

Today's Lecture

- 1. Probability recap: Chebyshev and Hoeffding inequality.
- 2. Degree distribution in Erdős-Rényi graphs.
- 3. Threshold phenomena and giant component.
- 4. The clustering coefficient: definition, motivation, formulas.
- 5. Static random graph models: ER as binary vectors, ERGMs.
- 6. Recursive random graph models: preferential attachment.
- 7. Why random models matter for economics and social sciences.

Degree distribution: finite *N* concentration bounds

Concentration: Chebyshev (simple but general)

Theorem (Chebyshev inequality)

For any r.v. X with mean μ and variance σ^2 ,

$$\mathbb{P}(|X-\mu|\geq t) \leq \frac{\sigma^2}{t^2}.$$

For degree: $deg(v) \sim Bin(N-1, p)$, so

$$\mathbb{P}\big(|\operatorname{deg}(v)-(N-1)p|\geq t\big)\leq \frac{(N-1)p(1-p)}{t^2}.$$

Chebyshev already gives some concentration guarantees (e.g. take $t_0=\sqrt{\frac{N}{\delta}\rho(1-\rho)}$ for small $\delta>0$) but sharper results are possible.

Appendix: Proof of the Chebyshev inequality

Markov's inequality: If $Z \ge 0$ then $\mathbb{P}(Z \ge t) \le \frac{1}{t}\mathbb{E}[Z]$.

Markov's inequality follows immediately from the following calculation,

$$\mathbb{E}[Z] \leq \mathbb{E}[Z\mathbb{1}(Z \geq t)] \leq t\mathbb{E}[\mathbb{1}(Z \geq t)] = t\mathbb{P}(Z \geq t).$$

Now, Chebyshev's inequality follows easily from Markov's. Take $Z = |X - \mu|$ then

$$\mathbb{P}(|X - \mu| \ge t) = \mathbb{P}((X - \mu)^2 \ge t^2) \le \frac{\mathbb{E}(X - \mu)^2}{t^2} = \frac{\sigma^2}{t^2}.$$

Sharper concentration: Hoeffding for Binomial

Theorem (Hoeffding inequality)

If $X = \sum_{i=1}^n Z_i$ with independent $Z_i \in [0,1]$ and $\mathbb{E}X = \mu$, then for t > 0,

$$\mathbb{P}(|X - \mu| \ge t) \le 2 \exp\left(-\frac{2t^2}{n}\right).$$

Applied to degree: deg(v) has N-1 independent Bernoulli summands,

$$\mathbb{P}(|\deg(v) - (N-1)p| \ge t) \le 2\exp\left(-\frac{2t^2}{N-1}\right).$$

Fix $v \in V$. Taking $t_0 = \sqrt{\frac{N-1}{2}\log(\frac{2}{\delta})}$ for small $\delta > 0$ gives

$$\mathbb{P}\big(|\deg(v)-(N-1)p|\geq t_0\big) \leq \delta.$$

note much better behavior of t_0 as a function of δ

Sharper concentration: Hoeffding for Binomial

Theorem (Hoeffding inequality)

If $X = \sum_{i=1}^{n} Z_i$ with independent $Z_i \in [0,1]$ and $\mathbb{E}X = \mu$, then for t > 0,

$$\mathbb{P}(|X - \mu| \ge t) \le 2 \exp\left(-\frac{2t^2}{n}\right).$$

Applied to degree: deg(v) has N-1 independent Bernoulli summands,

$$\mathbb{P}(|\deg(v) - (N-1)p| \ge t) \le 2\exp\left(-\frac{2t^2}{N-1}\right).$$

Fix $v \in V$. Taking $t_0 = \sqrt{\frac{N-1}{2} \log(\frac{2}{\delta})}$ for small $\delta > 0$ gives

$$\mathbb{P}\big(|\deg(v)-(N-1)p|\geq t_0\big) \leq \delta.$$

note much better behavior of t_0 as a function of δ

e.g.
$$N=1001$$
, $p=0.1$, $\delta=0.05$. Then with prob. ≥ 0.95 $\deg(v) \in (100-42.95,100+42.95) = (57.05,142.95)$.

