ∈ V , (iii) if x ∈ V and λ ∈ R then λ · x lies in V . The real space
Rk is a trivial example of a vector space. Another example is given by the
plane x1 + x2 + x3 = 0 in R3. However, the affine plane x1 + x2 + x3 = 1 is
not a vector space because 03 does not satisfy the defining equation and so
property (i) fails to hold.

This extends extends to other familiar situations like vector spaces in the
space Rm×n of m×n matrices. The zero element is simply the matrix of zeros
and addition and scalar multiplication are defined in the usual way.

The vector spaces structure can be defined on more abstract spaces as
long as addition and scalar multiplication are properly defined together with
the zero element 0. An example of an abstract vector space is the set of
all bounded real-valued functions over [0, 1]. Here f + g is as in defined by
(f + g)(x) = f(x) + g(x); λ · f is defined by (λ · f)(x) = λf(x) and 0 is the
function, which is constant equal to zero.

Given vectors x1, . . . ,xn ∈ Rk and scalars λ1, . . . ,λn ∈ R, the vector

λ1x1 + λ2x2 + · · ·+ λnxn ∈ Rk

is called a linear combination of x1, . . . ,xn and the scalars λ1,λ2, . . . ,λn

are called the coefficients of this linear combination.

Definition 5.1. Let E ⊂ Rk be a nonempty subset, then the span of E,
denoted by span(E), is the set of all (finite) linear combinations of elements
of E. More precisely, x ∈ span(E) if there is a natural number n, points
x1, . . . ,xn ∈ E, and coefficients λ1, . . . ,λn such that

x = λ1x1 + λ2x2 + · · ·+ λnxn.

Exercise 5.1. Show that the span of E is always a vector space.

39
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Definition 5.2. A set of vectors E = {x1, . . . ,xn} in vector space V is lin-
early independent if

λ1x1 + λ2x2 + · · ·+ λnxn = 0k =⇒ λ1 = λ2 = · · · = λn = 0.

Note that E = {x1} is linearly independent if and only if x1 ∕= 0k. For two
elements, E = {x1,x2} is linearly independent if and only if there is no λ ∈ R
such that x2 = λx1.

Example 5.1. To check if (1, 1, 0), (1, 0, 1), (0, 1, 1) are linearly independent
we check that

λ1(1, 1, 0) + λ2(1, 0, 1) + λ3(0, 1, 1) = (λ1 + λ2,λ1 + λ3,λ2 + λ3),

which is equal to the zero vector only if

λ1 + λ2 = λ1 + λ3 = λ2 + λ3 = 0

and we easily check that this is possible only if λ1 = λ2 = λ3 = 0. Therefore
these three vectors are linearly independent.

We leave as an exercise to prove the following two facts.

Lemma 5.1. A set of vectors E = {x1, . . . ,xn} in some vector space V ⊂ Rk

is linearly independent if and only if no element in E can be written as a linear
combination of the others.

Lemma 5.2. Any nonempty subset of a linearly independent set is linearly
independent.

Definition 5.3. If a vector space V contains d linearly independent vectors
but no d+1 linearly independent vectors, then the dimension of V is d; we
write dim(V ) = d.

The fact that dim(V ) is well-defined follows from Lemma 5.2. Indeed, sup-
pose that there exists two different numbers d, d′ satisfying Definition 5.3 and
suppose d′ > d. Let E be a subset of V with d′ elements that is linearly inde-
pendent. By Lemma 5.2 each subset of E is linearly independent. It follows
that V has a subset of size d+1, which is linearly independent contradicting
the fact that d satisfies Definition 5.3.

Definition 5.4. A set E spans V if V = span(E). A basis of V is any
linearly independent set that spans V .

The fact that every vector space with finite dimension has a basis will be
proved later in Theorem 5.3. We first discuss importance of this concept.

Theorem 5.1. The set E = {x1, . . . ,xd} is a basis of V if and only if every
x ∈ V can be written uniquely as a linear combination of elements of E.
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Proof. Every x ∈ V can be written as a linear combination of elements of E
if and only if E spans V . This can be done uniquely if and only if E is linearly
independent. Indeed, if there is an element that has two representations with
coefficients λ1, . . . ,λd and λ′

1, . . . ,λ
′
d (not all equal) then

(λ1 − λ′
1)x1 + · · ·+ (λd − λ′

d)xd = 0k

which is possible if and only if E is linearly dependent. ⊓⊔

Theorem 5.1 says that that a fixed basis of V induces a bijection f : Rd →
V , (λ1, . . . ,λd) → λ1x1 + · · ·+ λdxd; we call f a parameterization of V .

Example 5.2. Let ei ∈ Rk be the vector with i-th coordinate equal to 1 and
all other coordinates equal to zero. Then e1, . . . , ek forms a basis of Rk called
the standard basis of Rk. If x = (x1, . . . , xk) then x = x1e1 + · · ·+ xkek.

Theorem 5.2. Let V be spanned by a set E = {x1, . . . ,xr}, then dim(V ) ≤ r.

Proof. Suppose E spans V and dim(V ) > r. If dim(V ) > r, then V con-
tains a linearly independent set F = {y1, . . . ,yr+1}. Since E spans V ,
y1 =

r
k=1 bkxk and at least one bi ∕= 0, and so xi is a linear combination of

y1, (xk)k ∕=i. Thus, this new set also spans V , so y2 = a1y1 +


k ∕=i bjxk for
some a1, (bk)k ∕=i. If all bk were zero then we would have y2 = a1y2, which is
impossible (linear independence). Thus at least one xk from the remaining
ones, say xj , is a linear combination of y1,y2 and all xk for k ∕= i, j, and so
these vectors span V . Continuing this procedure we see that y1, . . . ,yr span
V and so yr+1 can be written as their linear combination, which leads to
contradiction. ⊓⊔

Corollary 5.1. The dimension of Rk is k.

Proof. Since e1, . . . , ek spans Rk, Theorem 5.2 implies that dim(Rk) ≤ k.
But e1, . . . , ek are linearly independent and so dim(Rk) ≥ k. ⊓⊔

Theorem 5.3. Suppose that dim(V ) = k, then

(a) {x1, . . . ,xk} ⊂ V spans V if and only if it is linearly independent.
(b) V has a basis and every basis has k vectors.
(c) If r ≤ k and {y1, . . . ,yr} is an independent set then V has a basis con-

taining y1, . . . ,yr.

Proof. (a) We first show the left implication. If {x1, . . . ,xk} is independent
then for every other vector y ∈ V the set {y,x1, . . . ,xk} is linearly dependent,
there exist coefficients λ0,λ1, . . . ,λk, not all zero, such that

λ0y + λ1x1 + · · ·+ λkxk = 0.

We cannot have λ0 = 0 because xi are linearly independent. Dividing by
λ0 we show that y is a linear combination of x1, . . . ,xk. This proves that
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V ⊂ span{x1, . . . ,xk}. To show the right implication we prove the contrapos-
itive statement. If {x1, . . . ,xk} is dependent then one vector can be removed
without changing the span, so, by Theorem 5.2 the dimension of the span of
{x1, . . . ,xk} is less or equal to k − 1, so {x1, . . . ,xk} it cannot span V .

(b) Since dim(V ) = k, there exist k independent vectors. By (a) they
span V so they form a basis. For any basis, by Theorem 5.2, the number of
vectors is greater or equal to k (spans so ≥ k elements). By the definition
of dimension, there is no independent set of size strictly greater than k so
the number of vectors in a basis is less or equal to k (independent so ≤ k
elements). This implies the equality.

(c) Let {x1, . . . ,xk} be a basis. Then {x1, . . . ,xk,y1, . . . ,yr} spans V .
The same way as in the proof of Theorem 5.2 one of the xi’s is a linear
combination of the rest and can be dropped. This procedure can be repeated
r times. ⊓⊔

Exercise 5.2. Show that V = {(x, y, z) ∈ R3 : x+y+z = 0} forms a vector
space. Find a basis of V . Express the vector (23,−10,−13) in this basis.

If V ⊂ Rk then we define the scalar product on V exactly in the same way
as in Section 1.3. In some situations it will be useful to consider a generali-
sation of this concept.

Definition 5.5. An inner product of a vector space is a map 〈·, ·〉 : V×V →
R that satisfies the following three conditions for all x,y, z ∈ V

1. 〈x,y〉 = 〈y,x〉 (symmetry)
2. 〈αx+ βy, z〉 = α〈x, z〉+ β〈y, z〉 (linearity in the first argument)
3. 〈x,x〉 ≥ 0 and is zero only if x = 0. (positive definiteness)

Exercise 5.3. Formulate and proof a version of the Cauchy-Schwarz inequal-
ity (Theorem 1.7) that holds for any inner product.

Exercise 5.4. Suppose that S is an k×k positive definite matrix. Show that
〈x,y〉 := xTSy defines an inner product on Rk.

Exercise 5.5. In the space Rm×n of m × n matrices define 〈A,B〉 :=
trace(ABT ). Show that it forms an inner product.

5.2 Linear transformations and matrices

A map T : Rn → Rm is called a linear transformation if

(i) T (0n) = 0m,

(ii) T (x+ y) = T (x) + T (y) for all x,y ∈ Rn, and

(iii) T (λx) = λT (x) for all x ∈ Rn and λ ∈ R.
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The set L(Rn,Rm) of linear transformations T : Rn → Rm forms a vector
space. As for any functions, U = T + S is defined by U(x) = T (x) + S(x),
and λT being defined by (λT )(x) = λT (x). It is an elementary exercise to
check that (i) T + S is a linear transformation if T and S are, and (ii) λT is
a linear transformation for every λ ∈ R if T is.

The vector space L(Rn,Rm) is abstract in the sense that it is not imme-
diately clear what is its dimension, or the basis. On the other hand, there is
another very concrete vector space, which we will show, is essentially equal to
L(Rn,Rm). This is the space Rm×n of all m× n matrices. Two matrices are
added by adding the corresponding entries, A+B = C where cij = aij + bij .
Similarly, if λ ∈ R is a scalar, λA is a matrix with the entries λaij . The
vector space Rm×n has dimension mn, and its canonical basis is given by the
elementary matrices Eij . Moreover, this space admits a natural inner product

〈A,B〉 = trace(ABT ) =

m

i=1

n

j=1

aijbij ,

which gives the metric space structure.
The theory of differentiation is build around the concept of the linear

transformation. The aim of this and the next section is to show that, on many
different levels, linear operations and matrices are really the same objects.
This important observation gives us many powerful techniques and insight
that come from the matrix algebra.

As a rule of thumb, think with linear transformations and compute
with matrices.

Definition 5.6. Two vector spaces V and W are isomorphic if there is a
bijection f : V → W which is linear. Such a map is called a linear isomor-
phism.

Exercise 5.6. Show that if f : V → W is an isomorphism then the inverse
map f−1 is linear.

Having an isomorphism between two vector spaces is particularly useful if
one of the spaces is more concrete and natural to work with. Our example of
linear transformations is one instance of that phenomenon but other examples
come into mind.

Exercise 5.7. Let V be the set of all quadratic polynomials, that is, expres-
sions of the form ax2+bx+c for a, b, c ∈ R. Show that this set forms a vector
space. Further, show it is isomorphic to R3.

An isomorphism preserves the vector structure. This can be used in a
number of ways if one of the spaces is easier to work with. Suppose that in
V we have a natural candidate for a vector basis and a natural notion of the
inner product (and so also of a distance). This can then be translated to W
in a direct way as explained in the exercises below.
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Exercise 5.8. Suppose that f : V → W is an isomorphism. Show that
{x1, . . . ,xk} is a basis of V if and only if {f(x1), . . . , f(xk)} is a basis of
W . Moreover, every k-dimensional vector space is isomorphic to Rk.

Exercise 5.9. Suppose that f : V → W is an isomorphism. Given an in-
ner product 〈·, ·〉 on V define an inner product on W through 〈x,y〉 :=
〈f−1(x), f−1(y)〉. Show that it satisfies the conditions of Definition 5.5.

The space Rm×n and L(Rn,Rm) are linearly isomorphic. The bijection f
takes an m× n matrix A = [aij ] and associates to it a linear transformation
TA : Rn → Rm given by

TA(x) = Ax, (5.1)

where x = (x1, . . . , xn). The inverse of f is a linear map that takes a linear
transformation T ∈ L(Rn,Rm) and associates to it a matrix [T ] ∈ Rm×n

whose columns are vectors a1, . . . ,an ∈ Rm given by ai = T (ei), where
e1, . . . , en is the standard basis of Rn. To shows that f is a linear isomorphism
you may find the following basic observation useful.

Remark 5.1 (Fundamental observation of matrix algebra). If A ∈ Rm×n and
x ∈ Rn then Ax ∈ Rm is a linear combination of the columns a1, . . . ,an of
A with coefficients given by the entries of x = (x1, . . . , xn). In other words,
Ax = x1a1 + · · ·+ xnan.

We could not stress more the importance of Remark 5.1. We will see many
of its applications.

Exercise 5.10. Show that every T ∈ L(Rn,Rm) is continuous. Conclude
that the map f(x) = Ax is continuous.

Exercise 5.11. Show that f : Rm×n → L(Rn,Rm) is a linear isomorphism.

The link between Rm×n and L(Rn,Rm) goes further.

Proposition 5.1. The composition T ◦ S of two linear transformations S :
Rn → Rm and T : Rm → Rl is represented by the matrix obtained by matrix
multiplication of [S] and [T ], that is

[T ◦ S] = [T ] · [S].

Proof. We will show that the j-th column of [T ◦S] is equal to the j-th column
of [T ] · [S]. Denote by sj = S(ej) the j-th column of [S] and by ti = T (ei)
the i-th column of [T ]. We have

(T ◦ S)(ej) = T (S(ej)) = T (sj) = T (

n

i=1

sijei) =

=

n

i=1

sijT (ei) =

n

i=1

sijti = [T ]sj = [T ] · [S]ej .

⊓⊔
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Definition 5.7. For a matrix Rm×n its kernel is

ker(A) = {x : Ax = 0m} ⊂ Rn.

Similarly we define the image Im(A) of A as

Im(A) = {Ax : x ∈ Rn} ⊂ Rm.

It is easy to see that the kernel and the image of A are vector spaces. By
Remark 5.1, Im(A) is spanned by the columns of A.

Definition 5.8. A matrix A ∈ Rn×n is invertible if there exists a matrix
B ∈ Rn×n such that AB = In. Then B is denoted by A−1.

The following result shows that the inverse is well defined.

Proposition 5.2. The matrix B in the definition of the inverse, if exists, is
unique.

Proof. Let b1, . . . ,bn be the columns of B. The matrix equation AB = In is
equivalent to Ab1 = e1, . . . , Abn = en. Using Remark 5.1 we see that each
canonical unit vector is expressed as a linear combination of the columns of
A with coefficients give by entries of the matrix B. This implies that the
columns of A span Rn and so they form a basis of Rn by Theorem 5.3(a).
But then the vectors b1, . . . ,bn are uniquely defined by Theorem 5.1. ⊓⊔

Exercise 5.12. A ∈ Rn×n is invertible if and only if

ker(A) = {0n}. (5.2)

Exercise 5.13. Show that if A ∈ Rn×n is invertible if and only if its columns
are linearly independent. Show that then also A−1A = In (Hint: Show that
AB = In implies that ker(A) = {0n}).

Proposition 5.3. A linear transformation T ∈ L(Rn,Rn) is invertible if and
only if [T ] is an invertible matrix. The matrix of T−1 is the inverse of [T ].

We leave the proof as an exercise.
In statistics and econometrics we often work in the space of matrices. The

following exercises show that these vector spaces are isomorphic to Rk for
some k.

Exercise 5.14. Show that the set of m× n matrices is isomorphic to Rmn.

Exercise 5.15. Show that the set of symmetric n×n matrices forms a vector
space and that is isomorphic to Rk for k =


n+1
2


.
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The main motivation to work with linear transformations rather than the
representing matrices is that the notation is simpler. In more abstract situa-
tions, including the ones covered in the above exercises, working with linear
transformations gives as freedom of not choosing the underlying canonical
basis. For example, fixing A ∈ Rn×n, the map T (X) = AX +XA is a sim-
ple linear map from Rn×n to Rn×n. We could represent it as an element
of L(Rn2

,Rn2

) but writing the associated n2 × n2 matrix complicates the
situation.

5.3 Orthogonal complements and projections

We say that two vectors x,y in Rk are orthogonal if the scaler product 〈x,y〉
is equal to zero. A set {x1, . . . ,xr} in Rk is orthogonal if all its elements are
mutually orthogonal.

Definition 5.9. If V ⊂ Rk is a vector space, then the orthogonal comple-
ment of V is

V ⊥ := {x ∈ Rk : 〈x,v〉 = 0 for all v ∈ V }.

It is easy to see that V ⊥ forms a vector space. It can be more efficiently
described if a basis for V is given.

Exercise 5.16. Suppose that v1, . . . ,vr spans V . Show that

V ⊥ := {x ∈ Rk : 〈x,vi〉 = 0 for all i = 1, . . . , r}.

Let V be the matrix whose columns are v1, . . . ,vr. Conclude that V ⊥ =
{x ∈ Rk : VTx = 0}.

Exercise 5.17. Suppose that V = {x ∈ R3 : x1+x2+x3 = 0}. What is V ⊥?

Example 5.3. Recall the definition of the image and the kernel of a matrix
in Definition 5.7. The condition Ax = 0m means that x is orthogonal to the
space spanned by the rows of A, or equivalently, by the columns of AT , which
gives the following fundamental equivalence

ker(A) = Im(AT )⊥. (5.3)

Suppose that given a vector y ∈ R2 we want to find the closest point
to y on a line L = span{x}. It turns out that this optimal point ŷ is the
orthogonal projection of y onto L, that is, the unique vector in L such that
y− ŷ ∈ L⊥; see Figure 5.1. We can find ŷ using elementary techniques. Since
it lies in L it is of the form ŷ = λx for some λ ∈ R and the condition on
y − ŷ gives

〈y − ŷ,x〉 = 〈y,x〉 − λ〈x,x〉 = 0,
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Fig. 5.1 Orthogonal projection in R2 on a one-dimensional vector space V .

which implies that

ŷ = 〈y,x〉
〈x,x〉x.

Exercise 5.18. Show that ŷ is the unique minimizer of y − u over all
u ∈ L by minimizing the function f(λ) = y − λx2.

Theorem 5.4 (The orthogonal decomposition theorem). Let V be a
subspace of Rk. Then each y ∈ Rk can be written uniquely in the form

y = ŷ + z,

where ŷ ∈ V and z ∈ V ⊥.

The vector ŷ is called the orthogonal projection of y onto V and it is often
denoted by projV (y).

Proof. Fix any basis v1, . . . ,vr of V and let V ∈ Rk×r be the matrix with
these vectors as columns. The condition ŷ ∈ V translates to ŷ = Vλ for some
λ ∈ Rr; c.f. Remark 5.1. The condition y − ŷ ∈ V ⊥ translates to VT (y −
ŷ) = 0. These two conditions together uniquely identify λ = (VTV)−1VTy.
(rings a bell?) The fact that VTV is invertible can be argued as follows: By
Exercise 5.12 it is enough to show that ker(VTV) = {0}. If VTVx = 0 then
also xTVTVx = 0 or equivalently Vx = 0. This is possible only if Vx = 0.
Since the columns of V are linearly independent we conclude that x = 0. ⊓⊔

Remark 5.2. The uniqueness of the orthogonal decomposition in Theorem 5.4
shows that this decomposition depends only on V and not on a particular
basis chosen.
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The following will be used in the proof of Theorem 9.4.

Lemma 5.3. For two vector spaces U, V ⊂ Rk we have U ⊂ V if and only if
V ⊥ ⊂ U⊥.

Proof. For the forward direction, let x ∈ V ⊥, then 〈x,v〉 = 0 for all v ∈ V .
Since U ⊂ V , also 〈x,u〉 = 0 for all u ∈ U and so x ∈ U⊥. To prove the
opposite direction, first note that the forward direction implies that

V ⊥ ⊂ U⊥ =⇒ (U⊥)⊥ ⊂ (V ⊥)⊥.

Hence, to finish the proof, it is enough to show that for everyW ⊂ Rk we have
(W⊥)⊥ = W . This equality will follow by two claims (i) W ⊂ (W⊥)⊥, and
(ii) dimW = dim(W⊥)⊥. The first claim follows directly by the definition.
For the second statement, let x1, . . . ,xr be a basis of W , dimW = r. By
Theorem 5.4 each y ∈ Rk can be uniquely written as ŷ + z where ŷ ∈ W
and z ∈ W⊥. Moreover, ŷ can be uniquely written as a linear combination
of x1, . . . ,xr and z can be uniquely written as a linear combination of the
basis of W⊥. By Theorem 5.1 the basis of W complemented with the basis
of W⊥ forms the basis of Rk. In particular, dimW⊥ = k− r. Using a similar
argument for W⊥ and (W⊥)⊥ we conclude that dim(W⊥)⊥ = k−(k−r) = r.

⊓⊔

5.4 Matrix norms

There are several norms that we can define on Rm×n to give it a metric space
structure. A trivial choice is the one coming from the identification with Rmn

(c.f. Exercise 5.14), where each m×n matrix can be transformed to a vector
in Rm×n by the operation called vectorization, where vec(A) is a long vector
obtained from the columns of A stacked one below another. This gives the
Frobenius norm

AF :=


m

i=1

n

j=1

a2ij .

This norm is simply the Euclidean norm of vec(A) in Rmn. The canonical
choice in this course is the norm induced from vector norms on Rm and Rn

A := sup
x ∕=0n

Ax
x = sup

x=1

Ax.

This norm is called the operator norm. The fact that A is indeed a norm,
will follow from the next theorem.

Exercise 5.19. Use Exercise 5.10 to conclude that supx=1 in the definition
can be replaced with maxx=1.
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As we will see, there are many interesting properties that link the operator
norm with the vector norm inducing it. Observe, for example, that for any
x ∈ Rn we have

Ax ≤ A x. (5.4)

Indeed, this clearly holds if x = 0n. If x ∕= 0n we use the definition of A
to conclude that

Ax
x ≤ A,

which immediately implies (5.4). This important inequality will be repeatedly
used in the proof of the following theorem and throughout.

Theorem 5.5. The following statements hold:

(a) If A ∈ Rm×n then A < ∞.
(b) A+B ≤ A+ B and cA = |c| A for all c ∈ R.
(c) If A ∈ Rm×n and B ∈ Rk×m then B ·A ≤ B · A.

Proof of Theorem 5.5. (a) Follows from Exercise 5.19.

(b) We have (A+B)x = Ax+Bx
△
≤ Ax+Bx ≤ (A+B)x

and so A+B ≤ A+ B by dividing by x on both sides. The second
part follows directly from the definition.

(c) This follows from BAx ≤ B · Ax ≤ B · A · x and by
dividing by x on both sides. ⊓⊔

At this point  · denotes two different norms. If x ∈ Rk then x denotes
the Euclidean norm in Rk. If A ∈ Rm×n, then A denotes the operator
norm of the matrix A, equivalently we have norms on the set of linear trans-
formations. However, if A consists of a single row or a single column we also
think about it as a vector. The following result shows that this leads to no
ambiguity.

Proposition 5.4. Let y ∈ Rk. Then the Euclidean norm of y is equal to its
operator norm when taken as a matrix in Rk×1 or in R1×k.

