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Today’s Lecture

1. Probability recap: Chebyshev and Hoeffding inequality.

2. Degree distribution in Erdős–Rényi graphs.

3. Threshold phenomena and giant component.

4. The clustering coefficient: definition, motivation, formulas.

5. Static random graph models: ER as binary vectors, ERGMs.

6. Recursive random graph models: preferential attachment.

7. Why random models matter for economics and social sciences.
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Degree distribution: finite N
concentration bounds



Concentration: Chebyshev (simple but general)

Theorem (Chebyshev inequality )

For any r.v. X with mean µ and variance σ2,

P(|X − µ| ≥ t) ≤ σ2

t2
.

For degree: deg(v) ∼ Bin(N − 1, p), so

P
󰀃
| deg(v)− (N − 1)p| ≥ t

󰀄
≤ (N − 1)p(1− p)

t2
.

Chebyshev already gives some concentration guarantees (e.g. take

t0 =
󰁴

N
δ p(1− p) for small δ > 0) but sharper results are possible.
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Appendix: Proof of the Chebyshev inequality

Markov’s inequality: If Z ≥ 0 then P(Z ≥ t) ≤ 1
tE[Z ].

Markov’s inequality follows immediately from the following calculation,

E[Z ] ≤ E[Z11(Z ≥ t)] ≤ tE[11(Z ≥ t)] = tP(Z ≥ t).

Now, Chebyshev’s inequality follows easily from Markov’s. Take
Z = |X − µ| then

P(|X − µ| ≥ t) = P((X − µ)2 ≥ t2) ≤ E(X − µ)2

t2
=

σ2

t2
.



Sharper concentration: Hoeffding for Binomial

Theorem (Hoeffding inequality )

If X =
󰁓n

i=1 Zi with independent Zi ∈ [0, 1] and EX = µ, then for t > 0,

P(|X − µ| ≥ t) ≤ 2 exp
󰀓
−2t2

n

󰀔
.

Applied to degree: deg(v) has N − 1 independent Bernoulli summands,

P(| deg(v)− (N − 1)p| ≥ t) ≤ 2 exp

󰀕
− 2t2

N − 1

󰀖
.

Fix v ∈ V . Taking t0 =
󰁴

N−1
2 log(2δ ) for small δ > 0 gives

P
󰀃
| deg(v)− (N − 1)p| ≥ t0

󰀄
≤ δ.

note much better behavior of t0 as a function of δ
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Sharper concentration: Hoeffding for Binomial

Theorem (Hoeffding inequality )

If X =
󰁓n

i=1 Zi with independent Zi ∈ [0, 1] and EX = µ, then for t > 0,

P(|X − µ| ≥ t) ≤ 2 exp
󰀓
−2t2

n

󰀔
.

Applied to degree: deg(v) has N − 1 independent Bernoulli summands,

P(| deg(v)− (N − 1)p| ≥ t) ≤ 2 exp

󰀕
− 2t2

N − 1

󰀖
.

Fix v ∈ V . Taking t0 =
󰁴

N−1
2 log(2δ ) for small δ > 0 gives

P
󰀃
| deg(v)− (N − 1)p| ≥ t0

󰀄
≤ δ.

note much better behavior of t0 as a function of δ

e.g. N = 1001, p = 0.1, δ = 0.05. Then with prob. ≥ 0.95
deg(v) ∈ (100− 42.95, 100 + 42.95) = (57.05, 142.95).
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Uniform degree bounds

Recall: P(| deg(v)− (N − 1)p| ≥ t) ≤ 2 exp
󰀓
− 2t2

N−1

󰀔
for all t > 0.

Suppose we now want to provide a bound for the degrees all v ∈ V .
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󰀓
− 2t2

N−1

󰀔
for all t > 0.

Suppose we now want to provide a bound for the degrees all v ∈ V .

Take t0 =
󰁴

N−1
2 log(2Nδ ) we get that, for any fixed v ∈ V ,

P(| deg(v)− (N − 1)p| ≥ t0) ≤ δ

N
.

Union bound: For any two events P(A ∪ B) ≤ P(A) + P(B).

P(∃v | deg(v)− (N − 1)p| ≥ t0) ≤
󰁛

v∈V

P(| deg(v)− (N − 1)p| ≥ t0) ≤ δ.
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Uniform degree bounds

Recall: P(| deg(v)− (N − 1)p| ≥ t) ≤ 2 exp
󰀓
− 2t2

N−1

󰀔
for all t > 0.

Suppose we now want to provide a bound for the degrees all v ∈ V .

Take t0 =
󰁴

N−1
2 log(2Nδ ) we get that, for any fixed v ∈ V ,

P(| deg(v)− (N − 1)p| ≥ t0) ≤ δ

N
.

Union bound: For any two events P(A ∪ B) ≤ P(A) + P(B).