Proof. Let y ∈ R1×k. By definition, the operator norm of y is supx=1〈y,x〉.
By the Cauchy-Schwarz inequality 〈y,x〉 ≤ x y with equality only x =
1

yy. So the supremum is 1
yy

2 = y. Now if y ∈ Rk×1 then the operator

norm norm is sup|x|=1 yx = sup|x|=1 |x|y = y. ⊓⊔

Note that Theorem 5.5(a) and (b) imply that Rm×n forms a metric space
with the distance function

d(A,B) = A−B. (5.5)

As we noted earlier, the Frobenius norm defines another natural metric

dE(A,B) =


i,j(Aij −Bij)2. In some applications it may be easier to
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work with this metric, or any of the equivalent metrics defined in Section 2.3.
A natural question is whether d is equivalent to dE .

Exercise 5.20. Show that for any A ∈ Rm×n it holds that

A ≤ AF ≤ max{m,n}A.

Conclude that dE and d are equivalent.

We conclude this section with an example of how metric structure for
matrices can be exploited. We will show that the set of symmetric positive
definite matrices is open in the space of all symmetric matrices.

Example 5.4. Recall that a symmetric n × n matrix is positive definite if
xTAx > 0 for all x ∕= 0n. Equivalently, x

TAx > 0 for all x such that x = 1.
Since xTAx attains its minimum over the unit sphere (compact), we conclude
that xTAx > δ for some δ > 0 (if you know eigenvalues, you can make all
this more concrete). Let B be a symmetric matrix such that B − A < δ

2 .
By the Cauchy-Schwarz inequality, for any x such that x = 1 we get

|xT (B −A)x| ≤ (B −A)x ≤ B −A < δ
2 .

Then for every x such that x = 1 we have

xTBx = xT (B −A)x+ xTAx > δ
2 .

This shows that B is also positive definite and so A is an interior point of
positive definite matrices.



Chapter 6

Differentiation in one dimension (1
lecture)

Recall the following definitions.

Definition 6.1. The function f : U → R defined on an open set U ⊂ R is
differentiable at a ∈ U with derivative f ′(a) if the limit

f ′(a) = lim
h→0

f(a+h)−f(a)
h exists.

We say that f is differentiable if it is differentiable at every point. The

expression f(a+h)−f(a)
h is called a difference quotient.

Fig. 6.1 Derivative as the slope of the tangent line.

Figure 6.1 gives a geometric intuition behind this definition. For each h ∕=
0, the corresponding difference quotient gives the slope of the secant line
crossing two points (a, f(a)) and (a+ h, f(a+ h)) on the graph of f . Hence,
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if f is differentiable, f ′(a) is the limit of all these slopes as h → 0. The limit
of the secant lines the tangent line coloured in red.

The first basic result assures that differentiability is a stronger condition
than continuity.

Theorem 6.1. Differentiability implies continuity.

Proof. Continuity is equivalent to limh→0 f(a+h) = f(a). This equality must
hold if f ′(a) exists. ⊓⊔

It is easy to come up with examples of continuous functions that are not
differentiable.

Exercise 6.1. Show that f(x) = |x| is differentiable for all x ∕= 0 but is not
differentiable at the origin. Argue the same for

f(x) =


x sin( 1x ) x ∕= 0

0 x = 0
.

In Figure 6.1 we write ∆f
∆x to the denote the difference quotient (for a fixed

h). Then f ′(a) = lim∆x→0
∆f
∆x . This notation will be convenient in the rest

of this section. We now collect some of the known results from calculus.

Theorem 6.2 (The rules of differentiation).

(a) If f and g are differentiable at a then so is f + g with the derivative

(f + g)′(a) = f ′(a) + g′(a).

(b) If f and g are differentiable at a then so is f · g with derivative

(f · g)′(a) = f ′(a)g(a) + f(a)g′(a).

(c) The derivative of a constant function is zero.
(d) If f and g are differentiable at a, and g(a) ∕= 0, then so is f/g with

derivative
(f/g)′(a) = f ′(a)g(a)−f(a)g′(a)

g2(a) .

(e) If f is differentiable at a and g is differentiable at f(a), then so is g ◦ f
with derivative

(g ◦ f)′(a) = g′(f(a))f ′(a).

The formula in (b) is called the Leibniz rule and the formula in (e) is called
the chain rule.

Proof. (a) The difference quotient for (f + g)(x) is

∆(f+g)
∆x = ∆f

∆x + ∆g
∆x
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and the limit of the right-hand side is f ′(a) + g′(a) by Proposition 3.3 and
because g is continuous at a.

(b) The difference quotient for (f · g)(x) is

∆(fg)
∆x = ∆f

∆xg(a+ h) + f(a)∆g
∆x

and the limit of the right-hand side is f ′(a)g(a)+f(a)g′(a) by Proposition 3.3.

(c) The difference quotient is zero for all h.

(d) The difference quotient for (f/g)(x) is

∆(f/g)
∆x =

∆f
∆x g(a)−f(a)

∆g
∆x

g(a+h)g(a)

and the limit of the right-hand side is f ′(a)g(a)−f(a)g′(a)
g2(a) by Proposition 3.3.

(e) By definition of f ′(a)

f(a+h)−f(a)
h = f ′(a) + u(h),

where u(h) → 0 as h → 0. Similarly

g(f(a)+s)−g(f(a))
s = g′(f(a)) + v(s),

where v(s) → 0 as s → 0. Take s = f(a+ h)− f(a). Then

g(f(a+h))−g(f(a))
h = (g′(f(a)) + v(s)) f(a+h)−f(a)

h .

As h → 0 also s → 0 (by continuity of f) and the limit of the right-hand side
is g′(f(a))f ′(a). ⊓⊔

Recall that θ ∈ (a, b) is a local minimum (maximum) of f : (a, b) → R
if there exists a neighborhood Nr(θ) such that f(x) ≥ f(θ) (f(x) ≥ f(θ))
for all x ∈ Nr(θ). The following simple lemma will be used in the proof of
Theorem 6.4. It gives a necessary condition for f to have a local optimum at
x = θ.

Lemma 6.1. If f : (a, b) → R is differentiable and achieves a local minimum
or maximum at some θ ∈ (a, b) then f ′(θ) = 0.

Proof. Suppose that θ is a local minimum of f and so, for some r > 0,
f(x) ≥ f(θ) for all x ∈ Nr(θ). The difference quotient (f(θ + h) − f(θ))/h
is positive for h ∈ (0, r) and negative for h ∈ (−r, 0). Hence the derivative
f ′(θ) is the limit of both negative and positive sequences and so it has to be
zero. ⊓⊔

Theorem 6.3 (Ratio Mean Value Theorem). Suppose that f, g are con-
tinuous on [a, b] and differentiable on (a, b). Then there is θ ∈ (a, b) such
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that
(f(b)− f(a))g′(θ) = (g(b)− g(a))f ′(θ).

Proof. Put h(x) = (f(b)−f(a))g(x)−(g(b)−g(a))f(x). Then h is continuous
on [a, b], differentiable on (a, b), and h(a) = h(b) = f(b)g(a) − f(a)g(b).
Since [a, b] is compact, Theorem 4.11 implies that h takes on maximum and
minimum values, and since it has the same value at both endpoints, h has
a maximum or a minimum that occurs at an interior point θ ∈ (a, b). By
Lemma 6.1, we have h′(θ) = 0 or equivalently (f(b)− f(a))g′(θ) = (g(b)−
g(a))f ′(θ). ⊓⊔

The following theorem is fundamental for many subsequent results.

Theorem 6.4 (Mean value theorem). A continuous function f : [a, b] →
R that is differentiable on (a, b) has the mean value property: There exists
a point θ ∈ (a, b) such that

f(b)− f(a) = f ′(θ)(b− a).

Proof. Take g(x) = x in Theorem 6.3. ⊓⊔

Corollary 6.1. If f is differentiable and |f ′(x)| ≤ M for all x ∈ (a, b) then
f satisfies the Lipschitz condition: for all t, x ∈ (a, b) we have

|f(t)− f(x)| ≤ M |t− x|.

In particular, if f ′(x) = 0 for all x ∈ (a, b) then f(x) is constant.

Proof. |f(t)− f(x)| = |f ′(θ)(t− x)| for some θ between x and t. ⊓⊔

Exercise 6.2. Let f be differentiable on (a, b). Show that f ′(x) ≥ 0 for all
x ∈ (a, b) implies that f is monotonically increasing in this interval.

Theorem 6.5 (L’Hôpital’s Rule). If f, g are differentiable on (a, b), with
−∞ ≤ a < b ≤ +∞, and limx→b f(x) = limx→b g(x) = 0 then

lim
x→b

f ′(x)
g′(x) = L =⇒ lim

x→b

f(x)
g(x) = L.

(We assume g(x), g′(x) ∕= 0 on x ∈ (a, b).)

We only sketch the proof of this result. Before that we provide a baby
version of Theorem 6.5, whose simple proof is left as an exercise.

Theorem 6.6 (Baby L’Hôpital’s Rule). If f, g are differentiable on a,
f(a) = g(a) = 0, and g′(a) ∕= 0 then

f ′(a)
g′(a) = L =⇒ lim

x→a

f(x)
g(x) = L.
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Sketch of the proof of Theorem 6.5. Let the sequence xn ∈ (a, b) tend to b.
Imagine a sequence tn ∈ (a, b) tending to b much faster than (xn) does. Then
f(tn)/f(xn) and g(tn)/g(xn) are as small as we wish (because limx→b f(x) =
limx→b g(x) = 0), and by Theorem 6.3 there is θn ∈ (xn, tn) such that

f(xn)
g(xn)

= f(xn)−0
g(xn)−0 ≈ f(xn)−f(tn)

g(xn)−g(tn)
= f ′(θn)

g′(θn)
.

The latter tends to L because θn is sandwiched between xn and tn as they
tend to b. A rigorous proof relies on a careful construction of the sequence
(tn). ⊓⊔

The derivative of f ′(x), if exists, is the second derivative of f(x),

f ′′(a) := (f ′)′(a) = lim
h→0

f ′(a+h)−f ′(a)
h .

Higher derivatives are defined inductively and written f (r) = (f (r−1))′. If
f (r)(a) exists then f is r-th order differentiable at a. If f (r) exists for
each a then f is r-th order differentiable. If f (r)(a) exists for all r and all
a then f is smooth.

The r-th order Taylor polynomial of an r-th order differentiable func-
tion f at x = a is

P (h) = f(a) + f ′(a)h+ f ′′(a)
2! h2 + · · ·+ f(r)(a)

r! hr =

r

k=0

f(k)(a)
k! hk.

Exercise 6.3. Show that the r-th order Taylor polynomial of f at x = a
satisfies P (k)(0) = f (k)(a) for all k = 0, 1, . . . , r.

Theorem 6.7 (Taylor Approximation Theorem). Assume that f is a
real valued function defined in a neighbourhood of x = a and r-th order
differentiable at a. Then

(a) P approximates f to order r at x = a in the sense that the Taylor remain-
der

R(h) = f(a+ h)− P (h)

is r-th order flat at h = 0, that is, R(h)/hr → 0 as h → 0.
(b) The Taylor polynomial is the only polynomial of degree ≤ r with this ap-

proximation property.
(c) If, in addition, f is (r + 1)-th order differentiable in a neighbourhood of

x = a then for some θ between a and a+ h we have

R(h) = f(r+1)(θ)
(r+1)! hr+1.

Proof. (a) The first r derivatives of R(h) exist and are equal to 0 at h = 0 by
Exercise 6.3. If h > 0 then repeated applications of the Mean Value Theorem
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give

R(h) = R(h)− 0 = R′(θ1)h = (R′(θ1)− 0)h = R′′(θ2)θ1h =

= · · · = R(r−1)(θr−1)θr−2 · · · θ1h

where 0 < θr−1 < · · · < θ1 < h. Thus

R(h)
hr

 =
R

(r−1)(θr−1)θr−2···θ1h
hr

 ≤
R

(r−1)(θr−1)−0
θr−1

 → R(r)(0) = 0

as h → 0. If h < 0 the same is true with h < θ1 < · · · < θr−1 < 0.

(b) If Q(h) is a polynomial of degree ≤ r, Q ∕= P , then Q − P is not r-th
order flat at h = 0, so f(a+ h)−Q(h) cannot be r-th order flat either.

(c) Fix h > 0 and define

g(t) = f(a+ t)− P (t)− R(h)
hr+1 t

r+1 = R(t)−R(h) tr+1

hr+1

for 0 ≤ t ≤ h. Based on previous calculations we easily verify that g(0) =
g′(0) = · · · = g(r)(0) = 0. Directly by construction we also have g(h) =
R(h) − R(h) = 0. Since g(0) = g(h) = 0, the Mean Value Theorem gives a
t1 ∈ (0, h) such that g′(t1) = 0. Since g′(0) = g′(t1) = 0, the Mean Value
Theorem gives a t2 ∈ (0, t1) such that g′′(t2) = 0. Continuing, we get a
sequence t1 > t2 > · · · > tr+1 > 0 such that g(k)(tk) = 0 for k = 1, . . . , r + 1
and, in particular, g(r+1)(tr+1) = 0. On the other hand, since P (t) is a
polynomial of degree r, P (r+1)(t) = 0 for all t, and so

g(r+1)(t) = f (r+1)(a+ t)− (r + 1)!R(h)
hr+1 .

Taking t = tr+1 gives that

R(h) = f(r+1)(a+tr+1)
(r+1)! hr+1

and thus, θ = a+ tr+1 makes the equation in (c) true. If h < 0 the argument
is symmetric. ⊓⊔



Chapter 7

Differentiation (3 lectures)

7.1 Restricting function to a line

Let f : Rn → R be a function of several variables x = (x1, . . . , xk). Given
a ∈ Rn and a direction vector u ∈ Rn define a line

L = {x ∈ Rn : x = a+ tu for t ∈ R}.

A restriction of f : Rn → R to the line is L is the function g of a single variable
t defined as g(t) = f(a + tu). In particular, g(0) = f(a) and g(t) represents
the value of f at points in L. Figure 7.1 shows restriction of f(x, y) = x2−y2

to three lines through the origin: x = y, x = 0 and y = 0. In the first case, the
restriction is g(t) = f(t, t) = 0. In the second case, it is g(t) = f(0, t) = −t2.
In the third case, g(t) = f(t, 0) = t2.

Fig. 7.1 Restriction of f(x, y) = x2 − y2 to three lines through the origin: x = y,
x = 0, and y = 0.
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To understand the local behaviour of a in a neighborhood of x = a we
can study the local behaviour of all line restrictions in the neighborhood of
t = 0. This motivates the following definition.

Definition 7.1 (Directional derivative). Let U ⊂ Rn be an open set and
a ∈ U . If u is a vector in Rn, then the directional derivative of f : U → Rm

at a in the direction u is

Duf(a) = lim
t→0

f(a+ tu)− f(a)

t
.

Example 7.1. Let f(x, y, z) = ex
2+y2

+sin(z), a = 03, and u = (2, 2, 1). Then

g(t) = f(03 + tu) = f(t(2, 2, 1)) = e8t
2

+ sin(t)

and
g′(t) = 16te8t

2

+ cos(t)

which implied Duf(03) = g′(0) = 1.

Exercise 7.1. Prove that D−uf(a) = −Duf(a).

Recall that in the one-dimensional case the derivative of f ′(a) gives the
instantaneous rate of change of f at a, or in other words it is the limit of ∆f

∆x
as ∆x → 0; c.f. Figure 6.1. In other words, if h > 0 is small then

f(a+h)−f(a)
(a+h)−a → f ′(a).

In the case of a function f : Rn → R we can think of the the instantaneous
rate of change of f at a when we move in the direction u as the limit with
t > 0

f(a+tu)−f(a)
(a+tu)−a = f(a+tu)−f(a)

tu → 1
uDuf(a).

Because of the dependence on the norm of u it is customary to define the
directional derivative for u ∈ Rn such that u = 1. In that case the direc-
tional derivatives represent precisely the instantaneous rate of change of f at
a when we move in the direction u.

Example 7.2. For the function in Example 7.1, the rate of change at a = 03

in the direction u = (2, 2, 1) is 1
uDuf(a) =

1
3 .

Exercise 7.2. Consider the function in Figure 7.1. Directly from the picture
we see that the rate of change of f at a = (0, 0) in any of the three directions
(1, 1), (0, 1), and (1, 0) is zero. Show that the same is true for any direction
u.

Definition 7.2 (Partial derivative). Suppose that U ⊂ Rn is open. The
i-th partial derivative of f : U → R at a point a ∈ U , if it exists, is
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Dif(a) := Dei f(a),

where ei is the i-th canonical vector in Rn. Extension to higher order deriva-
tives follows by recursion and we write

Di1···ir := Di1 · · ·Dir .

The vector of partial derivatives is called the gradient of f and denoted
by ∇f(x), that is,

∇f = (D1f, . . . ,Dnf) ∈ Rn.

The matrix of all second order partial derivatives is called the Hessian and
it is denoted by ∇∇T f(x)

(∇∇T f(x))ij = Dijf.

As we will see in Theorem 9.2, the Hessian is a symmetric matrix under
relatively mild conditions on f .

We finish this section defining the Jacobian, which is a generalization of
the gradient to vector-valued maps.

Definition 7.3. The Jacobian matrix of a function f : Rn → Rm is the
m× n matrix composed of the n partial derivatives of f evaluated at a

Jf(a) =




D1f1(a) · · · Dnf1(a)

...
...

D1fm(a) · · · Dnfm(a)



 .

Note that the rows are the gradient vectors of f1, . . . , fm.

7.2 Differentiation as a linear operation

The starting point of this section is reformulation of the derivative of a func-
tion of one variable. If U is an open interval in R, a ∈ U , and f : U → R.
Then Definition 6.1 can be reformulated as

f(a+ h) = f(a) + f ′(a) · h+ r(h),

where the remainder r(h) is small in the sense that

lim
h→0

r(h)
h = 0,

which we also can write as r(h) = o(h), and we say that r(h) is sublinear.
This shows that that f ′(a)h is the best linear approximation to f(a+h)−f(a)
at x = a. We now easily generalize this to the vector case.



60 7 Differentiation (3 lectures)

Definition 7.4. Suppose U is open in Rn, f : U → Rm. The function f is
differentiable at a ∈ U with derivative Df(a) = T if T : Rn → Rm is a linear
function and

f(a+ h) = f(a) + T (h) + r(h),

where the remainder r(h) satisfies

lim
h→0n

r(h)
h = 0m.

If f is differentiable at every a ∈ U , we say that f is differentiable in U .

Note that if h is small enough, then a + h lies in U and so f(a + h) is
well-defined.

Proposition 3.1 implies that the function x → x is continuous. The
following exercise will be used throughout this chapter.

Exercise 7.3. Let f : Rn → Rm. Show that limx→c f(x) = 0 if and only
if limx→c f(x) = 0. Conclude that the condition on r in Definition 7.4 is
equivalent to

lim
h→0n

r(h)
h = 0.

Proposition 7.1. If f is differentiable at a then f is continuous at a.

Proof. Denote T = Df(a). Note that x → a is equivalent to x = a+h, where
h → 0. The result follows because

f(a+ h)− f(a) ≤ T · h+ r(h).

If h → 0 then the right hand side goes to zero, and so f(a+h)− f(a) → 0,
or equivalently by Remark 3.2, f(a+ h) → f(a). ⊓⊔

Remark 7.1. We defined derivative at a point but, since for each x, Df(x) ∈
L(Rn,Rm), we can consider the derivative function Df : U → L(Rn,Rm).

Each linear function in L(Rn,Rm) can be associated with a matrix. What
is this matrix for the derivative T = Df(a)? By the discussion in Section 5.2
the columns of [T ] are the vectors T (ej) ∈ Rm where ej are the unit vectors
in Rn. To compute T (ej) we use the definition of the derivative with h = tej

f(a+ tej)− f(a) = T (tej) + r(tej) = tT (ej) + r(tej).

Now dividing by t > 0 and taking the limit t → 0 implies that T (ej) is equal
to

T (ej) = lim
t→0

f(a+tej)−f(a)
t .

The i-th coordinate of this limit is Djfi(a), and so T (ej) is the j-th column
of the Jacobian Jf(a). This is an important result to remember
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[Df(a)] = Jf(a), (7.1)

which implies, in particular, that the derivative is unique (if exists).
More generally, taking h = tu in the definition of the derivative implies

the following result.

Proposition 7.2. Let f : U → Rm, where U is an open subset in Rn, be
differentiable at a ∈ U . If u ∈ Rn then

Duf(a) = T(u) = Jf(a) · u.

Proof. Since T = Df(a) exists

f(a+ tu)− f(a) = T(tu) + r(tu)

with r(tu)
t → 0 as t → 0. Dividing by t and taking the limit, we get that

T (u) = lim
t→0

f(a+tu)−f(a)
t ,

which proves the first equality. The second equality follows by (7.1). ⊓⊔

We briefly discuss the case of real-valued functions. If f : U → R is
differentiable at a ∈ U ⊂ Rn then, by Proposition 7.2, the derivative Df(a) ∈
L(Rn,R) is represented by the gradient vector

Duf(a) = 〈∇f(a),u〉. (7.2)

Corollary 7.1. Suppose that f : U → R is differentiable at a ∈ U ⊂ Rn.
Then ∇f(a) is the direction of the quickest rate of increase of f .

Proof. The rate of change in the direction u is given by the directional deriva-
tive Duf(a) divided by the norm of u. By the Cauchy-Schwarz inequality
Duf(a) = 〈∇f(a),u〉 ≤ ∇f(a)u and we get equality only if u is propor-
tional to ∇f(a). ⊓⊔

Definition 7.5. Let f : E → R, E ⊂ Rn. A point a ∈ E is a local maximum
(minimum) of f if there exists a neighborhood U ⊂ E of a such that f(x) ≤
f(a) (resp. f(x) ≥ f(a)) for all x ∈ U . We say a is a local optimum if it is
either a local minimum or a local maximum.

Corollary 7.2. Let f : U → R, U ⊂ Rn open, f differentiable at a ∈ U . If f
has a local optimum at a then ∇f(a) = 0n.

A natural question is the following: suppose that all partial derivatives
exist so that the Jacobian matrix Jf(a) can be computed. Does it imply that
the derivative Df(a) exists? The answer, in general, is no.
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Exercise 7.4. Show that both partial derivatives of the function

f(x, y) =


xy

x2+y2 if (x, y) ∕= 0,

0 if (x, y) = (0, 0).

exist at the origin, but the function is not differentiable there.

This shows that the concept of differentiability is more subtle. It turns out
however, that if all partial derivatives exist and are continuous, f must be
diferentiable. This is part of Theorem 7.7 in Section 7.4.

7.3 Rules for computing the derivatives

We start with two basic result that treat the case of constant and linear
functions.

Exercise 7.5. Let U ⊂ Rn be open. Show that if f : U → Rm is a constant
function, then f is differentiable, and its derivative is 0 ∈ L(Rn,Rm).

Exercise 7.6. Show that if f : Rn → Rm is linear, then it is differentiable
everywhere, and its derivative at all points a is f , that is (Df(a))(v) = f(v).

The following result shows that differentiability of vector valued functions
can be checked componentwise.

Theorem 7.1. Let U ⊂ Rn be open. The function f = (f1, . . . , fm) : U →
Rm is differentiable at a if and only if each fi : U → R is. Moreover, the
components of Df(a) ∈ L(Rn,Rm) are the derivatives Df1(a), . . . ,Dfm(a) ∈
L(Rn,R).

Proof. Note that the assumption that f = (f1, . . . , fm) is differentiable, can
be written as

lim
h→0n

1
h








f1(a+ h)

· · ·
fm(a+ h)



−




f1(a)
· · ·

fm(a)



−




T1(h)
· · ·

Tm(h)







 = 0m

for some linear function T = (T1, . . . , Tm) ∈ L(Rn,Rm). The assumption that
f1, . . . , fm are differentiable, can be written




limh→0n

1
h (f1(a+ h)− f1(a)− T1(h))

· · ·
limh→0n

1
h (fm(a+ h)− fm(a)− Tm(h))



 = 0m

for some T1, . . . , Tm ∈ L(Rn,R). By Theorem 3.2, the expressions on left-
hand sides are equal and so both equations are equivalent. ⊓⊔
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It is an elementary check that derivative is linear in the following sense.

Theorem 7.2. Let U ⊂ Rn be open. If f ,g : U → Rm are differentiable at a
then so is sf + tg for any s, t ∈ R, and

D(sf + tg)(a) = sDf(a) + tDg(a).

The next result collects some basic differentiation formulas, which will not
be discussed in class in detail. To make things easier to parse we formulate
the Jacobian versions of these results.

Theorem 7.3. Let U ⊂ Rn be open.

1. If f : U → R and g : U → Rm are differentiable at a, then so is fg, and
the Jacobian matrix is given by

J(fg)(a) = f(a)
R

· Jg(a)  
Rm×n

+ g(a)
Rm×1

· Jf(a)  
R1×n

.

2. If f : U → R and g : U → Rm are differentiable at a and f(a) ∕= 0, then
so is g/f , and the Jacobian is given by

J(g/f)(a) = 1
f(a) · Jg(a)−

1
(f(a))2 · g(a) · Jf(a).

3. If f ,g : U → Rm are differentiable at a then so is the scalar product
fTg : U → R, and the Jacobian is given by

J〈f ,g〉(a) = g(a)TJf(a) + f(a)TJg(a).

Proof. To prove 1 we need to show that

1
h


f(a+ h)g(a+ h)− f(a)g(a)− (f(a)Jg(a)− g(a)Jf(a)) · h



converges to 0 as h → 0 rewrite it as

g(a) f(a+h)−f(a)−Jf(a)·h
h + f(a+ h)g(a+h)−g(a)−Jg(a)·h

h +

+(f(a+ h)− f(a))Jg(a)·hh .

Now the first term converges to zero by the definition of Jf(a). The second
term converges to zero by continuity of f and the definition of Jg(a). The
third term also converges to zero by continuity of f and the fact that Jg(a) ·
h/h ≤ Jg(a). The proof of item 2 is left as an exercise. To prove item
3

J〈f ,g〉(a) =
m

i=1

J(figi)(a) =

m

i=1

gi(a) · Jfi(a) +
m

i=1

fi(a) · Jgi(a).

The result follows because Theorem 7.1 implies that Jfi(a) and Jgi(a) are the
coordinate functions of Jf(a) and Jg(a) respectively. ⊓⊔
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Example 7.3 (Least squares for nonlinear regression). Consider a regression
function y = f(x, θ), where y ∈ R, x ∈ Rm and θ ∈ Rd. Given data (yi,xi) for
i = 1, . . . , n we compute the residual vector r(θ) ∈ Rn whose i-th coordinate is
ri(θ) = yi−f(xi, θ). We estimate θ from data by minimizing the norm of r(θ),
or equivalently, by minimizing s(θ) = 1

2r
T (θ)r(θ). One of the fundamental

quantities to compute for this optimization problem is the gradient ∇s(θ).
By Theorem 7.3(3)

Js(θ) = 1
2J(r

Tr)(θ) = r(θ)TJr(θ)

and so ∇s(θ) = Jr(θ)Tr(θ).

The most fundamental rule is the chain rule and we will state it in a
separate theorem.

Theorem 7.4 (Chain rule). Let U ⊂ Rn, V ⊂ Rm be open sets, let f :
U → V and g : V → Rp be mappings, and let a ∈ U . If f is differentiable
at a and g is differentiable at b = f(a), then the composition F = g ◦ f is
differentiable at a, and its derivative is given by

D(g ◦ f)(a) = Dg(f(a)) ◦Df(a).

Proof. The proof follows exactly the same lines as in the univariate case. Let
S = Df(a), T = Dg(b). We have

f(a+ h)− f(a) = S(h) + u(h)h, g(b+ k)− g(b) = T (k) + v(k)k,

where
u(h) −→

h→0n

0, v(k) −→
k→0m

0

Given h put k = f(a+ h)− f(a) (so that k → 0 if h → 0). Then

g(f(a+h))−g(f(a)) = T (k)+v(k)k = T (S(h))+T (u(h)h)+v(k)k.

It remains to show that the remainder T (u(h)h) + v(k)k is sublinear

T (u(h)h)+v(k)k
h = T (u(h)) + v(k)k

h .

The limit of the first summand is zero by continuity of T . Same is true for the
second summand because limh→0 v(k) = 0 and by continuity of the norm

lim
h→0

k
h =

 limh→0

f(a+ h)− f(a)

h

 = Df(a).

⊓⊔

Example 7.4. Define f : R → R3 and g : R3 → R by
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f(t) =




t
t2

t3



 ; g(x, y, z) = x2 + y2 + z2.

The derivative of g is a linear transformation T : R3 → R represented by the
vector [2x, 2y, 2z]. Evaluated at f(t) it is [2t, 2t2, 2t3]. The derivative of f at
t is the linear map S : R → R3 represented by the vector [1, 2t, 3t2]T . So

J(g ◦ f)(t) = Jg(f(t)) · Jf(t) =

2t 2t2 2t3


·




1
2t
3t2



 = 2t + 4t3 + 6t5.

Note that we could also do all calculations directly because g(f(t)) = t2 +
t4 + t6.

7.4 Mean Value Theorem and C1 functions

We start by generalizing Theorem 6.4 to functions of many variables.

Theorem 7.5. Let U ⊂ Rn be open, f : U → R be differentiable, and the
segment [a,b] joining a and b be contained in U . Then there exists c ∈ [a,b]
such that

f(b)− f(a) = (Df(c))(b− a).

Proof. Consider the function g : [0, 1] → R given by g(t) = f((1− t)a+ tb).
By the chain rule, g is differentiable, and by the one-variable mean value
theorem, there exists θ ∈ (0, 1) such that

g(1)− g(0) = g′(θ)(1− 0) = g′(θ). (7.3)

Set c = (1− θ)a+ θb. We can express g′(θ) in terms of the derivative of f :

g′(θ) = lim
s→0

g(θ+s)−g(θ)
s = lim

s→0

f(c+s(b−a))−f(c)
s = (Df(c))(b− a),

where the last equation follows by Proposition 7.2. Equation (7.3) reads

f(b)− f(a) = (Df(c))(b− a).

⊓⊔

We also have a version of Corollary 6.1 for vector-valued functions. It will
be useful in the proof of the Inverse Function Theorem.

Theorem 7.6. Let f : U → Rm, U ⊂ Rn open and convex. Assume f is
differentiable in U and there exists M ∈ R such that Df(x) ≤ M for all
x ∈ U . Then
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f(b)− f(a) ≤ M · b− a for all a,b ∈ U.

Proof. Put z = f(b) − f(a) and define ϕ(t) = 〈z, f(t)〉 for t ∈ [a,b]. Using
Proposition 7.2 (or the chain rule), for every c ∈ U and u ∈ Rn we get

(Dϕ(c))(u) = lim
t→0

ϕ(c+tu)−ϕ(c)
t =

= 〈z, lim
t→0

f(c+tu)−f(c)
t 〉 = 〈z, (Df(c))(u)〉.

By Theorem 7.5, for some c on the segment joining a and b

ϕ(b)− ϕ(a) = (Dϕ(c))(b− a) = 〈z, (Df(c))(b− a)〉.

On the other hand ϕ(b) − ϕ(a) = z2. By the Cauchy-Schwarz inequality
and a basic matrix norm bound

z2 = 〈z, (Df(c))(b− a))〉 ≤ z (Df(c))(b− a)) ≤ z Df(c) b− a.

Since the theorem trivially holds if z = 0 we can assume the norm of z is
positive. Now dividing by z gives the claim. ⊓⊔

Definition 7.6. A function f : U → Rm is continuously differentiable on an
open set U ⊂ Rn if all its partial derivatives exist and are continuous on U .
Such a function is known as a C1 function. We write f ∈ C1(U).

This definition can be generalized.

Definition 7.7. A Cp function on U ⊂ Rn is a function that is p times
continuously differentiable: all its partial derivatives up to order p exist and
and are continuous on U .

The following theorem guarantees that a continuously differentiable func-
tion is indeed differentiable.

Theorem 7.7. If U is an open subset of Rn, and f : U → Rm is a C1

function, then f is differentiable on U . Moreover, the function Df : U →
L(Rn,Rm) is continuous on U .

Proof. By Theorem 7.1(3), to show that f is differentiable, it suffices to con-
sider the case m = 1, f : U → R. Since the partial derivatives Dif(x) exist
on U , we need to show that for every a ∈ U

lim
h→0

|f(a+h)−f(a)−〈∇f(a),h〉|
h = 0.

We can write h =
n

i=1 hiei and let vk = h1e1 + · · ·+ hkek for k = 1, . . . , n
with v0 = 0. Then a+ v0 = a, a+ vn = a+ h, and so

f(a+ h)− f(a) =

n

i=1

(f(a+ vi)− f(a+ vi−1)) .
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For i = 1, . . . , n suppose that hi > 0 and let gi : R → R be defined for
t ∈ [0, hi] by

gi(t) = f(a+ vi−1 + tei)

so that gi(0) = f(a + vi−1) and gi(hi) = f(a + vi). Assume that h is small
enough so that the segment joining a + vi−1 and a + vi lies in U . Because
the partial derivatives of f exist in U , gi(t) is differentiable in (0, hi) with
derivative

g′i(t) = lim
s→0

f(a+vi−1+(s+t)ei)−f(a+vi−1+tei)
s = Dif(a+ vi−1 + tei).

Theorem 6.4 gives that for some θi ∈ (0, hi)

gi(hi)− gi(0) = g′i(θi)hi

or, in other words, for ci := a+ vi−1 + θiei

f(a+ vi)− f(a+ vi−1) = Dif(ci)hi.

Thus we get

f(a+ h)− f(a)−
n

i=1

Dif(a)hi =

n

i=1

hi((Dif)(ci)− (Dif)(a))

Noting that
n

i=1 Dif(a)hi = 〈∇f(a),h〉 and using the Cauchy-Schwarz in-
equality for the expression on the right we get

|f(a+h)−f(a)−〈∇f(a),h〉|
h ≤


n

i=1

((Dif)(ci)− (Dif)(a))
2
.

Since the partial derivatives Dif are continuous, and since ci → a as h → 0,
the right-hand side above goes to 0 as h → 0 proving that f is differentiable
at a.

We now show that that Df(x) is continuous in U . By Theorem 3.3, a
function is continuous if and only if its coordinate functions are continuous. It
follows that the Jacobian function x → Jf(x) is continuous in U . Recall that
the metric structure in L(Rn,Rm) was induced from Rm×n and so continuity
of Jf(x) is equivalent to continuity of Df(x). ⊓⊔
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7.5 The Jacobian matrix: not always the right
approach*

Computing the derivative of a function f : Rn → Rm by computing its
Jacobian matrix is usually a lot quicker than computing it from the definition
just as in one-variable calculus it is quicker to compute derivatives using
handy formulas rather than computing a limit. But it is important to keep
in mind the meaning of the derivative: it is the best linear approximation to
a function, the linear function T such that

lim
h→0

1
h (f(a+ h)− f(a)− T (h)) = 0m.

This is the definition that can always be used to compute a derivative even
when the domain and codomain of a function are abstract vector spaces, not
Rn. Although it may be possible to identify such a function with a function
from Rn to Rm, and thus compute a Jacobian matrix, doing so may be quite
tedious. We will see an example of this in the proof of Theorem 8.5. Two
different examples are given below.

Example 7.5 (Squaring function for matrices). Let f : Rn×n → Rn×n be
given by f(A) = A2. We can of course think about this function as a function

from Rn2 → Rn2

and compute its Jacobian. But the computations become
extremely complicated. On the other hand, sticking to matrices we easily see
that for every H ∈ Rn×n

f(A+H)− f(A) = AH +HA+H2.

Define T (H) = AH +HA. Clearly T ∈ L(Rn×n,Rn×n) and

lim
H→0n×n

1
H (f(A+H)− f(A)− T (H)) = lim

H→0n×n

1
HH

2.

This limit is 0n×n because the

 1
HH

2 = 1
HH

2 ≤ H.

Another way to see these calculations is to take H = U , where  is
infinitesimally small and so all higher powers of  are treated as zero. So

f(A+ U)− f(A) = (AU + UA) +O(2),

which again gives the same result.
The following example is useful in statistics and optimization and it will

much better illustrate usefulness of the second technique.

Example 7.6. Let Sn denote the set of n× n symmetric matrices. Clearly Sn
forms a vector space isomorphic to Rk, k =


n+1
2


. This space is equipped with
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the standard inner product 〈A,B〉 = tr(AB). Denote by Sn+ the subset of Sn
that are positive definite. This set is open. Consider the function f : Sn+ → R
given by f(A) = log det(A). Let U ∈ Sn then

f(A+ U)− f(A) = log det(A+ U)− log det(A) = log det(In + UA−1),

where In denotes the n×n identity matrix. We can rewrite det(In+UA−1) =
i(1 + λi), where λi are the eigenvalues of UA−1. We now get

log det(In+UA−1) =


i

log(1+λi) = 


i

λi+O(2) =  tr(UA−1)+O(2).

This shows that the derivative T = Df(A) satisfies

(Df(A))(U) = tr(UA−1) = 〈U,A−1〉.

Generalising (7.2) we see that A−1 is the element of Sn representing this
derivative (is the gradient of f).

Working with linear transformations also gives quick ways of computing
the derivatives without carefully computing all partial derivatives.

Example 7.7. Suppose we want to find the derivative for the quadratic func-
tion f(x) = xTAx+ xTb+ c, where A is a symmetric n× n matrix, b ∈ Rn,
and c ∈ R. We have

f(x+ h)− f(x) = hTAh+ 2xTAh+ bTh.

The linear part of this expression is T (h) := (2xTA+bT )h. Since hTAh ≤
A h2 we conclude that the remainder is indeed sublinear.

Exercise 7.7. Let A ∈ Rm×n. Find the derivative of f : Rm×n → R given
by f(X) = trace(AXT ).





Chapter 8

Solving systems of equations (2 lectures)

8.1 Solving linear equations (self-study)

A system of linear equations is a collection ofm linear equations in n variables
x1, . . . , xn:

a11x1 + a12x2 + · · ·+ a1nxn = b1

· · ·
am1x1 + am2x2 + · · ·+ amnxn = bm

where a11, . . . , amn and b1, . . . bm are fixed numbers, which we write in form
of a matrix A and a vector b. This system can be more compactly written in
the matrix notation as Ax = b. In this section we briefly recall the method
to solve a system of linear equations.

Denote by [A|b] the Rm×(n+1) matrix obtained by adding b as the last
column to A. The canonical way of solving Ax = b is by the row operations
on [A|b].

Definition 8.1 (Row operations). A row operation on a matrix is one of
the following three operations:

1. Multiplying a row by a nonzero number, α ∕= 0
2. Adding a multiple of a row onto another row
3. Exchanging two rows

The following theorem should be well known.

Theorem 8.1. If the matrix [A|b] representing Ax = b can be turned into
[A′|b′] after a sequence of row operations, then the set of solutions to Ax = b
and the set of solutions to A′x = b′ coincide.

Proof. Row operation consist of multiplying one equation by a nonzero num-
ber, adding a multiple of one equation to another, and exchanging two equa-
tions. Any solution to Ax = b is then also a solution of A′x = b′. In the

71
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other direction, any row operation can be undone by another row operation
(exercise), so any solution to A′x = b′ is also a solution to Ax = b. ⊓⊔

The idea now is to use row operations to reduce [A|b] to a much simpler
form.

Definition 8.2 (Echelon form). A matrix is in echelon form if

1. In every row the first nonzero entry is 1 and it is called a pivotal 1.
2. In every column that contains a pivotal 1, all other entries are zero.
3. The pivotal 1 of a lower row is always to the right of the pivotal 1 of a

higher row.
4. Any rows consisting entirely of 0’s are at the bottom.

Given any matrix B there exists a unique matrix B̃ in echelon form that
can be obtained from B by row operations. If [A|b] is reduced to the echelon
form, the solutions of Ax = b are trivial to write down. For example




1 0 0 3
0 1 0 −2
0 0 1 1





is in the echelon form and the corresponding linear equation has one solution
(x1, x2, x3) = (3,−2, 1). Also




1 2 0 0
0 0 1 0
0 0 0 1





is in the echelon form but the corresponding system of linear equations has
no solution as the last equation says 0 = 1. Finally,




1 1 0 0
0 0 1 0
0 0 0 0





represents a linear system with infinitely many solutions that satisfy x1+x2 =
0, x3 = 0. For example, (−1, 1, 0), (2,−2, 0) are both solutions of this system.
More generally,

Theorem 8.2. Represent the system Ax = b, involving m linear equations
in n unknowns, by the m× (n+1) matrix [A|b], which can be row reduced to
[Ã|b̃] in the echelon form. Then

1. If b̃ contains a pivotal 1, the system has no solutions.
2. If b̃ contains no pivotal 1, then

a. If each column of Ã contains a pivotal 1, the system has a unique solu-
tion.
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b. If at least one column of Ã does not contain a pivotal 1, there are
infinitely many solutions. You can choose freely the values of unknowns
corresponding to nonpivotal columns of Ã, and these values uniquely
determine the values of the other unknowns.

We say that a system of linear equations is homogeneous if b = 0. The
set of solutions of Ax = 0 is the kernel of A and it is always nonempty. By
Theorem 8.1 we have that ker(Ã) = ker(A).

Our interest in solving systems of linear equations is as the first step to
more general non-linear results: the inverse function theorem and the implicit
function theorem. We will consider two cases.

Case I: m = n and the general system Ax = b,
Case II: n > m and the homogeneous system Ax = 0.

The first case is very simple. If m = n then Ax = b has a unique solution
if and only if A is invertible (see Exercise 5.12) and the solution is x = A−1b.

In the second case we have more variables than equations and so, there
are always columns without a pivotal 1. Reorder the variables as x = (y, z)
where the r-dimensional vector y corresponds to the columns with a pivotal
1 in Ã and z are the remaining variables. With this reordering Ã has the
following block form

Ã =


Ir B
0 0,


(8.1)

where Ir is an r × r identity matrix and B ∈ Rr×(n−r) for r ≤ m. Zero rows
mean that some of the equations were redundant and could be removed from
the system. In practice we often get rid of redundant equations in advance.
The following result gives a geometric meaning of the no zero row condition.

Proposition 8.1. The matrix Ã has no zero rows if and only if Im(A) = Rm.

Proof. We have Im(A) = Rm if and only if Ax = b has a solution for every
b ∈ Rm. By Theorem 8.2 this means that for every b the corresponding b̃
has no pivotal 1. Equivalently Ã contains no zero rows. ⊓⊔

The following result will be later generalized by the Implicit Function
Theorem.

Theorem 8.3. Suppose that n > m and Im(A) = Rm. Then (up to reorder-
ing the columns) A = [Ay|Az], where Ay ∈ Rm×m is invertible and the system
of equations

Ax = [Ay|Az]


y
z


= 0

is equivalent to y = −A−1
y Azz.
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Proof. By Proposition 8.1, Ã has no zero rows, and so, by (8.1), the system
Ayy+Azz = 0 is equivalent to y+ Ãzz = 0. In other words, (taking z = 0)
Ayy = 0 if and only if y = 0, or equivalently, Ay is invertible. But then
Ayy +Azz = 0 is equivalent to y +A−1

y Azz = 0. ⊓⊔

Geometrically this result says that if Im(A) = Rm then ker(A) is an n−m
dimensional linear subspace parameterized by the non-pivotal variables z.

8.2 Geometry of invertible matrices

Denote by Ωn the set of all n×n invertible matrices. In this section we study
the geometry of this set, or equivalently, the set of invertible linear mappings
in L(Rn,Rn).

Proposition 8.2. For any C ∈ Rn×n, In − C < 1 implies that C is
invertible. In particular, if A is invertible and B ∈ Rn×n is such that
d(A,B) < 1

A−1 then B is invertible.

Proof. If In −C < 1, then (In −C)x < x for all x ∕= 0n. Suppose that
Cx = 0n for some x ∕= 0n. Then

(In − C)x = x < x,

which is a contradiction. This implies that ker(C) = {0} and therefore C is
invertible by Exercise 5.12. For the second statement note that B is invertible
if and only if A−1B is invertible. We have

In −A−1B = A−1(A−B) ≤ A−1 A−B.

By the first part, if A−1 A−B < 1 then A−1B is invertible. ⊓⊔

This shows that every invertible matrix forms an interior point of Ωn,
which implies the following theorem.

Theorem 8.4. Ωn is an open subset of Rn×n.

Remark 8.1. To prove that Ωn we could also use the following argument:
A ∈ Ωn if and only if det(A) ∕= 0. The determinant is a polynomial in the
entries of A and so a continuous function on Rn×n. Therefore, the set where
the determinant vanishes is closed.

Proposition 8.3. If C ∈ Rn×n and C = c < 1 then In − C is invertible
and

(In − C)−1 = In + C + C2 + C3 + . . . = lim
k→∞

k

i=0

Ci.
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Proof. In − C is invertible by Proposition 8.2. Denote Ak = In + C + C2 +
· · ·+ Ck. For k > l we have

Ak −Al = Cl+1 + · · ·+ Ck ≤ cl+1(1 + · · ·+ ck−l−1) =

= cl+1 1−ck−l

1−c ≤ cl+1 1
1−c −→

l→∞
0.

This implies that (Ak) forms a Cauchy sequence in Rn×n with the norm
given by the operator norm. The operator norm and the Frobenius norm are
equivalent (Exercise 5.20) which together with Theorem 4.13 implies that
(Ak) converges to A formally denoted by

∞
k=0 C

k. It follows that the limit
of (In−C)Ak also exists and is equal to (In−C)A. On the other hand, since
(In − C)Ak = In − Ck+1, this limit is In confirming that

∞
k=0 C

k is the
inverse of In − C. ⊓⊔

Theorem 8.5. The map f : Ωn → Ωn given by f(A) = A−1 is differentiable
(and so also continuous). The derivative Df(A) = T is T (H) = −A−1HA−1.

Proof. For any H ∈ Rn×n we have

f(A+H)− f(A) = A−1[(In +HA−1)−1 − In].

We will be taking the limit H → 0n×n and so with no loss of generality we
can assume HA−1 < 1, in which case (In + HA−1) is invertible with the
inverse given by Proposition 8.3

(In +HA−1)−1 = In −HA−1 + (HA−1)2 − (HA−1)3 + . . .

which implies that

f(A+H)− f(A) = A−1[−HA−1 + (HA−1)2 − (HA−1)3 + . . .].