P(∃v | deg(v)− (N − 1)p| ≥ t0) ≤
󰁛

v∈V

P(| deg(v)− (N − 1)p| ≥ t0) ≤ δ.

e.g. N = 1001, δ = 0.05, p = 0.1. Then with prob. ≥ 0.95 all degrees
lie in (100− 72.8, 100 + 72.8) = (27.2, 172.8).
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Asymptotics in networks



Asymptotic Thinking in Random Graphs

Why asymptotics?

• We study G (N, p) as N → ∞ to reveal general patterns.

• Precise constants matter less than the scaling behavior of p with N.
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Why asymptotics?

• We study G (N, p) as N → ∞ to reveal general patterns.

• Precise constants matter less than the scaling behavior of p with N.

• f (N) = o(g(N)) means f (N)/g(N) → 0.

• f (N) = O(g(N)) means |f (N)| ≤ C |g(N)|; for some C > 0 and N
large enough.

• f (N) ∼ g(N) means f (N)/g(N) → 1.
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Asymptotic Thinking in Random Graphs

Why asymptotics?

• We study G (N, p) as N → ∞ to reveal general patterns.

• Precise constants matter less than the scaling behavior of p with N.

• f (N) = o(g(N)) means f (N)/g(N) → 0.

• f (N) = O(g(N)) means |f (N)| ≤ C |g(N)|; for some C > 0 and N
large enough.

• f (N) ∼ g(N) means f (N)/g(N) → 1.

Probabilistic language:

• “With high probability” (w.h.p.) means P(event) → 1 as N → ∞.

• Example: in G (N, p) with p = logN
N , the graph is connected w.h.p.
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Average degree: dense vs sparse graphs

When N grows, the connection probability p = pN can scale differently.

Dense regime: (pN) tends to a constant c > 0.

• E[deg(v)] ≈ cN grows linearly with N.

• The number of edges L ≈ c
󰀃N
2

󰀄
.

• Not a realistic large network, but a useful contrast.

Sparse regime: pN = λ/N (or smaller).

• E[deg(v)] ≈ λ stays constant as N → ∞.

• The total number of edges L ≈ λN/2 grows linearly with N.
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Average degree: dense vs sparse graphs

When N grows, the connection probability p = pN can scale differently.

Dense regime: (pN) tends to a constant c > 0.

• E[deg(v)] ≈ cN grows linearly with N.

• The number of edges L ≈ c
󰀃N
2

󰀄
.

• Not a realistic large network, but a useful contrast.

Sparse regime: pN = λ/N (or smaller).

• E[deg(v)] ≈ λ stays constant as N → ∞.

• The total number of edges L ≈ λN/2 grows linearly with N.

Language note:

• Saying “real networks are sparse” means that as they grow, the
average degree stays bounded, not that p is small for a fixed N.

• The scaling of pN determines which asymptotic regime we are in.
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Maximum degree in G (N , p)

Let ∆ = maxv deg(v) be the maximum degree.

Dense regime: (pN) tends to a constant c > 0.

• With high probability (remember we ignore constants here):

∆ = (N − 1)p + O
󰀃󰁳

N logN
󰀄
.

(use Slide 6 to argue for this asymptotic formula)
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Maximum degree in G (N , p)

Let ∆ = maxv deg(v) be the maximum degree.

Dense regime: (pN) tends to a constant c > 0.

• With high probability (remember we ignore constants here):

∆ = (N − 1)p + O
󰀃󰁳

N logN
󰀄
.

(use Slide 6 to argue for this asymptotic formula)

Sparse regime: pN = λ/N (or smaller).

• Each deg(v) ≈ Pois(λ) — mean λ.

• By extreme–value theory for Poisson tails:

∆ ≈ logN

log logN
.

This is very thin tailed: N = 103, 106, 1012 gives logN
log logN = 4.3, 6.3, 9.2.

In real networks we observe “hubs”.
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Threshold phenomena and giant
component



Threshold phenomena in ER (concept)

Definition

A threshold for a graph property P is a function p∗(N) such that:

p ≪ p∗(N) ⇒ G (N, p) has ¬P w.h.p.,

p ≫ p∗(N) ⇒ G (N, p) has P w.h.p.

ER graphs display many sharp thresholds:

• Emergence of a giant component.

• Connectivity (no isolated vertices).

• Appearance of fixed subgraphs (e.g., triangles).
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Regimes of G (N , p) (sparse case p = c/N)

It is useful to describe random graphs in terms of the expected degree

E[deg(v)] = c .

• Subcritical regime (c < 1): only small tree-like components;
largest size ∼ logN.

• Critical point (c = 1): largest component has size ∼ N2/3; no
giant yet.

• Supercritical regime (c > 1): a unique giant component
emerges, containing a positive fraction of nodes.

• Connected regime (c ≳ logN): almost surely the whole graph
becomes connected.
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Illustration of regimes

Interpretation: As c increases, the largest connected component grows
from negligible size, through a sudden phase transition (c = 1), and
eventually absorbs almost all nodes.
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Why the giant component matters (econ/social)

Consider the world’s friendship network:

• Clearly disconnected (think small remote communities)

• But “our” component is large, spans most of the world.

• There should be no two big components.

Giant components are important:

• Contagion & diffusion: A giant component enables large cascades
(diseases, information, bank runs).

• Market connectivity: Sufficient density is needed for
trade/payment networks to connect most participants.

• Infrastructure design: Tuning p (or expected degree c) above 1
ensures large-scale reachability.
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Where are real networks?

Most real-world networks live well above the critical point.

They are highly connected (often even “superconnected”), yet they also
exhibit additional structure (clustering, hubs, communities).

The ER model a baseline: it shows that above c = 1, large-scale
connectivity is the default, but real networks have richer features.
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Connectivity threshold in G (N , p)

Theorem

The threshold for connectivity in G (N, p) is

p∗(N) =
logN

N
.

More precisely:

󰀻
󰀿

󰀽
p = logN+ω(N)

N , G (N, p) is connected w.h.p.,

p = logN−ω(N)
N , G (N, p) is disconnected w.h.p..

Here, ω(N) means any function that grows to infinity (however slowly).
Examples: log logN,

√
logN, or even log log logN.
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Idea of proof (intuition)

• A vertex is isolated with probability

P(v isolated) = (1− p)N−1 ≈ e−pN .

• Expected number of isolated vertices:

E[N0] ≈ Ne−pN .

• If p = c logN
N , then

E[N0] ≈ N1−c .

• For c < 1, E[N0] → ∞; many isolated vertices → disconnected.

For c > 1, E[N0] → 0; isolated vertices disappear.

Careful: No isolated vertices do not automatically imply connectivity.
However, one can show that once all isolated vertices disappear, all
other components merge into one giant component w.h.p.
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Simulation in NetworkX (Colab) — generate and inspect

Python (run in Google Colab)

import networkx as nx

import matplotlib.pyplot as plt

n, p = 200, 0.015 # try also p = 0.005, 0.02, 0.05

G = nx.erdos_renyi_graph(n, p)

print("Nodes:", G.number_of_nodes())

print("Edges:", G.number_of_edges())

# Empirical vs expected average degree

deg = [d for _, d in G.degree()]

print("Empirical mean degree:", sum(deg)/n)

print("Theoretical mean degree:", (N-1)*p)

# Largest component size

components = list(nx.connected_components(G))

largest = max(components, key=len)

print("Largest component size:", len(largest))

# Draw (small n looks better)

plt.figure(figsize=(5,5))

pos = nx.spring_layout(G, seed=7)

nx.draw(G, pos, node_size=30, edge_color="#cccccc")

plt.show()
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Simulation in NetworkX — degree histogram

Python (run in Google Colab)

import numpy as np

import matplotlib.pyplot as plt

deg = np.array([d for _, d in G.degree()])

print("Empirical mean degree:", deg.mean())

print("Theoretical mean degree:", (N-1)*p)

plt.figure(figsize=(5,4))

bins = np.arange(deg.max()+2) - 0.5

plt.hist(deg, bins=bins)

plt.xlabel("Degree k"); plt.ylabel("Count")

plt.title("Degree distribution in G(N,p)")

plt.show()

Observation. For p = c/N the histogram should resemble a Poisson(c), with empirical mean

degree deg(G) close to theoretical E[deg].
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Clustering



Why clustering matters

Real networks are not tree-like. Friends of friends often know each
other (and so triangles are common).

Examples:

• Social networks: If Alice knows Bob and Carol, it’s likely Bob and
Carol also know each other. → Social circles, community structure.

• Trade networks: Countries trading with the same partner often
trade with each other. → Formation of regional trade blocs.

• Financial networks: Two banks lending to the same counterparties
are likely connected through risk exposures. → Triangles increase
contagion channels.

• Citation or collaboration networks: If researcher A collaborates
with both B and C, B–C collaboration becomes more probable. →
Knowledge diffusion through closed triads.
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Clustering coefficient: definition

Definition

For node v with degree deg(v) = kv :

Cv =
# links among neighbors of v

󰀃kv
2

󰀄 ∈ [0, 1].

• Measures “friend-of-friend closure.”

• Cv = 1: neighbors form a clique; Cv = 0: none connected.

• Average clustering coefficient: C = 1
N

󰁓
v Cv .
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Clustering in Erdős–Rényi networks

Suppose deg(v) = kv . Consider two neighbors u,w .

Each pair u,w gets connected (independently) with probability p.

The expected number of links among neighbors is ELv = p
󰀃kv
2

󰀄
.