Define r(H) = A−1[(HA−1)2 − (HA−1)3 + . . .] and then by standard prop-
erties of the operator norm

r(H) ≤ A−13H2


∞

k=0

(−1)k(HA−1)k

 .

By showing the inequality for finite sums and passing to the limit we confirm
that 

∞

k=0

(−1)k(HA−1)k

 ≤
∞

k=0

HA−1k =
1

1− HA−1 .

This gives that

r(H) ≤ A−13H2
1− HA−1
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and so indeed r(H)/H → 0 as H → 0n×n proving that T (H) =
−A−1HA−1 is the derivative. ⊓⊔

Remark 8.2. To prove differentiability of the matrix inverse we could use the
following argument: The inverse A−1 is explicitly given as a rational function
of the entries of A

A−1 = 1
det(A)adj(A),

where adj(A) is the transpose of the matrix of cofactors of A. Differentiability
then follows by Theorem 7.3(2).

8.3 Banach’s fixed point theorem

For a function f : X → X we say that x ∈ X is a fixed point of f if
f(x) = x. In Chapter 12 we provide a more detailed discussion of fixed point
theory. In this section we simply formulate a simple fixed point theorem that
will be useful in the next section in the proof of the Inverse Function Theorem.

Definition 8.3. Let X be a metric space with metric d. If ϕ : X → X
satisfies that for some c < 1

d(ϕ(x),ϕ(y)) ≤ c · d(x, y) for all x, y ∈ X, (8.2)

then ϕ is a contraction on X.

Exercise 8.1. Show that if ϕ : X → X is a contraction then it is continuous.

Theorem 8.6 (Banach’s fixed point theorem). If X is a complete metric
space, and if ϕ : X → X is a contraction, then there exists one and only one
x ∈ X such that ϕ(x) = x.

In other words, ϕ has a unique fixed point.

Proof. To show uniqueness, suppose ϕ(x) = x and ϕ(y) = y. Then (8.2)
gives d(x, y) ≤ c · d(x, y), which can only happen if d(x, y) = 0. To show the
existence of a fixed point, let x0 ∈ X arbitrarly, and define {xn} recursively
by setting xn+1 = ϕ(xn). Choose c < 1 so that (8.2) holds. For n ≥ 1 we
then have

d(xn+1, xn) = d(ϕ(xn),ϕ(xn−1)) ≤ c d(xn, xn−1),

which implies d(xn+1, xn) ≤ cnd(x1, x0). If n < m we get

d(xn, xm) ≤
m

i=n+1

d(xi, xi−1) ≤ (cn+cn+1+· · ·+cm)d(x1, x0) ≤ cn

1−cd(x1, x0).
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Thus {xn} is a Cauchy sequence. Since X is complete, limxn = x for
some x ∈ X. Since ϕ is a contraction, ϕ is continuous on X. Hence
ϕ(x) = limn→∞ ϕ(xn) = limn→∞ xn+1 = x. ⊓⊔

We conclude this section with some exercises.

Exercise 8.2. Let X be a complete metric space and consider a map f :
X → X such that f(X) = X and for some c > 1 we have that

d(f(x), f(y)) ≥ c · d(x, y) for all x, y ∈ X.

Prove that f has a unique fixed point.

Exercise 8.3. Suppose that f : R → R is a contraction. Show that the
equation x = f(x) + a has a unique solution.

Exercise 8.4. For any n ∈ N, an n × n matrix A is said to be stochastic if
aij ≥ 0 for all i and j, and

n
j=1 aij = 1 for all i. Prove that for every strictly

positive n×n stochastic matrix A (aij > 0), there is a strictly positive vector
x ∈ Rn such that Ax = x and


xi = 1. Show also that there is a strictly

positive vector x ∈ Rn such that ATx = x and


xi = 1.

Exercise 8.5. Prove that there is a unique f ∈ C[0, 1] such that f ≥ 0 and

f(x) = 1 + 3
4 ln


1 +

 x

0

f(t)dt


.

Hint: Use Exercise 4.4 and the fact that for all 0 ≤ a ≤ b

ln


1+b
1+a


≤ b− a.

8.4 Inverse function theorem

In Section 8.1 we completely analysed systems of linear equations. We know
when there is a unique solution, if there is no, we know which variables de-
pend on the others. Our tools for answering similar questions for nonlinear
systems are the implicit function theorem, and its special case, the inverse
function theorem. Both of them rely on the fact that continuously differen-
tiable functions locally behave like their derivatives.

We start with the Inverse Function Theorem. If f : Rn → Rn is a linear
mapping then Df(x) = f(x) for all x and so a linear mapping is invertible if
and only if its derivative is. A similar theorem holds locally for more general
function.
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Theorem 8.7 (Inverse function theorem: short version). If f : Rn →
Rn is continuously differentiable in a neighborhood of a and Df(a) is invert-
ible, then f is locally invertible, with differentiable inverse, in some neighbor-
hood of the point b = f(a). The derivative of the inverse is the inverse of
Df(a).

Example 8.1. Where is the function f(x, y) = (sin(x + y), x2 − y2) locally
invertible? The function is continuously differentiable. The Jacobian matrix
is

Jf(x, y) =


cos(x+ y) cos(x+ y)

2x −2y


.

This is invertible as long as cos(x+ y) ∕= 0 and x+ y ∕= 0.

Remark 8.3. If the derivative of a function f is invertible at some point x0

then f is locally invertible in a neighborhood of f(x0); but it is not true that
if the derivative is invertible everywhere, the function is invertible. Consider
the function f : R2 → R2 given by f(t, θ) = (et cos θ, et sin θ); the derivative
is invertible everywhere, since det(Jf) = et ∕= 0, but f is not invertible, since
it sends (t, θ) and (t, θ + 2π) to the same point.

We now formulate a more concrete version of the inverse function theorem.

Theorem 8.8 (The inverse function theorem). Suppose that f : E →
Rn, f ∈ C1(E), where E ⊂ Rn is a neighborhood of a. Set b = f(a). If the
derivative Df(a) is invertible, then

(a) there exist open sets U and V in Rn such that a ∈ U , b ∈ V , f is one-to-
one on U and f(U) = V .

(b) If g is the inverse function, defined in V by

g(f(x)) = x (x ∈ U),

then g ∈ C1(V ) and

Dg(y) = (Df(g(y)))−1. (8.3)

Proof. (a) Let T = Df(a) and λ = 1
2T−1 . By Theorem 7.7, x → Df(x) is

continuous at a, and so there exists a neighborhood U ⊂ E of a such that
Df(x)− T < λ if x ∈ U . Also we note that Df(x)− T ≤ λ if x ∈ U .

Claim 1: f is one-to-one on U . For each y ∈ Rn define ϕy : E → Rn by

ϕy(x) = x+ T−1(y − f(x)).

Observe that y = f(x) if and only if ϕy(x) = x, that is, x is a fixed point of
ϕy. Clearly

Dϕy(x) = Id− T−1 ◦Df(x) = T−1 ◦ (T−Df(x)),
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where Id denotes the identity transformation Id(x) = x. Thus, if x ∈ U ,

Dϕy(x) ≤ T−1 · T−Df(x) ≤ 1
2 .

By Theorem 7.6,

ϕy(x1)− ϕy(x2) ≤ 1
2x1 − x2 for all x1,x2 ∈ U.

Therefore, ϕy is a contraction, so it has at most one fixed point in U (may
have no fixed points because ϕy(x) may not lie in U), so we have f(x) = y
for at most one x ∈ U . Thus, f is one-to-one in U .

Claim 2: The set V = f(U) is open. Since f is continuous bijection from the
compact set U to f(U), by Theorem 4.12, the local inverse g of f (g : f(U) →
U) is also continuous. By Theorem 3.8, f(U) must be open.

(b) We show that the local inverse g of f (g : V → U) is continuously
differentiable.

Claim 3: g is differentiable in V. Let y ∈ V , y + k ∈ V . Then there exists
x ∈ U and x+ h ∈ U so that y = f(x), y + k = f(x+ h). Then

ϕy(x+ h)− ϕy(x) = x+ h+ T−1(y − f(x+ h))− x− T−1(y − f(x))

= h+ T−1(f(x)− f(x+ h)) = h− T−1(k)

By the contraction property of ϕy, h−T−1(k) ≤ 1
2h and so T−1(k) ≥

1
2h. This is simply because the neighbourhoods of radius 1

2h around 0
and around h have no points in common. This implies that

h ≤ 2T−1(k) ≤ 2T−1 k = 1
λk.

(In particular, k → 0 then h → 0) Since f is continuously differentiable
and x ∈ U , S = Df(x) is invertible by Proposition 8.2 (because T is and
λ = 1

2T−1 ). Now

g(y + k)− g(y)− S−1(k) = h− S−1(k) = −S−1(f(x+ h)− f(x)− S(h)).

Therefore,

g(y+k)−g(y)−S−1(k)
k ≤ S−1

λ
f(x+h)−f(x)−S(h)

h .

As k → 0 also h → 0 and the right hand side above tends to 0. Thus g
is differentiable at y and Dg(y) = S−1 and for y ∈ V equation (8.3) holds.
Claim 4: g is continuously differentiable on V . Note that g is continuous on V
(since differentiable) and Df is continuous on U . By Theorem 8.5 the inversion
in (8.3) is a continuous function on L(Rn), so indeed Dg is continuous (as a
composition of continuous functions). ⊓⊔
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Although finding the inverse function g is typically very hard, its deriva-
tive at b = f(a) is very easy to compute using the chain rule. The equation
g(f(x)) = x gives that Dg(f(x)) ◦ Df(x) is equal to the identity transfor-
mation T (x) = x represented by the identity matrix In. Plugging y = f(x)
and x = g(y) gives equation (8.3). This means that the Jacobian matrix of
g(y) can be obtained by inverting the Jacobian matrix of f(x) computed at
x = g(y). This gives

Jg(y) = (Jf(g(y)))−1.

In particular, we can very easily compute the linear approximation to g.

Example 8.2. Let f : R2 → R2 be given by (x, y) → (x3 − 2xy2, x + y). Let
a = (1,−1). We have

Jf(x, y) =


3x2 − 2y2 −4xy

1 1


, Jf(1,−1) =


1 4
1 1


.

We have

(Jf(1,−1))−1 = 1
3


−1 4
1 −1


.

By the inverse function theorem, f is locally invertible at (1,−1) and the
affine approximation to g = f−1 near f(1,−1) = (−1, 0) is

g(−1 + h, 0 + k) ≈

1
−1


+ 1

3


−1 4
1 −1

 
h
k


= 1

3


3− h+ 4k
−3 + h− k


.

8.5 Implicit function theorem

The Inverse Function Theorem deals with the case where we have n equations
in n unknowns. What if we have more unknowns than equations? There is
then no inverse function, but often we can express some unknown in terms
of others.

Example 8.3. The equation x2 + y2 + z2 − 1 = 0 expresses z as an implicit
function of (x, y) near (0, 0, 1). This implicit function can be made explicit:

z =

1− x2 − y2.

The Implicit Function Theorem tells us under what conditions an implicit
function exists. It generalizes its linear version in Theorem 8.3.

Theorem 8.9 (Implicit Function Theorem: short version). Let F :
E → Rm, for E ⊂ Rn open, satisfy F ∈ C1(E). Suppose that c ∈ E satis-
fies F(c) = 0m and Im(DF(c)) = Rm. Then the system of linear equations
(DF(c))(x) = 0 has m pivotal variables y and n−m nonpivotal variables z,
and there exists a neighborhood of c in which F(x) = 0 implicitly defines y
as a function g of z.
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The function g is the implicit function.
Like the Inverse Function Theorem, the Implicit Function Theorem states

that locally, the mapping behaves like its derivative (i.e. like its linearization).
Since F goes from a subset of Rn to Rm, its derivative lies in L(Rn,Rm).
Theorem 8.3 is then simply the linear version of the implicit function theorem,
with g(z) = −A−1

y Azz.
As with the inverse function theorem, we will prove a more concrete version

of the Implicit Function Theorem.

Theorem 8.10 (Implicit function theorem). Let F(y, z) be a C1 mapping
of an open set E ⊂ Rn = Rm × Rn−m into Rm such that F(a,b) = 0n for
some (a,b) ∈ E. Let A = JF(a,b), where A = [Ay|Az]. If Ay is invertible,
then there exist open sets U ⊂ Rn, W ⊂ Rn−m with (a,b) ∈ U and b ∈ W
such that

(i) To every z ∈ W there corresponds a unique y such that (y, z) ∈ U and
F(y, z) = 0.

(ii) If this y is defined to be g(z), then g is a C1 mapping of W into Rm,
g(b) = a,

F(g(z), z) = 0 (y ∈ W ) (8.4)

and
Jg(b) = −A−1

y Az. (8.5)

The function g is “implicitly” defined by (8.4).

Proof. Define F̂ by F̂(y, z) = (F(y, z), z) for (y, z) ∈ E. Then F̂ is a C1

mapping, F̂ : E → Rn. The linear mapping DF̂(a,b) is invertible as its
Jacobian matrix is

JF̂(y, z) =


Ay Az

0 In−m


and


Ay Az

0 In−m

−1

=


A−1

y −A−1
y Az

0 In−m


.

We can therefore apply the Inverse Function Theorem to F̂: there exists U ,
V open sets in Rn with (a,b) ∈ U , F̂(a,b) = (0,b) ∈ V such that F̂ is
one-to-one mapping of U onto V . Now restrict V to points (0, z):

W = {z ∈ Rn−m : (0, z) ∈ V } (we have b ∈ W ).

This set is open since V is open (each (0, z) is interior in V and projection

of an open ball is an open ball). If z ∈ W then (0, z) = F̂(y, z) for some

(y, z) ∈ U and F(y, z) = 0 by definition of F̂. To show that to each z ∈ W
there corresponds a unique y such that (y, z) ∈ U , suppose that (y′, z) ∈ U
and F(y′, z) = 0. Then

F̂(y′, z) = (F(y′, z), z) = (F(y, z), z) = F̂(y, z).

Since F̂ is one-to-one in U it implies that y = y′ so y must be unique.
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For the second part of the theorem let g(z), for z ∈ W , such that

(g(z), z) ∈ U and F(g(z), z) = 0. Then F̂(g(z), z) = (0, z) for z ∈ W . If Ĝ is a

mapping of V onto U that inverts F̂, then Ĝ is a C1 mapping by the Inverse
Function Theorem and (g(z), z) = Ĝ(0, z) (because F̂(g(z), z) = (0, z)).
Therefore, g is also a C1 mapping.

Finally, to compute Dg(b), put (g(z), z) = Φ(z). Then

JΦ(z) =


Jg(z)
Im


z ∈ W.

Since F(Φ(z)) = 0 in W , the chain rule shows that

JF(Φ(z)) · JΦ(z) = 0m×(n−m).

When z = b then Φ(z) = (a,b) and JF(Φ(b)) = A. Thus A · JΦ(b) is equal
to the zero matrix 0m×(n−m) so

[Ay | Az] ·

Jg(z)
In−m


= AyJg(z) + Az.

It then follows that Jg(z) = −A−1
y Az, which completes the proof. ⊓⊔

Note that g is typically hard to find but its derivative is explicit.

Remark 8.4. The Implicit Function Theorem says that if DF(c) is onto, the
set F(x) = 0 locally admits a parameterization Φ(z) = (g(z), z) with param-
eters z. We will use this fact in the constraint optimization, which we discuss
in the following chapter.

Constrained optimization is one of the important applications of the Im-
plicit Function Theorem in Economics. Another such example is the analysis
of comparative statics, which we now illustrate with an example.

8.6 An application in economics

Consider a firm that produces a good y using a n inputs x = (x1, . . . , xn).
The firm sells the output and acquires the inputs in competitive markets:
The market price of y is p, which we assume fixed throughout, and the cost
of each unit of x is w = (w1, . . . , wn). The firm’s technology is given by
f : Rn

+ → R+ given by

f(x) =


i=1

xai
i =: xa, (a1, . . . , an > 0, a1 + · · ·+ an < 1).

Its profits take the form



8.6 An application in economics 83

π(x;w) = pf(x)−wTx.

The firm selects x in order to maximize profits. Our question is how its choice
of xi is affected by a change in wi. Notice that w1 affects the choice of x1 not
only in a direct way but also indirectly through its effect on other entries of
x.

Define the gradient of π with respect to x as

F : Rn × Rn → Rn, F (x;w) = ∇π(x;w).

The i-th entry of the gradient is

Fi(x;w) = paix
a−ei − wi.

Given the price vector w∗, the optimal point x∗ (suppose it has strictly
positive entries) satisfies the first order conditions F (x∗;w∗) = 0. Our aim
is to first show that locally around x∗ the vector x can be expressed as a
function of w. The Jacobian of F with respect to x is

JxF(x;w) =


aiaj
xixj



i,j=1,...,n
− diag


ai
x2
i


· xa. (8.6)

It is useful to introduce u to be a vector in Rn such that ui =
ai

xi
and D to

be a diagonal matrix such that Dii =
ai

x2
i
. Then JxF(x;w) = (uuT −D) · xa.

Lemma 8.1. The matrix JxF(x;w) is negative definite for all x > 0.

Proof. It is enough to show that D − uuT is positive definite. We will show
this by proving that all principal submatrices of this matrix have a strictly
positive determinant. Since every principal submatrix has essentially the same
form as the complete matrix we show only the complete case. We have

det(D − uuT ) = det(D) det(In −D−1/2uuTD−1/2).

By the Sylvester’s determinant identity

det(In −D−1/2uuTD−1/2) = (1− uTD−1u) = 1−
n

i=1

ai > 0.

⊓⊔

We also note that
JwF(x,w) = −In

Now applying the Implicit Function Theorem we get that locally around
(x∗,w∗) the vector x is a function ofw. The derivative of the implicit function
x = g(w) is
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Jg(w∗) = −(JxF(x
∗,w∗))−1JwF(x∗,w∗) = (JxF(x

∗,w∗))−1.

So for example, to get local dependence of xi with respect to wi we again
use the fact that JxF(x

∗,w∗) is negative definite to conclude that this de-
pendence is negative. Finally, we note that the inverse of JxF(x

∗,w∗) can
be computed using the Sherman-Morrison formula again exploiting the fact
that this Jacobian is a sum of a diagonal matrix and a rank-one matrix.

Exercise 8.6. Reformulate and simplify the above example so that it uses
only the Inverse Function Theorem.
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Chapter 9

Optimization (1 lecture)

9.1 Second order derivatives

Let f : E → R (E ⊂ Rn open) have partial derivatives D1f, . . . ,Dnf. If these
are differentiable, we define the second-order partial derivative of f by

Dijf = DiDjf for i, j = 1, . . . , n.

If these are continuous on E, we write f ∈ C2(E).
The following is a second-order generalization of the Mean Value Theorem.

Higher-order version can be also easily formulated.

Theorem 9.1. Let f : E → R where E ⊂ R2 is open. Assume D1f,D2f,D21f
exist in E. Let Q ⊂ E be a 2-cell [a, a+ h]× [b, b+ k]. Set

∆(f,Q) = f(a+ h, b+ k)− f(a+ h, b)− f(a, b+ k) + f(a, b).

Then there exists (x, y) ∈ Q◦ such that

∆(f,Q) = h · k · (D21f)(x, y).

Proof. Let u(t) = f(t, b + k) − f(t, b), then u′(t) = D1f(t, b + k) − D1f(t, b).
By the Mean Value Theorem for u and for D1f, there exists x ∈ (a, a + h)
and y ∈ (b, b+ k) such that

∆(f,Q) = u(a+h)−u(a) = hu′(x) = h[D1f(x, b+k)−D1f(x, b)] = hk(D21f)(x, y).

⊓⊔

Theorem 9.2. Let f : E → R where E ⊂ R2 is open. Assume that D1f, D2f,
D21f exist in E and D21f is continuous at some (a, b) ∈ E. Then D12f exists
at (a, b) and

D12f(a, b) = D21f(a, b).

87
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Proof. Set T = D21f(a, b) and  > 0. If h and k are sufficiently small and Q
is as in the Theorem 9.1, then for all (x, y) ∈ Q

|T −D21f(x, y)| < 

by continuity of D21f. Then, in particular, by Theorem 9.1 |∆(f,Q)
hk − T | < .

Fix h and let k → 0, then we get

D2f(a+h,b)−D2f(a,b)
h − T

 < .

Since  was arbitrary, it follows that D12f(a, b) = T. ⊓⊔

Corollary 9.1. If f ∈ C2(E), E ⊂ Rn, then Dijf = Djif for all i, j = 1, . . . , n.

In the next example we will consider a function for which the symmetry
of the second derivatives fails to hold.

Example 9.1. Let f : R2 → R be defined as

f(x, y) =


xy(x2−y2)

x2+y2 if (x, y) ∕= (0, 0),

0 if (x, y) = (0, 0).

We compute the partial derivatives

D1f(x, y) =


y(x4+4x2y2−y4)

(x2+y2)2 if (x, y) ∕= (0, 0),

0 if (x, y) = (0, 0).

and

D2f(x, y) =


x(x4−4x2y2−y4)

(x2+y2)2 if (x, y) ∕= (0, 0),

0 if (x, y) = (0, 0).

where in both cases, the derivative at zero is computed from the definition.
Now we check from the definition that D21f(0, 0) = −1 and D12f(0, 0) = 1.

For completeness of the discussion we define the second derivative.

Definition 9.1. Function f : E → Rm, E ⊂ Rm open, is twice differentiable
at a ∈ E if:

1. The derivative Df(x) exists for all x in some neighborhood U of a.
2. For every h ∈ Rn the function wh : U → Rm given by

x → Df(x)(h)

is differentiable at a.

In that case the mapping

(h′,h) → Dwh(x)(h
′)
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is bilinear. We call this map the second derivative of f at a and denote by
D2f(a).

Example 9.2. In Example 7.7 we showed that the derivative of f(x) = xTAx+
xTb + c is the linear transformation Df(x) that maps h to (2xTA + bT )h.
Thus for a fixed h ∈ Rn we have wh(x) = (2xTA + bT )h and so Dwh is a
linear map represented by 2hTA. Therefore D2f(x) is the bilinear mapping
(h,h′) → 2hTAh′.

Similarly like for the second derivative, the second derivative (if exists) is
completely specified by the second order partial derivatives. The Hessian ∇2f
of f is an n× n matrix whose (i, j)-th entry is Dijf(a). We then have

D2f(a)(h,h′) = hT ·∇2f(a) · h′.

Also here, computing the Hessian matrix is the best approach. In the follow-
ing exercise it is easier to compute the second derivative directly from the
definition.

Exercise 9.1. Find the second derivative of the matrix valued function X →
X−1 defined on the subset Ωn of invertible n× n matrices.

9.2 Constrained optima and Lagrange multipliers

In applications, constraints in an optimization problem can often be expressed
as zeros of some functions. Let E be an open subset of Rn, and let F : E → Rm

be a C1 mapping. Define

X = {x ∈ E : F(x) = 0m}.

In this section we study the problem of optimizing a function f : E → R
over the set X. More precisely, we will derive necessary conditions for a point
c ∈ X to be a local optimum of f over X.

Exercise 9.2. Recall Definition 7.5 and show that c ∈ X is a local maximum
of f over X if and only if there exists a neighborhood U of c in Rn such that
f(c) ≥ f(x) for all x ∈ U ∩X.