Thus

E[Cv ] = E

󰀥
Lv󰀃kv
2

󰀄

󰀦
=

E[Lv ]󰀃kv
2

󰀄 = p.

Implications:

• In the sparse regime p = c/N: E[Ci ] ≈ c/N → 0.

• Prediction: clustering vanishes as N grows.

• Real networks (social, financial, trade) exhibit far higher clustering.
⇒ Mismatch: motivates richer models leading so sparse networks
with nontrivial clustering coefficients.
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Summary: What ER graphs teach us (and what they miss)

Erdős–Rényi: clean benchmark for randomness in networks.

• Degrees: Binomial→Poisson in sparse regime, sharply concentrated
(Hoeffding).

• Sharp thresholds: giant component at p∼1/N, full connectivity at
p∼(logN)/N.

Analytic power: every property can be studied precisely—gives language
for thresholds, asymptotics, and “with high probability” results.

But realism is limited:

• Clustering E[Cv ] = p → 0 as N → ∞ (in the sparse regime).

• Degree distribution thin-tailed: no hubs or communities.

• Real social, financial, and web networks are way more structured.

This motivates a study of other random graph models.
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Static random graph models



Graphs as random objects

Consider an undirected graph G = (V ,E ).

Order all pairs of elements in V : {1, 2}, {1, 3}, . . . , {N − 1,N}.

Each graph is uniquely identified by a vector y = (yij) ∈ {0, 1}(
N
2):

• yij = 1 if and only if ij ∈ E .

23 / 29



Graphs as random objects

Consider an undirected graph G = (V ,E ).

Order all pairs of elements in V : {1, 2}, {1, 3}, . . . , {N − 1,N}.

Each graph is uniquely identified by a vector y = (yij) ∈ {0, 1}(
N
2):

• yij = 1 if and only if ij ∈ E .

In this sense, every distribution for a random binary vector in {0, 1}(
N
2)

gives a distribution of a random graph with N nodes.

e.g. (p000, p001, p010, p011, p100, p101, p110, p111) = ( 1
2
, 1
14
, 1
14
, 1
14
, 1
14
, 1
14
, 1
14
, 1
14
) gives a

distribution over 3-node graphs.

Every family of distributions over {0, 1}(
N
2) gives a statistical model for

random graphs with N nodes.
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Erdős–Rényi model as an example

Recall: Every family of distributions over {0, 1}(
N
2) gives a statistical

model for random graphs with N nodes.

Consider the distribution where, for y = (yij) ∈ {0, 1}(
N
2)

p(y) = (1− p)1−y12py12 · · · (1− p)1−yN−1,NpyN−1,N = (1− p)(
N
2)−sps ,

where s =
󰁓

i<j yij is the number of edges.

Note: We can write p(y) = (1− p)(
N
2)
󰀓

p
1−p

󰀔s
.
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Quick recall: exponential families

Let x ∈ X ⊆ Rn, T : Rn → Rd , θ ∈ Rd .

Definition

A probability distribution on X is an exponential family if the
pms/density takes the form

pθ(x) = h(x) exp
󰀃
θTT (x)− ψ(θ)

󰀄
.

• T (x) = sufficient statistics (counts of edges, triangles, . . . ).

• θ = natural parameter.

• ψ(θ) = log-partition function (ensures normalization).

Logistic regression, Ising models, multivariate Gaussian, and many
other popular statistical models are exponential families.
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Static random graph models

Definition ( Exponential Random Graph Models (ERGMs): )

P(G = g) ∝ exp{θ1 ·#edges(g) + θ2 ·#triangles(g) + · · · }.

• The parameters: θ1 tunes density, θ2 tunes clustering, etc.

ER model is a special case of ERGM:

P(G = g) = (1− p)(
N
2)
󰀕

p

1− p

󰀖s

∝ exp(θ · s),

where θ = log
󰀓

p
1−p

󰀔
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Dynamic random graph models



Recursive growth: preferential attachment

Networks often grow over time (new users, new connections).

Preferential attachment: New node attaches to existing node v with
probability proportional to deg(v).

• “Rich get richer” → hubs emerge.
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Recursive growth: preferential attachment

Networks often grow over time (new users, new connections).

Preferential attachment: New node attaches to existing node v with
probability proportional to deg(v).

• “Rich get richer” → hubs emerge.

Result: degree distribution follows a power law.

• Few very large hubs.

• Many low-degree nodes.

• Matches data: web, citation networks, finance.
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Summary

• G (N, p) = simplest random graph; tractable but unrealistic.

• Subgraph thresholds (triangles) show how clustering begins.

• Clustering coefficient: vanishes in ER, but high in real networks.

• Static (ERGMs) and recursive (preferential attachment) models add
realism.

• Small-world phenomena + hubs: explain short distances and
inequalities.
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Exercise

Determine the Clustering Coefficient for nodes w and y .
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