Suppose first that we are in this favourable situation that X admits a
global parameterization: there is an invertible C1 function Φ : Rd → X, whose
inverse is also C1. Then optimizing a function f(x) over X is equivalent to
optimizing f(Φ(z)) over Rd.

Exercise 9.3. With assumptions as above, show that a point c = Φ(b) is a
local optimum of f over X if and only if b is a local optimum of f ◦ Φ.
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In this sense, the constrained optimization over X can be reduced to
unconstrained optimization over Rd. In particular, if f is differentiable ev-
erywhere then the necessary condition for an optimum at z ∈ Rd is that
∇(f ◦ Φ)(z) = 0n. Using the chain rule (Theorem 7.4) we get that

J(f ◦ Φ)(z) = Jf(Φ(z)) · JΦ(z) = 01×d.

Equivalently, for every h ∈ Rd we have Jf(Φ(z))·JΦ(z)·h = 0 and so Jf(Φ(z))
transforms each vector in the image of JΦ(z) to zero:

Im(JΦ(z)) ⊂ ker(Jf(Φ(z))).

For example, this condition holds if

Jf(Φ(z)) = (1,−1, 0) and JΦ(z) =




1 0
1 0
1 1



 .

Example 9.3. Let f(x, y, z) = ex
2+y2

+ z2 and minimize f over the set of
points satisfying 2x−y−1 = 0 and 3x− z−2 = 0. This two equations define
a line in R3 which is parametrized by Φ(t) = (t, 2t − 1, 3t − 2). Therefore,
minimizing f over X is equivalent to minimizing

f(t, 2t− 1, 3t− 2) = e5t
2−4t+1 + (3t− 2)2.

Example 9.4. Suppose X is given in R3 by two non-linear equations y = x2,
z = x3. Then Φ(t) = (t, t2, t3) for t ∈ R parameterizes X. Suppose we want
to optimize f(x, y, z) = xz − 2y + 1 over X. This amounts to optimizing
f(Φ(t)) = t4 − 2t2 + 1 = (t2 − 1)2, which has two global minima for t = ±1
and one local maximum at t = 0. It follows that the global minima of f are
(−1, 1,−1) and (1, 1, 1), and the local maximum is given by (0, 0, 0). This
function has no global maxima.

In practice often it is hard to find a global parametrization of X or such a
parametrization does not exist. Using the Implicit Function Theorem we can
still proceed if such a parameterization exists at least locally; c.f. Remark 8.4.

Before making any formal statement the following discussion should be
useful. For unconstrained optimization problem we learned from Corollary
7.2 that the necessary condition for f : U → R to have a maximum at c is
that ∇f(c) = 0, or equivalently, Duf(c) = 0 for every direction u. In other
words, it is not possible to improve the function moving infinitesimally from
c. The same holds true for constrained optimization problems over X, but
now the infinitesimal directions we allow are only the ones that do not take
us away from X, that is, DuF(c) = 0m.

Definition 9.2. If Im(DF(c)) = Rm, define the tangent space to X at point
c ∈ X as the kernel of DF(c)
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TancX := ker(DF(c)) ⊂ Rn.
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Fig. 9.1 The tangent space to F (x, y) = y2 − x3 = 0 at (1, 1).

Example 9.5. For a function F (x, y) = y2−x3 we have JF(x, y) = (−3x2, 2y).
If c = (1, 1) then JF(c) = (−3, 2). The kernel is the set of points (x, y) such
that −3x + 2y = 0. Shifting this linear space to the point (1, 1) we get
the line tangent to F (x, y) = 0 at this point, c.f. Figure 9.2. On the other
hand, if c = (0, 0) then F (c) = 0 but JF(c) = (0, 0) and so the condition
Im(DF(c)) = R does not hold. Here, the kernel of JF(c) is the whole R2.

To get some geometric intuition behind this definition recall that for every
t ∈ R and u ∈ Rn we get

F(c+ tu)− F(c) = DF(c)(tu) + r(tu),

where limt→0
r(tu)
tu = 0. Using the fact that F(c) = 0 and linearity of the

derivative we get that

lim
t→0

1
tuF(c+ tu) = 1

uDF(c)(u).

The left hand side represents the instanteneous rates of change of each com-
ponent of F as we move from c in the direction of u (c.f. Section 7.1). The
right-hand side is zero if and only if u ∈ ker(DF(c)). In this case moving
infinitesimally in the direction u the value of F(c+ tu) remains 0 (up to the
first order), or, in other words, c+tu ∈ X; c.f. Figure 9.2. On the other hand,
if v /∈ ker(DF(c)) then moving infinitesimally from c in the direction v will
take us out of X.
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u

v

c

F(x) = 0

Fig. 9.2 A curve F(x) = 0 and its tangent line at c spanned by u.

Theorem 9.3. Let F : E → Rm and f : E → R be C1 on E. Let X be as
above, c ∈ X, and assume Im(DF(c)) = Rm. If c is a local optimum of f
restricted to X then

ker(DF(c)) ⊂ ker(Df(c)). (9.1)

On the intuitive level the proof should be clear. If there exists a vector u in
the kernel of DF(c) that does not lie in the kernel of Df(c) then DuF(c) = 0
and Duf(c) ∕= 0. Moving infinitesimally in the direction u or −u allows us
to stay in X up to the first order but increase or decrease the value of f . A
formal proof follows.

Proof. By the Implicit Function Theorem (Theorem 8.10) the equation
F(x) = 0 implicitly expressesm passive variables in terms of n−m active vari-
ables in some neighbourhood U of c. Write c = (a,b), where a ∈ Rm corre-
sponds to the passive variables. There is a function g such that c = (g(b),b)
and Φ(z) = (g(z), z) locally parameterizes X near c, that is F(Φ(z)) = 0
in a neigbourhood W of b. The point c is a local optimum of f over X if
and only if b is a local optimum of f ◦ Φ. Indeed, if f(c) has the optimal
value in some neighborhood U ′ ∩ X of c in X (say U ′ ⊂ U) if and only if
(f ◦Φ)(b) has the optimal value in some neighborhood W ′ ⊂ W . Now we use
the necessary condition for unconstrained optimization. An optimum must
necessarily satisfy D(f ◦ Φ)(b) = 0. Using the chain rule, we get

D(f ◦ Φ)(b) = Df(Φ(b)) ◦DΦ(b) = Df(c) ◦DΦ(b).

For this to be a zero transformation, the image of DΦ(b) must be contained in
the kernel of Df(c), Im(DΦ(c)) ⊂ ker(Df(c)). To finish the proof it is enough
to show that Im(DΦ(c)) = ker(DF(c)). Writing A = JF(a,b) we get
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JΦ(b) =


Jg(b)
In−m


(8.5)
=


−A−1

y Az

In−m



and therefore

(h,k) ∈ Im(DΦ(b)) ⇐⇒ h = −A−1
y ·Az · k ⇐⇒ [Ay | Az]


h
k


= 0.

This last condition is equivalent to (h,k) ∈ ker(JF(c)) and so Im(DΦ(b)) =
ker(DF(c)). ⊓⊔

This gives the following fundamental theorem of constrained optimization.

Theorem 9.4. (Lagrange multipliers) With assumptions like in Theorem 9.3.
If c ∈ X is a local optimum of f restricted to X then there exist numbers
λ1, . . . ,λm such that:

∇f(c) = λ1∇F1(c) + · · ·+ λm∇Fm(c).

In other words c is a stationary point of the Lagrangian function

L(x;λ) = f(x)−
m

i=1

λiFi(x).

Proof. By Theorem 9.3, if c is a local optimum over X then ker(JF(c)) ⊂
ker(Jf(c)), where JF(c) ∈ Rm×n is the Jacobian matrix of F and Jf(c) ∈ R1×n

is (up to transposition) the gradient of f . Recall (5.3), which implies

Im(JF(c)T)⊥ ⊂ Im(Jf(c)T)⊥.

This, by Lemma 5.3, is equivalent to

Im(Jf(c)T) ⊂ Im(JF(c)T),

which happens if and only if ∇f(c) = JF(c)Tλ for some λ ∈ Rm. ⊓⊔

Example 9.6. Suppose we want to maximize f(x, y) = x + y over the ellipse
x2+2y2 = 1. We have F (x, y) = x2+2y2−1, JF(x, y) = [2x, 4y], and Jf(x, y) =
[1, 1]. At critical points there must exist λ such that [1, 1] = λ[2x, 4y], which
implies that the solution must be of the form

x = 1
2λ , y = 1

4λ .

Plugging this into the constraint gives λ = ±


3
8 . It implies that there are

two candidates for local optima

(x, y) = ±


2
3 ,


1
6


.
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It turns out that one of these points corresponds to the maximum, which is
3
2 and the minimum −


3
2 .

Example 9.7. To find the maximum of the function x1x2 · · ·xn subject to the
constraint

x2
1 + 2x2

2 + · · ·+ nx2
n = 1,

define first yi =
√
ixi. Then the problem is equivalent to maximizing

1√
n!


i yi over the sphere y21 + · · · + y2n = 1. First note that the maximum

point contains no zeros because then the value of the function is zero, which
is clearly not optimal. By the Lagrange theorem (we easily check it can be
used), the optimum for every j must satisfy that 1√

n!


i ∕=j yi = 2λyj , λ ∈ R.

In other words (because we can assume yj ∕= 0), 1√
n!


i yi = 2λy2j and, in

particular, all y2i must be equal. So all the optima are of the form yi = ± 1√
n
.

The maxima correspond to the sign pattern such that the product is positive.
The maximum value is 1√

n!nn



Chapter 10

Elementary measure theory (3 lectures)

This chapter was created to provide a crash course in measure theory. We
decided to omit many proofs. Some are kept to give the student a flavor of
the underlying mathematics. Our idea was to introduce basics of the general
measure theory with focus on the Legesgue and the probability measures.
For more in-depth treatment see, for example, “Probability and measure” by
Patrick Billingsley.

10.1 Motivation and measure spaces

Let X be a set. We are interested in defining a measure µ on the set of
subsets of X. We would like the measure to be a function which generalizes
length, area and volume in the familiar situations. So, for example, if X = R
then we would like the measure of the interval (a, b) to be its length b − a.
More generally, if X = Rk then we would like the measure of the k-cell
(a1, b1)× · · ·× (ak, bk) to be

k
i=1(bi − ai).

The first question to ask is what should be the defining properties of
a measure µ on X. An obvious thing is to require that µ(A) is always
nonnegative (but possibly infinite) and so µ takes values in [0,+∞] ⊂ R,
where R denotes the extended real-number system; c.f. Section 1.2. Moreover,
µ(A ∪ B) = µ(A) + µ(B) whenever A,B ⊂ X are disjoint. More generally,
for any countable family {An} of disjoint sets we require

µ

 ∞

n=1

An


=

∞

n=1

µ(An).

We say that µ is countably additive. For probability measures we also
require that µ(X) = 1.

95
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Remark 10.1. To understand countable sums note that for any real sequence
(xn)n∈N, we formally define

∞
n=1 xn as the limit, if exists, in R of the se-

quence sk =
k

n=1 xn. If xn ≥ 0 for all n ∈ N then this limit always exists.

Example 10.1. If X is finite, it is enough to specify µ({i}) for all i ∈ X and
then extend to other subsets of X by

µ(A) =


i∈A

µ({i}).

If µ({i}) = 1 we get so called counting measure.

A nice property of the finite case is that measure could be constructed by
specifying its value on some basic sets (singletons) and then extended to all
other sets by additivity. In general, this is much too much to ask for. Roughly
speaking, there are too many too complicated sets in X to have control over
what can happen. If X = R we have the following important impossibility
theorem.

Theorem 10.1 (Hausdorff). There is no measure defined on all subsets of
R that is invariant under translations.

It is standard in measure theory to focus on “nice” families of subsets of
X and defining measure over those. Importance of the following definition
will become clear soon.

Definition 10.1. A collection F of subsets of X is a σ-algebra if

(i) X ∈ F ,
(ii) A ∈ F then Ac ∈ F ,
(iii) A1, A2, . . . ∈ F then


n∈N An ∈ F .

For every X, F = {∅, X} is a σ-algebra called the trivial σ-algebra. If
X is finite and F is such that {i} ∈ F for all i ∈ X then F is equal to the set
of all subsets of X. In general, for every X, its power set 2X is a σ-algebra.

Exercise 10.1. Show that every σ-algebra is closed under countable inter-
sections: if A1, A2, . . . ∈ F then


n∈N An ∈ F .

From our perspective not all σ-algebras are interesting. We typically want
the measure to be explicitly defined on particular subsets (like intervals in R)
and then extended in a consistent way to as many other subsets as possible.
Exercise 10.2 allows us to define the smallest σ-algebra containing any fixed
collection A of subsets of X by simply taking the intersection of all σ-algebras
containing it.

Exercise 10.2. Consider an arbitrary family of σ-algebras Fλ, λ ∈ Λ. Show
that


λ∈Λ Fλ is also a σ-algebra.
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From Exercise 10.2 we conclude that, given any collection A of sets of X,
there exists a smallest σ-algebra, denoted by σ(A) that contains it. This σ-
algebra is given as the intersection of all σ-algebras containing A. Note that
there is always at least one such σ-algebra, namely the power set 2X . We say
that A generates σ(A). An important example comes next.

Definition 10.2. Let X be a metric space. The open sets of X generate a
σ-algebra B(X) called the Borel algebra.

Note that directly by definition B(X) must contain all open and all closed
subsets of X. However, it must also contain countable unions of closed sets
which are generally neither open nor closed. The Borel σ-algebra is actually
quite rich and it is hard to come up with set that does not lie in B(X)
(construction for X = R relies on the axiom of choice).

We finish this section formally defining a measure.

Definition 10.3. A measure is any nonnegative and countably additive
function defined on a σ-algebra F of sets of X.

Definition 10.4. Ameasure space is defined to be a triple (X,F , µ), where
X is a non-empty set, F is a σ-algebra of subsets of X, and µ is a measure
on F . The measure space is finite if µ(X) < +∞; it is σ-finite if X is a
countable union of sets on which µ is finite.

A probability space is defined to be a triple (Ω,F ,P) that forms a
measure space with an additional assumption that P(Ω) = 1. In this case Ω
is called the space of elementary events and F is the space of events.
For any A ∈ F the number P(A) is the probability that the event A occurs.
The normalizing equation P(Ω) = 1 just says that the event Ω is certain.

10.2 Lebesgue measure and Extension Theorem

The basic idea behind the Lebesgue measure is to construct a measure on
R such that for each bounded interval its measure is simply the length. Then
to extend this to as large class of subsets of R as possible. To introduce it
formally, we start with a general discussion.

Definition 10.5. A family R of sets is called a ring if A,B ∈ R implies that

A ∪B ∈ R and A \B ∈ R.

Since A ∩ B = A \ (A \ B), we also have A ∩ B ∈ R if R is a ring. Also,
∅ ∈ R but, in general, X does not have to lie in R.

Exercise 10.3. Show that every ring of subsets of X is closed under finite
unions, finite intersections, and symmetric difference.
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Definition 10.6. We say that ρ is a set function defined on a ring R of
subsets of X if ρ assigns to each A ∈ R a number ρ(A) of the extended real
number system R. We say that ρ is additive if A,B ∈ R, A∩B = ∅ implies

ρ(A ∪B) = ρ(A) + ρ(B).

Moreover, ρ is countably additive if for any family of sets An ∈ R, n ∈ N,
such that Ai ∩Aj = ∅ for all i ∕= j and


n An ∈ R we have that

ρ

 ∞

n=1

An


=

∞

n=1

ρ(An).

We say that ρ is nonnegative if its values lie in [0,+∞].

Note if ρ is additive then ρ(∅) = ρ(∅) + ρ(∅) and so ρ(∅) = 0.

Remark 10.2. Our goal is to define a nonnegative countably additive function
on R and then to extend it to a nonnegative countably additive function on
the σ-algebra σ(R) generated by R.

Exercise 10.4. Show that if ρ is an additive set function onR andA1, . . . , AN

are pairwise disjoint sets in R then

ρ


N

n=1

An


=

N

n=1

ρ(An).

Proposition 10.1. An additive and nonnegative set function ρ on a ring R
of sets has the following properties for any two A,B ∈ R:

(a) ρ(A ∪B) + ρ(A ∩B) = ρ(A) + ρ(B).
(b) If ρ(A) < +∞ then ρ(A ∩B) < +∞.
(c) If ρ(A ∩B) < +∞, then ρ(A \B) = ρ(A)− ρ(A ∩B).
(d) If B ⊂ A then ρ(B) ≤ ρ(A).

Proof. In the proof we use the fact that for A,B ∈ R also A\B, B \A, A∩B
lie in R.
(a) Decompose A ∪ B as the disjoint union of A \ B, B \ A, and A ∩ B. All
these sets lie in R so ρ(A∪B)+ρ(A∩B) = ρ(A\B)+ρ(B \A)+2ρ(A∩B).
The same equality holds for ρ(A)+ρ(B) by using the disjoint decompositions
A = (A \B) ∪ (A ∩B) and B = (B \A) ∪ (A ∩B).
(b) Decompose A = (A\B)∪(A∩B) and use the fact that ρ(A\B)+ρ(A∩B)
is a finite number to conclude that both ρ(A∩B) and ρ(A\B) must be finite.
(c) Again decompose A = (A\B)∪(A∩B) to get ρ(A\B)+ρ(A∩B) = ρ(A).
If ρ(A∩B) < +∞, we can subtract it from both sides of this equation (even
if some other quantities are not finite).
(d) Decompose A = B ∪ (A \B) to get that ρ(A) = ρ(B) + ρ(A \B). ⊓⊔
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Proposition 10.2. If ρ is nonnegative and countably additive on R and
A,A1, A2, . . . are sets in R such that A ⊂

∞
n=1 An, then ρ(A) ≤

∞
n=1 ρ(An).

Proof. Let Bn = An\
n−1

k=1 Ak


and note that Bn ∈ R. Then A =

∞
n=1(A∩

Bn) is a disjoint decomposition. Since ρ is countably additive and A ∈ R,
ρ(A) =

∞
n=1 ρ(A∩Bn). By Proposition 10.1(d), ρ(A∩Bn) ≤ ρ(Bn) ≤ ρ(An).

It follows that ρ(A) =
∞

n=1 ρ(A ∩Bn) ≤
∞

n=1 ρ(An). ⊓⊔

We are finally ready to present the construction of the Legesgue measure
on X = R. The construction for general Rk is similar. Let E be the set
of elementary sets of R, that is, the sets which are finite disjoint unions
of bounded intervals in R of the form (a, b] where −∞ < a ≤ b < +∞.
Therefore, if A ∈ E then A = I1∪. . .∪In is a disjoint union where Ii = (ai, bi].
We will always a convention that I1, . . . , In are ordered from the left to the
right, that is, a1 < a2 < · · · < an.

Lemma 10.1. E forms a ring of sets.

Proof. Let A,B ∈ E , that is, A = I1 ∪ · · · ∪ Im, B = J1 ∪ · · · ∪ Jn where
Ii ∩ Ij = ∅, Ji ∩ Jj = ∅ for all i, j and Ii, Jj are of the form (a, b]. To show
that A \B lies in E note that

A \B = A ∩Bc =

m

i=1

(Ii ∩Bc)

is a disjoint union. It is then enough to show that each Ii∩Bc lies in E . Write
Ii = (a, b], Jj = (aj , bj ] then

Ii ∩Bc = (a, b] ∩

(−∞, a1] ∪

n−1

j=1

(bj , aj+1] ∪ (bn,+∞)


Using the distributive law we conclude that Ii ∩ Bc is a disjoint union of
intervals of the given form. This shows that A \ B lies in R. To show that
A∩B lies in R decompose it into the disjoint union (A\B)∪(A∩B)∪(B\A).
By the first part of the proof, it is enough to show that A ∩B lies in R. We
have A∩B =


i,j(Ii ∩ Jj) which is a disjoint union. Moreover, each Ii ∩ Jj

is an interval of the form (a, b]. ⊓⊔

There is an obvious way to define a nonnegative and additive set function
m on the ring E . If A ∈ E then A =

n
i=1 Ii, where Ii are bounded and

disjoint intervals, Ii = (ai, bi]. Let m(Ii) = bi − ai and

m(A) = m(I1) + . . .+m(In).

We first show that this set function is well-defined.
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Lemma 10.2. If A has two representations as finite unions of disjoint
bounded intervals, that is, A =

m
i=1 Ii =

n
j=1 Jj, then


i m(Ii) =

j m(Jj).

Proof. Let Jj = (aj , bj ]. If m = 1, A = (a, b] then a1 = a, bn = b, and
bi = ai+1 for all i = 1, . . . , n− 1. It follows that

n

j=1

m(Jj) = (b1 − a1) + (b2 − a2) + · · ·+ (bn − an) = bn − a1 = b− a.

In the general case, when m ≥ 1, we use the fact that Jj ⊂
m

i=1 Ii and so
Jj =

m
i=1(Ii ∩Jj) is a disjoint union of intervals (each Ii ∩Jj is an interval),

which gives that m(Jj) =
m

i=1 m(Ii ∩ Jj) and so



j

m(Jj) =

n

j=1

m

i=1

m(Ii ∩ Jj).

We get the same equality decomposing each Ii as Ii =
n

j=1(Ii ∩ Jj). ⊓⊔

Suppose now that A =
∞

n=1 An where An and disjoint sets in E . If A ∈
E , do we also have m(A) =


n m(An)? The following fundamental result

implies that this holds, or in other words that m is countably additive.

Proposition 10.3. The function m is countably additive on E.

Before we prove this result, we need a short discussion of regularity.

Definition 10.7. A nonnegative additive set function defined on E is said to
be regular if for every A ∈ E and  > 0 there exist a closed set F and an
open set G in E such that F ⊂ A ⊂ G and

m(G)−  ≤ m(A) ≤ m(F ) + .

Lemma 10.3. The set function m is regular.

Proof. Let A ∈ E . If A = (a, b], we take G = (a − /2, b + /2) and F =
[a+ /2, b− /2] (or F = ∅ if b− a ≤ ). In the general case, A is a union of
N intervals Ii. Choose Gi, Fi as above but replacing  with /n and let F =

i Fi, G =


i Gi. Both F and G lie in E . Moreover, m(F ) =
n

i=1 m(Fi) ≥
(m(Ii)− /n) = m(A)− , and, by Proposition 10.2, m(G) ≤

n
i=1 m(Gi) ≤n

i=1(m(Ii) + /n) = m(A) + .
⊓⊔

Proof of Proposition 10.3. Let {An} be a sequence of disjoint sets in E with
union A in E . Since m is nonnegative and additive, by Proposition 10.1(d),

m(A) ≥ m(

n

i=1

Ai) =

n

i=1

m(Ai) for every n ∈ N.
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Passing to the limit we get m(A) ≥
∞

i=1 m(Ai). For the reverse inequality,
fix  > 0. By regularity of m there exists a closed set F ∈ E and open Gn ∈ E
such that F ⊂ A,An ⊂ Gn for all n,m(F ) ≥ m(A)−, andm(Gn) ≤ m(An)+
/2n. Then F ⊂

∞
n=1 Gn, and compactness implies covering compactness

(c.f. Theorem 4.9) and so F ⊂
N

n=1 Gn for some N . Hence,

m(A)−  ≤ m(F ) ≤
N

i=1

m(Gn) ≤
N

n=1

(m(An) + /2n) ≤
∞

n=1

m(An) + .

Since  is arbitrary, m(A) ≤
∞

n=1 m(An), and the proposition follows. ⊓⊔

Suppose now that A =
∞

n=1 An where An are disjoint sets in E but A /∈ E .
Can we still sensibly define m(A) as


n m(An)? Slightly more generally, can

we extend m to measure on the σ-algebra σ(E)? Before we show that this
can be done we show that σ(E) is really the Borel σ-algebra.

Proposition 10.4. σ(E) = B(R).

Proof. In Exercise 2.16 we have proven that each open set in R is a countable
union of open intervals. Each open interval is a countable union of intervals
of the form (a, b]. Indeed,

(a, b) =


n∈N
(a, b− 1

n ].

This implies that B(R) ⊂ σ(E). For the opposite inclusion we show that E ⊂
B(R). For this, it is enough to show that each interval of the form (a, b] lies
in B(R), which follows because B(R) is closed under countable intersections
and

[a, b) =


n∈N
(a− 1

n , b).

. ⊓⊔

We would like to use this construction to define a measure on the σ-algebra
B(R). The extension is carried out by the general Extension Theorem. We
formulate this theorem more generally for countably additive set functions
ρ that are σ-finite on R, that is, each set in R is contained in a countable
union of sets in R on which ρ is finite. The ring E obviously satisfies this
property.

Theorem 10.2 (Carathéodory’s Extension Theorem). A σ-finite non-
negative and countably additive set function on a ring R has a unique exten-
sion to a measure µ on σ(R).

The construction of the measure µ in the extension theorem goes as follows.
To every subset E ⊂ X we define its outer measure
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µ∗(E) = inf

∞

n=1

µ(An),

where An ∈ R and the inf is taken over all countable coverings of E by sets
in R. It is clear that µ∗(E) ≥ 0 and µ∗(A) ≤ µ∗(E) if A ⊂ E. It is also clear
that µ∗(A) = µ(A) for all A ∈ R. The proof of the Extension Theorem relies
on carefully showing that µ∗ is a countably additive function on σ(R) and
that µ∗ is a unique such function. We omit the detailed proof.

Example 10.2. In case of the Lebesgue measure, every countable set has mea-
sure zero. But there are uncountable sets of measure zero. The Cantor set
may be taken as example. Let E0 = [0, 1]. Remove the segment ( 13 ,

2
3 ), and let

E1 be the resulting union of intervals E1 = [0, 1
3 ]∪ [ 23 , 1]. Remove the middle

thirds of these intervals to get

E2 = [0, 1
9 ] ∪ [ 29 ,

3
9 ] ∪ [ 69 ,

7
9 ] ∪ [ 89 , 1].

Continuing in this way, we obtain a sequence of compact sets En such that

(a) E1 ⊃ E2 ⊃ E3 ⊃ . . . ,
(b) En is the union of 2n intervals, each of length 3−n.

The nonempty compact set C =
∞

n=1 En is called the Cantor set. It can be
shown that

C =

 ∞

n=1

an

3n : an ∈ {0, 2}

.

In other words C is in bijection with infinite 0/2 sequences. By the same
argument as in Theorem 2.2 conclude that C is not countable. Nevertheless,
C has Lebesque measure zero. It is easily seen that for every n ∈ N

m(En) =

2
3

n

and since C =

En, C ⊂ En for every n, so that m(C) = 0.

10.3 Measurable functions and Lebesgue integral

Consider the measure space (X,F , µ). The sets in F are called the measur-
able sets.

Definition 10.8. A function f : X → R is measurable if

fpre((−∞, t]) = {x ∈ X : f(x) ≤ t}.

is measurable for any t ∈ R.
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Exercise 10.5. Show that if f is measurable then {x ∈ X : f(x) < t},
{x ∈ X : f(x) ≥ t}, {x ∈ X : f(x) > t}, and {x ∈ X : f(x) = t} are all
measurable for all t ∈ R.

Exercise 10.6. Show that f is measurable if and only if the preimage of any
Lebesgue-measurable set in R is measurable. Compare this with an alterna-
tive definition of continuity in Theorem 3.8. It is now clear how to define
measurable functions between any two measure spaces, right?

If F = {∅, X} then only the constant functions are measurable. In fact
the constant functions are always measurable for any F . If F consists of all
subsets of X, then every function from X to R is measurable.

Exercise 10.7. Show that if f is measurable then λf and λ+ f (λ ∈ R) are
also measurable.

Exercise 10.8. Show that if f and g are measurable then max{f, g} and
min{f, g} are measurable. Conclude that f+(x) = max{f(x), 0}, f−(x) =
−min{f(x), 0}, and |f |(x) = |f(x)| are all measurable too.

Proposition 10.5. If f and g are measurable functions then the three sets

{x ∈ X : f(x) > g(x)}, {x ∈ X : f(x) ≥ g(x)}, {x ∈ X : f(x) = g(x)}

are all measurable.

Proof. Note that f(x) > g(x) is equivalent to f(x) > r > g(x) for some
r ∈ Q. The set

{x ∈ X : f(x) > g(x)} =


r∈Q


{x ∈ X : f(x) > r} ∩ {x ∈ X : g(x) < r}



is then measurable as a countable union of measurable sets. It follows that
the set

{x ∈ X : f(x) ≥ g(x)} = X \ {x ∈ X : g(x) > f(x)}

is measurable and so it the set

{x ∈ X : f(x) = g(x)} = {x ∈ X : f(x) ≥ g(x)} ∩ {x ∈ X : g(x) ≥ f(x)}.

⊓⊔

Exercise 10.9. Show that if f and g are measurable then f + g, and fg are
all measurable.

Exercise 10.10. Show that if {fn} is a sequence of measurable functions
then f(x) = supn fn(x) and g(x) = infn fn(x) are measurable.
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Note that measure has not been mentioned in our discussion of measurable
functions. In fact, the class of measurable functions on X depends only on
the underlying σ-field.

We start our discussion of the Lebesgue integral with the following defini-
tion.

Definition 10.9. Let s be a real-valued function defined on X. If the range
of s is finite, we say that s is a simple function.
Let A ⊂ X and put

χA(x) =


1 x ∈ A,

0 x /∈ A.

χA is called the characteristic function of A.

Suppose the range of s consists of the distinct numbers c1, . . . , cn. Let

Ai = {x : s(x) = ci}.

Then

s(x) =

n

i=1

ciχAi(x),

that is, every simple function is a finite linear combination of characteristic
functions. Note that by construction A1, . . . , An are disjoint and their union
is X, hence it forms a partition of X.

Exercise 10.11. Show that s(x) =
n

i=1 ciχAi
(x) is measurable if and only

if each Ai is measurable.

We will use the fact that every function can be approximated in a suitable
sense by simple functions.

Theorem 10.3. Let f : X → R. There exists a sequence {sn} of simple
functions such that ∀x ∈ X sn(x) → f(x) as n → ∞. If f is measurable,
{sn} may be chosen to be a sequence of measurable functions. If f ≥ 0, {sn}
may be chosen to be a monotonically increasing sequence.

Proof. If f ≥ 0 define for every n ∈ N, i = 1, 2, . . . , n2n

Ani =

x : i−1

2n ≤ f(x) < i
2n


, Fn = {x : f(x) ≥ n}.

Put

sn(x) =

n2n

i=1

i−1
2n χAni(x) + nχFn(x).

For a fixed x, if n is sufficiently big, we have |sn(x) − f(x)| < 1
2n , which

proves pointwise convergence. In the general case, let f = f+−f− and apply
the preceding construction to f+ and f−. ⊓⊔
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We shall now define integration on a measurable space (X,F , µ). The main
examples are (R,B(R),m) or a probability space. It is hopefully clear how
the integral over A ∈ B(R) of a simple function s should be defined. Suppose

s(x) =

n

i=1

ciχAi(x) (ci ≥ 0)

is measurable and suppose A ∈ F . We define

IA(s) :=

n

i=1

ciµ(A ∩Ai).

Exercise 10.12. Let s, s̃ be two nonnegative measurable simple functions
on X. Show that s̃ ≤ s implies that s − s̃ is also a nonnegative measurable
simple function on X. Further, show that IA(s̃)+IA(s− s̃) = IA(s). Conclude
that IA(s + s̃) = IA(s) + IA(s̃) for any two nonnegative measurable simple
functions s, s̃ on X.

Like in the case of the Lebesgue measure, now the idea is to extend this
definition to general measurable functions. If f is measurable and nonnega-
tive, we define the Lebesgue integral of f , with respect to the measure
µ, over the set A as 

A

fdµ = sup IA(s),

where the sup is taken over all measurable simple functions s such that 0 ≤
s ≤ f . Note that the integral may have value +∞.

The following exercise shows that the Lebesgue integral satisfies the first
obvious property. Make sure you understand why.

Exercise 10.13. Show that if s ≥ 0 is a simple measurable function then
A
sdµ = IA(s).

If f is not nonnegative, then the above construction gives

E
f+dµ and

E
f−dµ (both f+ and f− are measurable by Exercise 10.8). If at least one

of these integrals is finite we define



A

fdµ =



A

f+dµ−


A

f−dµ.

If both integrals are finite, then

A
fdµ is finite and we say that f is inte-

grable (or summable) on A in the Lebesgue sense, with respect to µ; we
write f ∈ L(µ) on A. If µ = m, the usual notation is: f ∈ L on A.

Exercise 10.14. Let X = {1, 2, 3}, F = 2X , and let µ be the counting
measure on X. Show that for any function f : X → R



A

fdµ =


i∈A

f(i).
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The best strategy for proving many properties of integrals is by first show-
ing that they hold for nonnegative basic functions. Then for general nonnega-
tive measurable functions and finally for any measurable function by writing
f = f+ − f−.

Example 10.3. We will show that if f ∈ L(µ) on A then

A
cfdµ = c


A
fdµ

for every c ∈ R. If f =


i ciχAi is a simple nonnegative and measurable
function then so is cf and

IA(cf) =


i

cciµ(A ∩Ai) = c


i

ciµ(A ∩Ai) = cIA(f).

If f is nonnegative then



A

cfdµ = sup
s≤cf

IA(s) = sup
s≤f

IA(cs) = c sup
s≤f

IA(s) = c



A

fdµ.

Finally, if f is any measurable function then

cf+dµ = c


f+dµ and

cf−dµ = c

f−dµ and so


cfdµ =


cf+dµ−


cf−dµ = c


f+dµ− c


f−dµ = c


fdµ.

The proof of the following result will be left as an exercise.

Proposition 10.6. The following properties of the Lebesgue integral hold.

(a) If f is measurable and bounded on A, and if µ(A) < +∞, then f ∈ L(µ).
(b) If a ≤ f(x) ≤ b for all x ∈ A, and µ(A) < +∞, then

aµ(A) ≤


A

fdµ ≤ bµ(A).

(c) If f, g ∈ L(µ) on A, and if f(x) ≤ g(x) for x ∈ A, then



A

fdµ ≤


A

gdµ.

(d) If µ(A) = 0 and f is measurable then

A
fdµ = 0.

(e) If f ∈ L(µ) on E, A ∈ F , and A ⊂ E, then f ∈ L(µ) on A.
(f) Suppose f is measurable on A, |f | ≤ g, and g ∈ L(µ) on A. Then f ∈ L(µ)

on A.

Two fundamental tools in the theory of Lebesgue integrals are the Lebesgue’s
monotone convergence theorem and the Lebesgue’s dominated convergence
theorem. They both provide a list of conditions under which for a sequence
(fn) of measurable functions it holds that

lim
n→∞



A

fndµ =



A

fdµ, (10.1)
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where A ∈ F and f is the pointwise limit of the sequence (fn), that is,
f(x) = limn→+∞ fn(x).

Theorem 10.4 (Lebesgue’s monotone convergence theorem). If the
sequence (fn) satisfies 0 ≤ f1(x) ≤ f2(x) ≤ · · · for all x ∈ A then (10.1)
holds.

Theorem 10.5 (Lebesgue’s dominated convergence theorem). If there
exists a function g ∈ L(µ) on A, such the sequence (fn) satisfies |fn(x)| ≤
g(x) for all n ∈ N and x ∈ A then (10.1) holds.

Suppose A = [a, b], µ is the Lebesgue measure, and F = B(R). Instead of
A
fdµ it is customary to use the familiar notation

 b

a

f(x)dx.

Recycling the standard notation introduces no ambiguity: In this case when
the standard (Riemann) integral exists the Lebesgue integral also exists and
both integrals are equal. However, the Lebesgue integral is defined for a much
wider class of functions.

Example 10.4. Let f be a function on R such that f(x) = 1 is x ∈ Q and
f(x) = 0 if x ∈ R \Q. The Riemann integral does not exists. The fact that Q
is countable implies both that it is measurable and that the Lebegue integral
exists and it is equal to zero.

10.4 Probability spaces

Suppose (Ω,F ,P) is a probability space then a measurable function Y : Ω →
R is called a random variable. By definition, the function FY : R → [0, 1]
given by

FY (t) = P({ω ∈ Ω : Y (ω) ≤ t}) = P(Y ≤ t),

is well defined. The function FY is called the cumulative distribution
function. The mapping Y : (Ω,F) → (R,B(R)) allows to transport proba-
bility measure P from an abstract space Ω to R.

Definition 10.10. A probability distribution on R is any probabilistic
measure µ on B(R). A probability distribution of a real-valued random
variable Y is the probability distribution µY , defined on B(R) by

µY (B) = P({ω ∈ Ω : Y (ω) ∈ B}) = P(Y ∈ B), B ∈ B(R).

One of the most fundamental results of probability relies on the following
exercise.
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Exercise 10.15. Show that B(R) is generated by intervals of the form
(−∞, t] for t ∈ R. Conclude that the cumulative distribution function FY

uniquely identifies the distribution µY .

Definition 10.11. The σ-field generated by the sets {ω : Y (ω) ≤ t} is called
the σ-field generated by Y . This is the smallest σ-field with respect to
which Y is a measurable function. We write

σ(Y ) = {{ω ∈ Ω : Y (ω) ∈ A} : A ∈ B(R)}.

Definition 10.12. If µ is a probability distribution on R and for some func-
tion f : R → R, f ∈ L, we have

µ(A) =



A

f(x)dx, A ∈ B(R),

then f is called the density function of the distribution µ. A probability
distribution that has a density is called continuous.

Let X be a nonempty set, and let F be a σ-algebra of subsets of X. If µ
and ν are measures defined on F , we say that ν is absolutely continuous
with respect to µ, written ν << µ, if µ(A) = 0 implies ν(A) = 0.

Exercise 10.16. Show that a probability distribution of a continuous ran-
dom variable is absolutely continuous with respect to the Lebesgue measure
on R.

Theorem 10.6 (Radon-Nikodym Theorem). Let (X,F , µ) be a σ-finite
measure space, and let ν be a σ-finite measure on F with ν << µ. Then there
exists a measurable f ≥ 0 such that ν(A) =


A
fdµ for all A ∈ F , and f is

unique up to a set of µ-measure zero.

One of the main applications of the Radon-Nikodym theorem is to assure
existence of density functions for continuous random variables. Here µ is the
Lebesgue measure on the image of Y and ν is the

Exercise 10.17. Show that if the probability distribution µ has an atom,
that is, µ({y}) > 0 for some y ∈ R, then µ is not absolutely continuous with
respect to the Lebesgue measure.



Chapter 11

Convex geometry (2 lectures)

Convexity plays an important role in modern statistics and economics. One of
the prominent examples is the importance of convex optimization. Although
convex optimization is beyond the scope of these lectures, we want to present
basics of convex geometry. We will present applications in game theory.

11.1 Convex sets

A set C ⊆ Rk is convex if for any two points x, y ∈ C

zλ := (1− λ)x+ λy ∈ C

for all λ ∈ (0, 1). The point zλ can be rewritten as zλ = x+ λ(y − x) so, as
λ varies from 0 to 1, zλ moves from x to y along the segment joining x and
y. This gives a geometric interpretation of convex sets: these are sets such
that for any two points in the set, the segment between these two points is
contained in the set.

Definition 11.1. A linear combination λ0x0 + λ1x1 + · · ·+ λnxn of vectors
x0,x1, . . . ,xn in Rk is called an affine combination if the coefficient satisfy
λ0 + λ1 + · · ·+ λn = 1.

For example, the set of all affine combinations of any two given vectors
x1,x2 is the line crossing x1,x2.

Definition 11.2. A convex combination of x0, . . . ,xn is an affine combi-
nation where, in addition, λ0,λ1, . . . ,λn ≥ 0. A convex combination is strictly
positive if all coefficients are strictly positive.

We write ∆n+1 for the set of all convex coefficients and ∆◦
n+1 for its subset

of strictly positive coefficients. In symbols

109
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∆n+1 = {(λ0, . . . ,λn) ∈ Rn+1 : λ0, . . . ,λn ≥ 0 and

n

i=0

λi = 1}, (11.1)

and ∆◦
n+1 = {(λ0, . . . ,λn) ∈ ∆n+1 : λ0, . . . ,λn > 0}. The set ∆n+1 is called

the standard n-simplex.
Given a subset A ⊂ Rk, its convex hull conv(A) is a subset of Rk given

by all (finite) convex combinations of elements of A. More precisely conv(A)
is the set of points x such that for some n ∈ N, points x0, . . . ,xn ∈ A, and
coefficients (λ0, . . . ,λn) ∈ ∆n+1

x = λ0x0 + λ2x2 + · · ·+ λnxn.

Example 11.1. The standard n-simplex ∆n+1 ⊂ Rn+1 is the convex hull of
{e0, . . . , en}, the canonical basis of Rn

∆n+1 = conv{e0, . . . , en}. (11.2)

Exercise 11.1. Show that the intersection of an arbitrary family of convex
sets is convex.

Exercise 11.2. For any two sets C,D ⊂ Rk, define their Minkowski sum
C +D as

C +D = {x+ y ∈ Rk : x ∈ C,y ∈ D}.

Show that, if C,D are convex then C +D is.

Theorem 11.1 (Caratheodory’s Theorem). Let A ⊂ Rk. If x ∈ conv(A)
then x can be written as a convex combination of no more than k+1 points
in A.

Proof. Suppose that x ∈ conv(A) and x =
n

i=0 λixi for n > k (otherwise
there is nothing to prove), where λi are nonnegative and sum to 1. Then
x1 − x0, . . . , xn − x0 are linearly dependent so there exist α1, . . . ,αn not all
zero such that

α1(x1 − x0) + · · ·+ αn(xn − x0) = 0k.

If α0 := −(α1 + · · ·+ αn) then

α0x0 + α1x1 + · · ·+ αnxn = 0k.

Because α0+α1+ · · ·+αn = 0, at least one of these numbers is positive. We
have

x =

n

i=0

λixi − t

n

i=0

αixi =

n

i=1

(λi − tαi)xi.

Since it holds for any t, take
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t∗ = min
i


λi

αi
: αi > 0


=

λj

αj
.

Note that t∗ > 0 and for all i = 0, . . . , n (λi − t∗αi) ≥ 0 and λj − t∗αj = 0.
This shows that x =


i(λi − t∗αi)xi is a convex combination that has at

most n− 1 terms with nonzero coefficients. ⊓⊔

Proposition 11.1. If A ⊂ Rk is open, then conv(A) is open.

Proof. We will show that every x ∈ conv(A) is an interior point. By definition
x = λ0x0+ · · ·+λnxn for some n and points x0, . . . ,xn ∈ A. Since A is open,
for each i = 0, . . . , n there exist open neighbourhoods Nri(xi) ⊂ A. Take
r = min{r0, . . . , rn}. If y < r then xi + y ∈ Nri(xi) and so they all lie in
A. Therefore

x+ y = (


i

λixi) + (


i

λi)y =


i

λi(xi + y) ∈ conv(A).

In other words Nr(x) ⊂ conv(A). ⊓⊔

If A is closed then conv(A) is not necessarily closed. As an example con-
sider

A =

(x, y) ∈ R2 : y ≥

 1
x

 .

A is closed but conv(A) = R × (0,∞) is not. Nevertheless, we have the
following theorem.

Theorem 11.2. If A ⊂ Rk is compact then conv(A) is compact.

Proof. By Caratheodory’s theorem the map ∆k+1 × Ak+1 → conv(A) given
by

(λ0, . . . ,λk,x0, . . . ,xk) → λ0x0 + · · ·+ λkxk

is onto. It is also continuous as a polynomial (quadratic) map. By Corol-
lary 4.1 a Cartesian product of compact spaces is compact and so∆k+1×Ak+1

is compact if A is. By Theorem 4.10 this then implies that conv(A) is com-
pact. ⊓⊔

Exercise 11.3. Show that if C is convex, then the closure C and the interior
C◦ are also convex.

Definition 11.3. The points x0, . . . ,xn ∈ Rk are affinely independent if
λ0x0 + λ1x1 + . . . + λnxn = 0k and λ0 + λ1 + . . . + λn = 0 imply that
λ0 = λ1 = . . . = λn = 0.

Exercise 11.4. Show that x0,x1, . . . ,xn ∈ Rk are affinely independent if
and only if x1 − x0, . . . , xn − x0 are linearly independent. In particular, if
x0, . . . , xn are affinely independent then n ≤ k.
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The convex hull of a collection of n + 1 affinely independent points is
called an n-simplex. For example, a 0-simplex is a point, and a 1-simplex is
a segment joining two points. An important example is given by the standard
n-simplex in ∆n+1 ⊂ Rn+1, see (11.2).

The following important result states that the representation of any y in
an n-simplex as a convex combination of its generators y =


i λixi is unique.

These λi’s are called the barrycentric coordinates of y.

Theorem 11.3. Let x0, . . . ,xn be affinely independent. For any y in the
convex hull conv({x0, . . . ,xn}) there is a unique set of convex coefficients
λ0, . . . ,λn such that y =

n
i=0 λixi.

Proof. Assume that y =


i λixi =


i µixi. Then


i(λi − µi)xi = 0k and
i(λi − µi) = 0 (1− 1 = 0) so by affine independence λi = µi for all i. ⊓⊔

It is a simple exercise to show that every n-simplex S = conv{x0, . . . ,xn} ⊂
Rk is homeomorphic to the standard n-simplex. This is such an essential re-
sult that we formulate it as a theorem.

Theorem 11.4. Any n-simplex T = conv({x0, . . . ,xn}) ⊂ Rk is homeomor-
phic to ∆n+1.

Proof. For any λ = (λ0, . . . ,λn) ∈ ∆n+1 define

h(λ) = λ0x0 + . . .+ λnxn.

This map is linear and so continuous. It is bijective by Theorem 11.3. The
inverse is continuous by Theorem 4.12 because ∆n+1 is compact. ⊓⊔

If S = conv({x0, . . . ,xn}) is an n-simplex and {i0, . . . , im} ⊂ {0, . . . , n}
then conv({xi0 , . . . ,xim}) is called a (m-dimensional) face of S. Theorem 11.3
implies that for each y ∈ S we can read off the the smallest face containing
y uniquely from its barricentric coordinates.

11.2 Minimum distance and separation

Given a subset C ⊂ Rk we define the distance to C function dC : Rk → R
by

dC(x) := inf
y∈C

x− y.

This function is well defined because for every x ∈ Rk the set {x−y : y ∈
C} ⊂ R is bounded from below (by zero) and so its infimum is well-defined.
The following result is fundamental for many applications of convex analysis.

Theorem 11.5 (Minimum distance to a set).
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(1) Let E,F ⊂ Rk. Then dF : E → R is a continuous function.
(2) If F is closed, then

∀x ∈ E ∃y ∈ F such that dF (x) = x− y.

(3) If F is also convex, for every x such y is unique in F .

Proof. (1) Let x1,x2 ∈ E. By the triangle inequality, x1−y ≤ x1−x2+
x2 − y. If y ∈ F then dF (x1) ≤ x1 − y and so

dF (x1) ≤ x1 − x2+ x2 − y.

Since the inequality holds for every y ∈ F . Take infimum over all y ∈ F
to get that dF (x1) ≤ x1 − x2 + dF (x2). In the same way, starting with
x2−y ≤ x1−x2+x1−y, conclude that dF (x2) ≤ x1−x2+dF (x1).
It follows that |dF (x1)−dF (x2)| ≤ x1−x2, which implies continuity of dF
(c.f. Exercise 3.3).

(2) Let x ∈ E and fix y0 ∈ F . We have f(x) ≤ x − y0 = r. Define F̃ =
F ∩Nr(x). Since F is closed and Nr(x) is compact, Theorem 4.5 implies that
F̃ is compact. Since x− y is a continuous function of y (c.f. Exercise ??),
Theorem 4.11 implies that there exists y1 ∈ F̃ such that infy∈F x − y =
x− y1.

(3) Let y1 and y2 in F be such that x − y1 = x − y2 = dF (x). Define
p = y2−y1 and h : [0, 1] → R by h(λ) = x−y1−λp2. We have h(0) = h(1)
and also, because F is convex, y1+λp ∈ F for λ ∈ [0, 1] and so h is minimized
at λ = 0 and λ = 1. Since h(λ) is a quadratic function with nonnegative
coefficient y1 − y22 of λ2, this is only possible if y1 = y2. ⊓⊔

Proposition 11.2. Let E,F ⊂ Rk with F closed and convex. Let g : E → F
be given by g(x) = arg infy∈F x− y. Then g is a well-defined and

g(x2)− g(x1) ≤ x2 − x1 for all x1,x2 ∈ E. (11.3)

In particular, g is a continuous function.

Proof. Because F is closed and convex, Theorem 11.5 assures that g is a
well-defined function, that is, for each x ∈ E there is a unique y ∈ F such
that g(x) = y. To show (11.3), take p = g(x2)− g(x1); c.f. Figure 11.1. The
set of points g(x1) + tp for t ∈ [0, 1] lies in F , by convexity, and so

h(t) = x1 − g(x1)− tp2

has a minimum at t = 0. This is a quadratic function in t with a strictly
positive coefficient of t2. The only way for such a function to have a minimum
at t = 0 is that its derivative at t = 0 is nonnegative, or, in other words, the
coefficient of t is nonnegative. This coefficient is −2〈p,x1 − g(x1)〉, which
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x1

x2

g(x1)

g(x2)

p

〈p, z− g(x1)〉 = 0

〈p, z− g(x2)〉 = 0

Fig. 11.1 Illustration of the proof of Proposition 11.2

implies that 〈p,x1 − g(x1)〉 ≤ 0. In a similar way, we show that 〈p,x2 −
g(x2)〉 ≥ 0. But these two inequalities imply that

〈p,x2 − x1〉 ≥ 〈p, g(x2)− g(x1)〉 = p2.

The Cauchy-Schwarz inequality gives that 〈p,x2−x1〉 ≤ px2−x1. This
implies that p ≤ x2 − x1, which is precisely (11.3).

⊓⊔

Definition 11.4. Let p ∈ Rk be such that p ∕= 0k, and c ∈ R. The corre-
sponding hyperplane in Rk is the set

{x ∈ Rk : 〈p,x〉 = c}.

The open half-space is the set

{x ∈ Rk : 〈p,x〉 < c},

and the closed half-space is the set

{x ∈ Rk : 〈p,x〉 ≤ c}.

We say that two sets A,B ⊂ Rk are strictly separated by a hyperplane if
there exists p ∕= 0k and c ∈ R such that for every x ∈ A, y ∈ B we have
〈p,x〉 < c < 〈p,y〉. The following theorem is one of the most important
results of convex geometry.

Theorem 11.6. Let C and K be disjoint non-empty convex sets in Rk. Let
C be closed and K compact. Then C and K are strictly separated by a hy-
perplane.
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Note that compactness of K is necessary. For example A = {x ∈ R2 :
x1 ≤ 0}, B = {x ∈ R2 : x1 > 0, x2 ≥ 1/x1} are closed but not strictly
separated.

Proof. By Theorem 11.5, dC(x) is a continuous real-valued function on K
and so, by Theorem 4.11, it achieves its minimum. Call it x0 ∈ K. By The-
orem 11.5(c) there is exactly one y0 ∈ C such that dC(x0) = x0 − y0. Set
p = x0 − y0. Then p ∕= 0k and 0 < p2 = 〈p,x0 − y0〉 so

〈p,x0〉 > 〈p,y0〉

so it suffices to show that 〈p,x〉 ≥ 〈p,x0〉 for every x ∈ K and 〈p,y〉 ≤ 〈p,y0〉
for all y ∈ C. We show the second, the first is similar and follows from
convexity. Let y ∈ C and set yλ = (1− λ)y0 + λy. Then

x0 − yλ = x0 − y0 − λ(y − y0) = p− λ(y − y0)

and so

x0 − yλ2 = p− λ(y − y0)2 =

= λ2y − y02 − 2λ〈p,y − y0〉+ p2.

This is a quadratic function of λ that achieves its minimum at λ = 0 (by con-
struction!). This implies that the derivative of this function at zero must
be nonnegative. This derivative is equal to the coefficient of λ which is
2〈p,y0 − y〉. This implies that 〈p,y〉 ≤ 〈p,y0〉 as claimed. ⊓⊔

Exercise 11.5. Show that each closed convex set is an intersection of closed
half-spaces.

11.3 Application: Von Neumann’s theorem

Formulation of von Neumann’s theorem marks the beginning of the game
theory. We will formulate the simplest possible version introducing first some
basic notation of the game theory. Let n ≥ 2 will be the number of players
in a game. Let Xi be the set of actions available to player i. The outcome is

(x1, . . . , xn) ∈ X1 × · · ·×Xn =: X.

We focus on strategic games, where payoffs depend on actions of other players.
Payoff of the i-th player is πi : X → R.

Suppose n = 2. We call the two players ’player I’ and ’player II’. A zero
sum game is when π1,π2 satisfy

π1(x1, x2) = −π2(x1, x2).
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A mixed strategy involves some kind of randomness. From now on assume
X1, X2 are finite withm and n elements respecively. Without loss of generality
let X1 = {1, . . . ,m}, X2 = {1, . . . , n}. Then a pair of mixed strategies for
the two players is p ∈ ∆m q ∈ ∆n. The payoff is given by the m× n matrix
A = [aij ], where aij = π1(i, j). We focus on the zero-sum games and so the
payoffs of player I are given by −A. The expected payoff of player I is

f(p,q) =

m

i=1

n

j=1

piqjaij = pTAq.

Player I has control over p but not over q. She wants to maximize f(p,q).

Theorem 11.7 (Minimax theorem for two-person zero-sum game).
For any matrix A ∈ Rm×n

V = max
p∈∆m

( min
q∈∆m

f(p,q)) = min
q∈∆n

( max
p∈∆m

f(p,q)).

Remark 11.1. Note that the minima and maxima are achieved by Theo-
rem 4.11.

Remark 11.2. You can read this theorem as follows: There is a mixed strategy
for player I such that her average gain is at least V no matter what player II
does.

To prove this theorem we will need a lemma.

Lemma 11.1. For any function

sup
p

inf
q

f(p,q) ≤ inf
q

sup
p

f(p,q).

Proof. For all p,q′ we have f(p,q′) ≥ infq f(p,q) so for all q′

sup
p

f(p,q′) ≥ sup
p

inf
q

f(p,q),

which implies the statement. ⊓⊔

Proof of the Theorem. By the previous lemma, it remains to prove that

Vmin := max
p∈∆m

( min
q∈∆m

f(p,q)) ≥ min
q∈∆n

( max
p∈∆m

f(p,q)) =: Vmax

Note that

Vmax = min
q

max
i=1,...,m

(Aq)i Vmin = max
p

min
j=1,...,n

(pTA)j .

To prove Vmin ≥ Vmax we show Vmin < t < Vmax is impossible for any t ∈ R.
Let A0 = [A− t11T |Im] be an m× (n+m) matrix. Let B be the convex hull
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of its columns. Then either: (i) 0 ∈ B, or (ii) 0 /∈ B.
If 0 ∈ B then there exists (λ,µ) ∈ ∆m+n with λ = (λ1, . . . ,λn), µ =
(µ1, . . . , µn)) such that

A0


λ
µ


= Aλ− t11Tλ+ µ = 0m.

Since µ ≥ 0m, it follows that Aλ ≤ t11Tλ. The above equation also implies
that λ ∕= 0n and so 1Tλ > 0. Defining q = 1

1Tλ
λ we get Aq ≤ t1. So there

exists q such that maxi=1,...,m(Aq)i ≤ t. This implies that Vmax ≤ t and so
in particular Vmin < t < Vmax is impossible.
Now suppose 0 /∈ B then we may use the separating hyperplane theorem
with K = {0}, C = B. According to this theorem there exists r ∈ Rm such
that for all columns a of A0: 〈a, r〉 > 0. Equivalently the vector

rTA0 = [rTA− trT11T | rT ]

has only positive entries. In particular, r has only positive entries and

rTA > trT11T .

Let p = r
rT 1

. Then pTA > t1T and so there exists p ∈ ∆m such that
minj(p

TA)j > t, which implies Vmin > t. In particular Vmin < t < Vmax is
impossible. Then it must be that Vmin ≥ Vmax. ⊓⊔





Chapter 12

Brouwer’s fixed point theorem (2 lectures)

In Section 8.3 we formulated the Banach fixed point theorem for contractions
on a compact set. In this section we provide other useful fixed point theorems
and we will illustrate their possible application in economics. We aim in this
chapter at proving the following result.

Theorem 12.1 (Brouwer’s fixed point theorem). Let K ⊂ Rk be a con-
vex and compact set and let f : K → K be a continuous function. Then f
has a fixed point.

In general, the proof of this result is long. However, if k = 1 the result is
elementary: Let f : [a, b] → [a, b] and define g(x) = f(x)− x. Then g(a) ≥ 0,
g(b) ≤ 0 and g is continuous, so by the intermediate value theorem g(a) = 0
for some a.

The proof’s idea: We will reduce the proof of the Brouwer’s fixed point
theorem to the proof of Theorem 12.3, where K is replaced with the standard
n-simplex ∆n+1 = conv{e0, . . . , en}. For this we will need a sequence of finer
and finer subdivisions of the standard simplex into smaller subsimplices such
that the diameters of the subsimplices converge to zero. Sperner’s lemma
will make sure that there is a descending sequence of smaller and smaller

subsimplices T (m) = conv{p(m)
0 , . . . ,p

(m)
n } with the property that the i-th

coordinate of p
(m)
i satisfies (p

(m)
i )i ≥ (f(p

(m)
i ))i (f(p

(m)
i is “further” from ei

then p
(m)
i ). Taking m → ∞ we argue this is possible only if f(z) = z where

z is the point satisfying


m T (m) = {z}.

12.1 Simplicial subdivisions of a simplex

Although there are many ways to do define a simplicial subdivision we will
stick to one very simple construction.

119
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Definition 12.1 (Very rough). Consider a subdivision of ∆n+1 obtained
by subdividing each edge into two equal parts. This gives 2n simplices, each
of which looks like 1

2∆n+1. In particular, the diameter of each of subsimplices

is
√
2
2 . We can iterate this process m times obtaining a subdivision into 2mn

subsimplices each of diameter
√
2

2m .

We will now present a formal way to construct this subdivision. Let T =
conv({e0, . . . , en}), where e0, . . . , en are affinely independent; they will be
the canonical vectors but our construction does not rely on this assumption.
In the barricentric coordinates every y ∈ T can be written as

y = λ0e0 + λ1e1 + . . .+ λnen λ0, . . . ,λn ≥ 0,

n

i=0

λi = 1.

The same point can be expressed in terms of

x0 = e0 x1 = e1 − e0 x2 = e2 − e1 . . . xn = en − en−1,

which leads to

y = (

n

i=0

λi)x0 + (

n

i=1

λi)x1 + (

n

i=2

λi)x2 + . . .+ λnxn. (12.1)

In other words

y = x0 + α1x1 + · · ·+ αnxn 1 ≥ α1 ≥ α2 ≥ · · · ≥ αn ≥ 0. (12.2)

This means means that there is a bijective linear map between T and a subset
of [0, 1]n given by 1 ≥ α1 ≥ α2 ≥ · · · ≥ αn ≥ 0. In the barrycentric coordi-
nates, the faces of T were described by some of the coordinates being zero.
Equation (12.1) implies that in the new coordinates the faces are described
by some αi being equal to each other.

For any permutation π = (p1, . . . , pn) of {1, . . . , n} consider a linear map
x0 → x0, xi → xpi . Under this map T is mapped to Tπ given by all elements
of the form

Tπ = {y : y = x0+α1xp1 + · · ·+αnxpn and 1 ≥ α1 ≥ α2 ≥ · · · ≥ αn ≥ 0}.

In particular, T = T 1···n, where 1 · · ·n denotes the trivial permutation. The
union


Tπ over all n partitions is

P = {y : y = x0 + α1x1 + · · ·+ αnxn and 0 ≤ αi ≤ 1}.

Therefore P is a parallelepiped, an affine image of the unit cube C = [0, 1]n.
If n = 2 the situation is depicted in Figure 12.1. If e0 = (1, 0, 0), e1 =

(0, 1, 0), e2 = (0, 0, 1) then in the α coordinates these point are (0, 0), (1, 0)
and (1, 1) respectively. Their convex hull is the standard simplex T = T 12; it



12.1 Simplicial subdivisions of a simplex 121

represents all points (α1,α2) such that 1 ≥ α1 ≥ α2 ≥ 0. The points satisfying
1 ≥ α2 ≥ α1 ≥ 0 lie in the copy T 21 of T and their are spanned by (0, 0),
(1, 1), and an additional point (0, 1), which in the barrycentric coordinates is
equal to (1,−1, 1). The union of T and T21 is the parallelepiped P .

Fig. 12.1 The construction of the parallelepiped covered by n! copies of T , n = 2.

We can now subdivide P into 2n equal parts by subdividing the unit cube
C = [0, 1]n. For a sequence σ = (s1, . . . , sn) ∈ {0, 1}n we can consider the
part of C of the form 1

2 (σ+C). This is simply a translation of a scaled version
of C. Its image is the parallelepiped Pσ, whose elements are of the form

Pσ = {y : y = x0 +
1
2

n

i=1

(si + αi)xi and 0 ≤ αi ≤ 1}.

For n = 2 this is illustrated in Figure 12.2.

Fig. 12.2 Subdivision of P that comes from a natural subdivision of the unit n-cube
into 2n equal pieces, n = 2.

Since Pσ is a scaled version of P , it is also covered by scaled versions of
simplices Tπ, call them Tπ

σ :

Tπ
σ = {y : y = x0+

1
2

n

i=1

sixi+
1
2

n

i=1

αixpi and 1 ≥ α1 ≥ α2 ≥ · · · ≥ αn ≥ 0}.
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For n = 2 the proposition is illustrated in Figure 12.3. Here the standard 2-
simplex is covered by four smaller simplices T 12

10 , T
21
10 , T

12
00 , T

12
11 each of which

is a obtained from T by scaling, translation, and, also T 21
10 by the permutation

map.

Fig. 12.3 Illustration of Proposition 12.1, n = 2.

Proposition 12.1. Let A be the set of all pairs (π,σ) such that:

(i) σ satisfies: i < j then si ≥ sj,
(ii) π satisfies: spi = spj and pi < pj implies i < j.

Then
T =



(π,σ)∈A

Tπ
σ .

Proof. We first show that Tπ
σ ⊂ T for each (π,σ) ∈ A. The points in Tπ

σ are
of the form

y = x0 +
1
2

n

i=1

sixi +
1
2

n

i=1

αixpi = x0 +
1
2

n

i=1

(spi + αi)xpi .

We want to show that if pi < pj then spi
+ αi ≥ spj

+ αj . If spi
= spj

then
this follows by (ii) because αi ≥ αj if i < j. If spi ∕= spj then necessarily
spi = 1 and spj = 0. Then spi +αi ≥ spj +αj holds irrespective of the values
of αi,αj .

For the opposite inclusion let y ∈ T then y is of the form (12.2). Let t be
an integer such that

1 ≥ α1 ≥ · · · ≥ αt ≥ 1
2 > αt+1 ≥ · · · ≥ αn ≥ 0.

We can now write

y = x0 +
1
2

t

i=1

xi +
1
2

n

i=1

α′
ixi,



12.2 Sperner’s lemma 123

where 1 ≥ α′
1 ≥ · · ·α′

t ≥ 0 and 1 ≥ α′
t+1 ≥ · · ·α′

n ≥ 0; for i ≤ t α′
i = 2(αi− 1

2 )
and for i > t α′

i = 2αi. Let σ = (s1, . . . , sn) ∈ {0, 1}n be such that s1 = · · · =
st = 1 and st+1 = · · · = sn = 0. Let π = (p1, . . . , pn) be a permutation such
that

1 ≥ α′
p1

≥ α′
p2

≥ · · · ≥ α′
pn

≥ 0.

Since σ satisfies (i) and π satisfies (ii), it follows that y ∈ Tπ
σ for some

(π,σ) ∈ A. ⊓⊔

The union


(π,σ)∈A Tπ
σ forms a simplicial subdivision of T , in the sense

that:

1. T =


(π,σ)∈A Tπ
σ , and

2. for any two permutations subsimplices Tπ
σ , T

π′

σ′ their intersection is either
empty or forms a face of both.

For each of the smaller subsimplices we can now repeat the process getting
a finer subdivision of T . In each step, the diameter of the subsimplices is
halved and so, in particular, it very quickly converges to zero. For example, if
n = 2 then after two steps the standard simplex get subdivided into 24 = 16

subsimpleces, each with diameter
√
2
4 as illustrated in Figure 12.4.

Fig. 12.4 Subdivision of the standard 2-simplex into 16 subsimpleces.

This construction will be essential for our proof of the Brouwer’s fixed
point theorem main part of which is a combinatorial theorem proved in the
next section.

12.2 Sperner’s lemma

Consider an n-simplex T = conv({e0, . . . , en}) with a simplicial subdivision
(e.g. described in the previous section). Let V denote the set of all vertices
of all the subsimplices. For instance, in Figure 12.4, V is given by the set of
all 15 solid dots. More generally we have the following.
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Example 12.1. If we subdivide the standard simplex using m times the pro-
cedure described in the previous section, we get (2m−1 +1)(2m +1) vertices,
which in the α-coordinate system are given by all points

(α1, . . . ,αn) = 1
2m (k1, . . . , kn)

such that k1, . . . , kn ∈ {0, 1, . . . , 2m} and k1 ≥ · · · ≥ kn. For example, the
three points inside the triangle in Figure 12.4 have coordinates ( 12 ,

1
4 ), (

3
4 ,

1
4 ),

and ( 34 ,
1
2 ), which in the barrycentric coorindates becomes ( 12 ,

1
4 ,

1
4 ), (

1
4 ,

1
2 ,

1
4 ),

and ( 14 ,
1
4 ,

1
2 ) respectively.

We label the vertices of T with the labeling set {0, 1 . . . , n} so that the
vertex ei gets label i. Recall by Theorem 11.3 that for any y ∈ T the set of
coefficients λi such that y =


i λiei is given uniquely. Let

χ(y) = {i : λi ∕= 0} ⊆ {0, 1, . . . , n}.

If y lies in the interior of T then, χ(y) = {0, . . . , n}, and if y lies in a proper
face of T , χ(y) is the set of vertices of T that generate this face. Use the
same labeling set to arbitrary label the remaining vertices in V . Formally,
this means defining a labeling function L : V → {0, . . . , n}. We say that
labelling is proper is a proper labelling if L(v) ∈ χ(v) for all v ∈ V . A
subsimplex is called completely labeled if L takes all values 0, . . . , n on its
vertices.

Example 12.2. Consider again the subdivision of the 2-simplex into 16 sub-
simpleces with 15 vertices as given in Figure 12.4. We color vertices with
0 = •, 1 = •, and 2 = •. An example of proper labelling is given in Fig-
ure 12.5, the shadowed triangles correspond to completely labeled subsim-
plices. Note that there are exactly five of them. Although different labellings
may give different number of shadowed triangles, by the next theorem we can
predict their parity.

Fig. 12.5 An example of a proper vertex labeling. Completely labelled subsimplices
are shaded.



12.2 Sperner’s lemma 125

Theorem 12.2 (Sperner’s lemma). Let T be a simplicially subdivided n-
simplex. Suppose that the labeling function L is proper. Then there is an odd
number of completely labeled subsimplices. In particular, there exists at least
one such subsimplex.

Proof. We prove this result by induction with respect to n.
(n = 0) A 0-simplex is a single point e0 which has label 0 so it is completely

labeled.
(n = 1) A 1-simplex is simply a line segment. A simplicially subdivided

1-simplex looks like • − • − · · · − • − •, where the m inner nodes can be
colored as • or • in an arbitrary way. If there is only one internal node, that
is m = 1, we have either • − • − • or • − • − • and it is clear that there
is always precisely one completely labeled subsimplex. Subdividing it further
(increasing m) increases the number of completely labeled subsimplices either
by zero or two, which establishes the general m case.

(inductive step) Suppose that the statement is true for all simplices of di-
mension smaller than n, we will show it holds for the n-simplex T . Let C be
the set of all completely labeled subsimplices of T (we want to show that |C|
is odd). Consider, in addition, all subsimplices in the face conv{x0, . . . ,xn}
labeled by {0, . . . , n − 1} (by induction there is an odd number of them!).
To every such simplex we add a vertex labelled with n and associate it with
the resulting n-simples with labels {0, . . . , n}. In Figure 12.2 there is one 2-
simplex added which we identify with the segment marked with the yellow
dot. We add all these n-simplices to C to form the set C. By induction, |C| is
odd if and only if |C| is even. Let A be the set of all n-simplices in the subdi-
vision of T with labels {0, . . . , n−1} (we call them almost completely labeled).
Let E be the set of all (n− 1)-simplices with labels exactly {0, 1 . . . , n− 1}.

Fig. 12.6 An example of of the proposed edge set. Gray triangles are in C, blue
triangles are in A. The yellow circle represents the additional simplex, which added
to C forms C.

Note that each simplex in E is a common face of two simplices in C ∪ A,
in other words, it is equal to S ∩S′ for S, S′ ∈ C∪A. We then define a graph
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with nodes A ∪C such that (S, S′) forms an edge if S ∩ S′ ∈ E. In a graph,
the degree of a node is the number of edges incident to it. Since each edge
joins two nodes we have the hand-shaking lemma, which says that



S∈C∪A

degree(S) = 2|edges| = 2|E|.

If S ∈ A then one label is repeated and so two faces of S belong to E, so
degree(S) = 2. If S ∈ C then S is adjacent to precisely one other simplex in
C ∩A, and so, degree(S) = 1. Thus



S∈C∪A

degree(S) = 2|A|+ |C| = 2|E|.

This shows that |C| must be even. ⊓⊔

12.3 Proof of the Brouwer’s fixed point theorem

We are now ready to proof the Brouwer’s fixed point theorem (Theorem 12.1).
Our proof will consist of a sequence of reductions. We will first show that the
result holds ifK = ∆n+1. Then we will conclude that it holds for any simplex.
Finally, we will show that this is already implies the Brouwer’s theorem. The
crucial step is the following result.

Theorem 12.3. Let f : ∆n+1 → ∆n+1 be continuous. Then f has a fixed
point.

Proof. Consider the simplicial subdivision of ∆n+1 into 2n subsimplices de-
scribed in Section 12.1. Define a labeling of its vertices such that

L(v) ∈ χ(v) ∩ {i : fi(v) ≤ vi}.

The set on the right is always nonempty because otherwise (f(v))i > vi for
all i, which contradicts that f(v) ∈ ∆n+1. By construction, every such L is a
proper labelling, and so by Sperner’s lemma there exists a completely labeled
subsimplex

T (1) = conv({p(1)
0 , . . . ,p(1)

n }) such that fi(p
(1)
i ) ≤ (p

(1)
i )i for all i.

Consider now a subsequent subdivision of T (1). By an iterative argument for
every m ≥ 1 there exists a simplex

T (m) = conv({p(m)
0 , . . . ,p(m)

n }) ⊂ T (m−1)
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such that fi(p
(m)
i ) ≤ (p

(m)
i )i for all m and all i. The diameter of T (m) is

√
2

2m

and so, by Corollary 4.3,



m≥1

T (m) = {z} for some z ∈ ∆n+1.

Moreover, p
(m)
i → z for all i as m → ∞. Since f is continuous

fi(z) = lim
m→∞

fi(p
(m)
i ) ≤ lim

m→∞
(p

(m)
i )i = zi.

This implies that f(z) ≤ z, which is only possible if f(z) = z because both
sides sum to one. ⊓⊔

We will now generalize Theorem 12.3 to any set homeomorphic to the
standard n-simplex.

Theorem 12.4. Let f : A → A be a continuous function on a set homeo-
morphic to ∆n+1 for some n. Then f has a fixed point.

Proof. Let h : ∆n+1 → A be a homeomorphism. Then h−1 ◦ f ◦ h : ∆n+1 →
∆n+1 is continuous, and so, by Theorem 12.3, there exists z ∈ ∆n+1 with
h−1(f(h(z))) = z. In other words f(h(z)) = h(z). Since x = h(z) ∈ A we get
that f(x) = x as claimed. ⊓⊔

Remark 12.1. This theorem shows that convexity is not the essential assump-
tion about K in Theorem 12.1 but rather lack of holes (see Example 12.3).
The two properties are equivalent only in dimension one.

Theorem 12.4 gives in particular a generalization of Theorem 12.3 to any
n-simplex (see Theorem 11.4). Now we are ready to prove the Brouwer’s fixed
point theorem.

Proof of Theorem 12.1. Since K is compact, it is contained in a large simplex
T . Define g : T → K such that

g(x) = arg inf
y∈K

x− y.

By Proposition 11.2 this is a well-defined and continuous function. By con-
struction g(x) = x for x ∈ K. Consider the sequence of maps

T
g−→ K

f−→ K
i
↩→ T,

where the last inclusion is a map that simply maps each x ∈ K to itself, i :
K → T , i(x) = x. The composition i◦f ◦g of these maps defines a continuous
function T → T . As a consequence of Theorem 12.4 and Theorem 11.4, this
composition has a fixed point, that is, there is z ∈ T such that (i◦f◦g)(z) = z.



128 12 Brouwer’s fixed point theorem (2 lectures)

Since the composition f ◦g maps T to K, (f ◦g)(z) ∈ K and so (i◦f ◦g)(z) ∈
K, which implies that z ∈ K. But then

(i ◦ f ◦ g)(z) = i(f(g(z))) = i(f(z)) = f(z),

which gives that f(z) = z. ⊓⊔

The following two basic examples show that without convexity of com-
pactness simple counterexamples are possible.

Example 12.3. Consider an annulus K = {x ∈ R2 : 1 ≤ x ≤ 2}. This is a
compact set but a rotation around the origin will have no fixed points.

Example 12.4. The function f : (0, 1] → (0, 1] given by f(x) = x
2 has no fixed

points.

12.4 Application: A price equilibrium theorem

Consider a market of n commodities labeled with {1, . . . , n}. Each commodity
j has a price pj , which we normalize so that

n
i=1 pj = 1; p ∈ ∆n. There

are m consumers in this market labeled with {1, . . . ,m}. The i-th consumer
comes to the market with vector wi ∈ Rn+1 of commodities and leaves with
a vector xi (she exchanges goods with other agents to improve the utility).
A consumer cannot spend more than what she earns so

〈p,wi〉 ≥ 〈p,xi〉 for all i = 1, . . . ,m. (12.3)

Summing this over all agents, we get

〈p,
m

i=1

(xi −wi)〉 ≤ 0 for all p ∈ ∆n, (12.4)

where
m

i=1 xi is the total demand vector and
m

i=1 wi is the total supply.
The excess demand f(p) =

m
i=1(xi −wi) depends on the price. We assume

that xi is chosen to maximize the consumers utility subject to constraints
(12.3). However, the utility function appears only implicitly in this simplified
scenario; we assume that the maximizer xi is unique and such that f(p) is
continuous.

The inequality (12.4) is the weak form of Walras’ law (the strong form
requires equality). A price vector p is a free disposal equilibrium price vector
if f(p) ≤ 0, which means that no commodity has a positive excess demand.
The following equilibrium theorem guarantees existence of such a price vector.
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Theorem 12.5 (Arrow-Debreu1). Let f : ∆n → Rn be continuous and
such that for all p ∈ ∆n, 〈p, f(p)〉 ≤ 0 (weak Walras’ law). Then the set

K = {p ∈ ∆n : f(p) ≤ 0}

is compact and non-empty.

Proof. The function f is a continuous function and so K must be closed as
an inverse image of a closed set. By Theorem 4.5, every closed subset of a
compact set is compact and K ⊂ ∆n so the only thing to show is that K is
nonempty. Define the price adjustment function h : ∆n → ∆n by

h(p) = p+(f(p))+

1+〈1,(f(p))+〉 ,

where x+ = max{0, x} and x+ = (x+
1 , . . . , x

+
n ). We easily check that h(p)

indeed lies in ∆n:

〈h(p),1〉 = 1
1+〈1,(f(p))+〉 〈1, p+ (f(p))+〉 = 1

and nonnegativity is immediate. Since h is continuous, by the Brouwer’s fixed
point theorem there exists q ∈ ∆n such that h(q) = q, that is

q = q+(f(q))+

1+〈1,(f(q))+〉 . (12.5)

If f(q) has positive entries, then (12.5) implies that q is simply the normalized
version of (f(q))+. But in this case, the Walras’ law 〈q, f(q)〉 ≤ 0 cannot hold!
So the only option is that f(q) ≤ 0. ⊓⊔

1 Kenneth Arrow received Nobel Prize in Economics in 1972 and Gérard Debreu in
1983.





Chapter 13

Set-valued mappings (1 lecture)

13.1 Correspondences and continuity

Let X and Y be metric spaces. By P(Y ) denote the set of all subsets of Y . A
correspondence Φ : X  Y is a function fromX to P(Y ), so Φ : X → P(Y )
(set-valued function). In this chapter we review the basic theory of set-valued
functions. An important aspect of this theory is developing a suitable concept
of continuity with the usual intuitive meaning: small changes to the argument
induce “small” changes to the resulting sets. Since, in general, we do not
have a metric structure on P(Y ) suitable notion of small changes needs to be
defined. Here we give a streamlined version of the theory providing certain
justification of the definitions. In Section 13.2 we will see that some aspects
of this theory can be translated to the standard metric setting.

Let Φ : X  Y be a correspondence. If U ⊂ X then then the image of U
under Φ is

Φ(U) :=


x∈U

Φ(x) ⊂ Y.

It is convenient to think about a function f : X → Y as a singleton-valued
correspondence. The preimage of f was defined in (3.1) as follows

fpre(V ) := {p ∈ X : f(p) ∈ V }.

Thinking about f as a singleton-valued correspondence with values {f(x)} ⊂
Y , the condition p ∈ fpre(V ) can be therefore written in two equivalent forms

(a) {f(p)} ∩ V ∕= ∅, (b) {f(p)} ⊂ V.

What looks like an unnecessary formalism gives us two convenient ways to
define preimage for correspondences. In analogy to the singleton-valued case,
for every V ⊂ Y , we define the lower preimage of V as

Φlpre(V ) := {x ∈ X : Φ(x) ∩ V ∕= ∅}.

131
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The upper preimage is defined as

Φupre(V ) := {x ∈ X : Φ(x) ⊂ V }.

For singleton-valued correspondences both notions of preimage coincide. In
general, we have Φupre(V ) ⊂ Φlpre(V ) and typically the inclusion is strict.
The following stronger result partially explains the relevance of having two
notions of preimage.

Theorem 13.1. For every V ⊆ Φ(X)

Φ(Φupre(V )) ⊆ V ⊆ Φ(Φlpre(V )). (13.1)

Proof. The first inclusion follows directly from the definition of the image
and the upper preimage of Φ

Φ(Φupre(V )) =


x: Φ(x)⊆V

Φ(x) ⊆ V.

For the other inclusion it is enough to show that Φ(Φlpre(V ))∩V = V . Indeed,

Φ(Φlpre(V )) ∩ V =


x: Φ(x)∩V ∕=∅

(Φ(x) ∩ V ) =


x∈X

(Φ(x) ∩ V ) =

= Φ(X) ∩ V = V.

⊓⊔

Fig. 13.1 Illustration of upper hemicontinuity in Definition 13.1.

These two notions of preimage are useful in defining a suitable notion of
continuity. Fix p ∈ X. For continuity we require that small perturbations
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x to p cannot result in explosion of Φ(x). Consider an open subset V that
contains Φ(p) and all the points of Y that are in less than  distance from
Φ(p). If Φ is continuous in any suitable sense, Φ(x) should still be contained
in V ; see Figure 13.1. Equivalently, x ∈ Φupre(V ).

Fig. 13.2 Illustration of lower hemicontinuity in Definition 13.1.

If Φ is continuous we also require that small perturbation x to p cannot
result in implosion of Φ(x). If we could fit an open subset V into Φ(p) then
the condition could be the same as above: that Φ(x) contains V . However,
we cannot expect that Φ(p) contains an open subset. Instead we take V to
be an  neighborhood of a point y ∈ Φ(p) and we require that Φ(x) ∩ V
is non-empty for a sufficiently small perturbation x of p; see Figure 13.2.
Equivalently, x ∈ Φlpre(V ).

Based on this discussion, a standard way of defining continuity of a corre-
spondence at a point p ∈ X is as follows.

Definition 13.1. Suppose that X,Y are metric spaces and let Φ : X  Y
be a correspondence. Then we say the following:

(i) Φ is upper hemicontinuous (uhc) at p if for every open V ⊂ Y with
p ∈ Φupre(V ), p is an interior point of Φupre(V ).

(ii) Φ is lower hemicontinuous (uhc) at p if for every open V ⊂ Y with
p ∈ Φlpre(V ), p is an interior point of Φlpre(V ).

(iii) Φ is continuous at p if it is both upper and lower hemicontinuous at p.

Moreover, Φ is continuous (uhc,lhc) if it is continuous (uhc,lhc) at every p.

We will now repeat the discussion preceding the above definition with a
more detail. Let V be the open set of all points with distance less than 
from Φ(p). If Φ is upper hemicontinuous at p then V is always an upper
bound on how Φ(p) may change when we move from p to any other point in a
sufficiently small neighborhood of p. If p is an interior point of Φupre(V ) then
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in a small neighborhood of p all x in this neighborhood will satisfy Φ(x) ⊂ V .
Therefore, upper hemicontinuity assures that the image of Φ cannot explode
when we move around p. It does not however rule out the possibility of this
image to become suddenly much smaller. Taking now V to be a neighborhood
of a given point y ∈ Φ(p), we can assure that the image Φ(x) intersects V if
x is sufficiently close to p. Doing this for various y ∈ Φ(p) we can assure that
Φ(x) does not implode.

Example 13.1. Consider a compact valued correspondence φ : R  R of the
form

Φ(x) =


{0} if x = 0,

{x, 1
x} otherwise.

Take p = 0. We have 0 ∈ Φupre(V ) if and only if {0} ⊂ V . Take V =
(−1, 1) and note that 0 is the only point in V that lies in Φupre(V ). It follows
that Φ is not upper hemicontinuous. On the other for every open V ⊂ Y
containing p = 0 it follows that for points q sufficiently close to p the set
Φ(q) = {q, 1

q} will have a non-empty intersection with V . It follows that Φ is
lower hemicontinuous.

Example 13.2. Consider φ : R  R2 given by Φ(x) = {(x, 0)} if x ∕= 0 and
Φ(0) = {(0, y) : y ∈ R}. Here Φ(x) where we move from x = 0 to any close
point. For example, if V is a small -neighborhood of a point (0, 1) then
Φlpre(V ) = {0} and so 0 is not an interior point of this set.

The following result together with the exercise below shows parallels with
the definition of continuity for functions; c.f. Section 3.3 and Exercise 3.7.

Theorem 13.2. Suppose that X,Y are metric spaces and let Φ : X  Y be
a correspondence. Then Φ is upper hemicontinuous if and only if for every
open V ⊂ Y the set Φupre(V ) is open in X.

Proof. Suppose Φ is upper hemicontinuous and take any open V ⊂ Y . If
Φupre(V ) is empty then it is open so suppose Φupre(V ) ∕= ∅ and take any p
such that Φ(p) ⊂ V . Since Φ is upper hemicontinuous at p it follows that p is
an interior point of Φupre(V ). Since p was arbitrary, it follows that Φupre(V ) is
open. Now we prove the other direction. Suppose that for every open V ⊂ Y
the set Φupre(V ) is open in X. Take any p ∈ X and any V ⊂ Y such that
Φ(p) ⊂ V . Since Φupre(V ) is open and p ∈ Φupre(V ), it follows that p is an
interior point of Φupre(V ) and so Φ is upper hemicontinuous at p. Since p was
arbitrary the result follows. ⊓⊔

Similarly we have the following.

Theorem 13.3. Suppose that X,Y are metric spaces and let Φ : X  Y be
a correspondence. Then Φ is lower hemicontinuous if and only if for every
open V ⊂ Y the set Φlpre(V ) is open in X.



13.2 Compact-valued correspondences and metric spaces* 135

Exercise 13.1. Prove Theorem 13.3.

Exercise 13.2. Check if the correspondence in Example 13.1 is globally
lower hemicontinuous.

In practice proving continuity directly from the definition may be hard.
The following sequential characterizations may be useful.

Theorem 13.4. A correspondence Φ : X  Y is lower hemicontinuous at x
if and only if for every sequence xn → x we have that

∀y ∈ Φ(x) ∃ sequence yn ∈ Φ(xn) such that yn → y. (13.2)

A correspondence Φ is said to be closed-valued (compact-valued) if for
every x ∈ X the set Φ(x) is closed (compact). The sequential characteri-
zation of upper hemicontinuity that we provide works for compact-valued
correspondences.

Theorem 13.5. A compact-valued correspondence Φ : X  Y is upper hemi-
continuous at x if and only if for every sequence xn → x we have that

∀(yn) with yn ∈ Φ(xn) ∃ subsequence ynk
→ y ∈ Φ(x). (13.3)

13.2 Compact-valued correspondences and metric
spaces*

In Chapter 3 we defined continuity of a function between metric spaces. In the
case of correspondences this approach does not apply as there is no metric
on P(Y ). In this section we focus on a favorable case where Φ : X  Y
is compact-valued and here, with a suitable choice of metric, continuity of
correspondences can be defined in the standard way.

Definition 13.2. If C,D ⊆ Rk are two closed nonempty sets, theHausdorff
distance between C and D is the quantity

D∞(C,D) := sup
x∈Rk

|dC(x)− dD(x)|.

The next exercise gives a direct interpretation of this distance.

Exercise 13.3. Show that the supremum in the definition of the Hausdorff
distance could be equally taken over C ∪D, yielding the alternative formula

D∞(C,D) := max


sup
x∈C

dD(x), sup
y∈D

dC(y)


,

In general, D∞ does not define a metric on P(Y ). For example, if Y = R
then the distance between C = (0, 1) and D = [0, 1] is zero despite the fact
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that C and D are not equal. Denote by C(Y ) the class of compact subsets of
Y .

Theorem 13.6. For every metric space Y ⊂ Rk the Hausdorff distance de-
fines a metric on C(Y ).

Proof. It is easy to see that D∞(C,D) ≥ 0. By Theorem 11.5, dD(x) and
dC(y) are continuous functions and so, by Theorem 4.11, there exist x∗ ∈ C
and y∗ ∈ D such that D∞(C,D) = max{dA(y∗), dB(x

∗)}. This shows that
D∞(C,D) < ∞. Moreover, this maximum is zero only if x∗ ∈ D and y∗ ∈ C,
or, equivalently, only if C ⊆ D and D ⊆ C. To show the triangle inequality
note that for all y ∈ D

dE(x)
△
≤ x− y+ dE(y) ≤ x− y+ D∞(D,E).

Taking infy∈D we get dE(x) ≤ dD(x)+D∞(D,E) ≤ D∞(C,D)+D∞(D,E).
In a similar way show that dC(z) ≤ D∞(C,D)+D∞(D,E). This implies that
supx∈C dE(x) ≤ D∞(C,D) + D∞(D,E) and supz∈E dC(z) ≤ D∞(C,D) +
D∞(D,E). ⊓⊔

With this metric in hand continuity of a compact-valued correspondence
can be defined in a straightforward way.

Definition 13.3. A compact-valued correspondence Φ : X  Y ⊂ Rk is
Hausdorff continuous at p if and only for every sequence pn → p in X,
the sequence Φ(pn) converges to Φ(p) in the Hausdorff metric.

Introducing two different concepts of continuity would not be that helpful.
Luckily, it turns out that for compact-valued correspondences continuity and
Hausdorff continuity are equivalent under relatively mild conditions. Note
that Hausdorff continuity means that for every xn → x also Φ(xn) → Φ(x)
in the Hausdorff metric, or, in other words,

max
y∈Φ(x0)

dΦ(xn)(y) → 0 and max
yn∈Φ(xn)

dΦ(x0)(yn) → 0.

It is fairly easy to see that the first condition translates into (13.2) and so it
is equivalent to lower hemicontinuity. The second condition implies that for
every xn → x0 we have that

∀(yn) with yn ∈ Φ(xn) and yn → y also y ∈ Φ(x0). (13.4)

This condition on Φ is called in the literature the closed graph property.
This property is very closely related to upper hemicontinuity.

Theorem 13.7. Let Φ : X  Y be a nonempty valued correspondence with
closed graph property. If for any bounded set B in X the image Φ(B) is
bounded then Φ is upper hemicontinuous.
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We get the following result; see also Proposition 5 in Section E.2.5 of Ok’s
book.

Theorem 13.8. Let Φ : X  Y be a compact-valued correspondence with Y
compact. Then Φ is continuous if and only if it is Hausdorff continuous.

Proof. If Φ is Hausdorff continuous then by the discussion preceding Theo-
rem 13.7 it is lower semicontinuous and has closed graph property. If Φ(X)
is bounded then Theorem 13.7 implies that Φ is also upper hemicontinuous
and hence continuous. For the other direction assume that Φ is lower and up-
per hemicontinuous. Again by the discussion preceding Theorem 13.7 lower
hemicontinuity at x implies that for every xn → x and yn ∈ Φ(xn) we have
maxy∈Φ(x0) dΦ(xn)(y) → 0. Let now (yn) be an arbitrary sequence such that
yn ∈ Φ(xn). Let ynk

be a converging subsequence and let y be its limit.
Applying Theorem 13.5 to xnk

→ x and ynk
→ y we get that y ∈ Φ(x).

Since this is true for sequence (yn) and any convergent subsequence, we get
that maxyn∈Φ(xn) dΦ(x0)(yn) → 0. ⊓⊔

13.3 Kakutani’s fixed point theorem

Consider a compact- and convex-valued correspondence Φ : S  S, where
S ⊂ Rk is compact and convex. We generalize the notion of a fixed point to
such correspondences.

Definition 13.4. A correspondence Φ : S  S has a fixed point if there
exists x ∈ S such that x ∈ Φ(x).

Theorem 13.9 (Kakutani’s fixed point theorem). Consider a convex-
and compact-valued correspondence Φ : S  S, where S ⊂ Rk is compact and
convex. Suppose that Φ is upper hemicontinuous then Φ has a fixed point.

Proof. Let first S = ∆n+1 and consider a sequence of simplicial subdivisions
given in Section 12.1. By T (m) denote the subdivision into 2nm subsimplices
obtained in the m-th step. For any vertex v ∈ T (m) let ϕm(v) = y for some
y ∈ Φ(v). If x ∈ S is not a vertex of T (m) define ϕm(x) as a linear interpola-
tion given by the values over the n+ 1 vertices of the simplex containing x.
If x =


i λiv

i then

ϕm(x) =

n

i=0

λiϕm(vi).

For every m the function ϕm : S → S is a continuous function and so it
has a fixed point x∗

m by the Brower’s fixed point theorem. The sequence x∗
m

for m ≥ 1 has a convergent subsequence, x∗
mk

→ x∗ ∈ S. In the rest of the
proof we show that x∗ ∈ Φ(x∗).
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Let v0
k, . . . ,v

n
k be a sequence of vertices of subsimplices in finer and finer

subdivisions such that the corresponding simplex contains x∗
nk
. We have vi

k →
x∗. We also know that ϕnk

(x∗
nk
) = x∗

nk
→ x∗. Denote yk = ϕnk

(x∗
nk
) and

xk = vi
k. Then by upper hemicontinuity and Theorem 13.5 we get that

x∗ ∈ Φ(x∗).
⊓⊔

13.4 Application: Existence of Nash equilibria

Let S1, S2 be two finite sets representing the (pure) strategies of two players.
Without loss of generality let S1 = {1, . . . ,m} and S2 = {1, . . . , n}. Let
π1,π2 : S1 × S2 → R be the payoffs. Note that any probability distribution
over S1 is a point p ∈ ∆m−1 and any probability distribution over S2 is a
point q ∈ ∆n−1. We define the expected payoff of player k = 1, 2 as

πk(p,q) =

m

i=1

n

j=1

piqjπk(i, j).

A pair (p,q) of probability distributions over S1×S2 is a Nash equilibrium
if

π1(p,q) ≥ π1(p
′,q) for all p′ ∈ ∆m−1

and
π2(p,q) ≥ π2(p,q

′) for all q′ ∈ ∆n−1.

Theorem 13.10 (Nash’s theorem). Every game has a mixed Nash equi-
librium.

Proof. Define Φ1(q) be the set of all distributions p
′ that maximize π1(p

′,q).
Define Φ2(p) similarly. Set Φ(p,q) = Φ1(q) × Φ2(p). With this definition,
(p∗,q∗) is a Nash equilibrium if and only if it is a fixed point of Φ. Its existence
follows from Kakutani’s fixed point theorem since Φ is convex-valued and is
upper hemicontinuous (exercise). ⊓⊔