Recall:
$$\mathbb{P}(|\deg(v) - (N-1)p| \ge t) \le 2\exp\left(-\frac{2t^2}{N-1}\right)$$
 for all $t > 0$.

Suppose we now want to provide a bound for the degrees all $v \in V$.

Recall:
$$\mathbb{P}(|\deg(v) - (N-1)p| \ge t) \le 2\exp\left(-\frac{2t^2}{N-1}\right)$$
 for all $t > 0$.

Suppose we now want to provide a bound for the degrees all $v \in V$.

Take
$$t_0 = \sqrt{\frac{N-1}{2} \log(\frac{2N}{\delta})}$$
 we get that, for any fixed $v \in V$,

$$\mathbb{P}(|\deg(v)-(N-1)p|\geq t_0) \leq \frac{\delta}{N}.$$

Recall: $\mathbb{P}(|\deg(v) - (N-1)p| \ge t) \le 2\exp\left(-\frac{2t^2}{N-1}\right)$ for all t > 0.

Suppose we now want to provide a bound for the degrees all $v \in V$.

Take $t_0 = \sqrt{\frac{N-1}{2}\log(\frac{2N}{\delta})}$ we get that, for any fixed $v \in V$,

$$\mathbb{P}(|\deg(v)-(N-1)p|\geq t_0) \leq \frac{\delta}{N}.$$

Union bound: For any two events $\mathbb{P}(A \cup B) \leq \mathbb{P}(A) + \mathbb{P}(B)$.

$$\mathbb{P}(\exists v \mid \mathsf{deg}(v) - (\mathsf{N} - 1)p| \geq t_0) \leq \sum_{v \in V} \mathbb{P}(|\mathsf{deg}(v) - (\mathsf{N} - 1)p| \geq t_0) \leq \delta.$$

Recall: $\mathbb{P}(|\deg(v) - (N-1)p| \ge t) \le 2\exp\left(-\frac{2t^2}{N-1}\right)$ for all t > 0.

Suppose we now want to provide a bound for the degrees all $v \in V$.

Take $t_0 = \sqrt{\frac{N-1}{2}\log(\frac{2N}{\delta})}$ we get that, for any fixed $v \in V$,

$$\mathbb{P}(|\deg(v)-(N-1)p|\geq t_0) \leq \frac{\delta}{N}.$$

Union bound: For any two events $\mathbb{P}(A \cup B) \leq \mathbb{P}(A) + \mathbb{P}(B)$.

$$\mathbb{P}(\exists v \mid \deg(v) - (N-1)p| \geq t_0) \leq \sum_{v \in V} \mathbb{P}(|\deg(v) - (N-1)p| \geq t_0) \leq \delta.$$

e.g. N = 1001, $\delta = 0.05$, p = 0.1. Then with prob. ≥ 0.95 all degrees lie in (100 - 72.8, 100 + 72.8) = (27.2, 172.8).

Asymptotics in networks

Asymptotic Thinking in Random Graphs

Why asymptotics?

- We study G(N,p) as $N \to \infty$ to reveal general patterns.
- Precise constants matter less than the scaling behavior of p with N.

Asymptotic Thinking in Random Graphs

Why asymptotics?

- We study G(N,p) as $N \to \infty$ to reveal general patterns.
- Precise constants matter less than the scaling behavior of p with N.
- f(N) = o(g(N)) means $f(N)/g(N) \rightarrow 0$.
- f(N) = O(g(N)) means $|f(N)| \le C|g(N)|$; for some C > 0 and N large enough.
- $f(N) \sim g(N)$ means $f(N)/g(N) \rightarrow 1$.

Asymptotic Thinking in Random Graphs

Why asymptotics?

- We study G(N,p) as $N \to \infty$ to reveal general patterns.
- Precise constants matter less than the scaling behavior of p with N.
- f(N) = o(g(N)) means $f(N)/g(N) \rightarrow 0$.
- f(N) = O(g(N)) means $|f(N)| \le C|g(N)|$; for some C > 0 and N large enough.
- $f(N) \sim g(N)$ means $f(N)/g(N) \rightarrow 1$.

Probabilistic language:

- "With high probability" (w.h.p.) means $\mathbb{P}(\mathsf{event}) o 1$ as $\mathsf{N} o \infty$.
- Example: in G(N, p) with $p = \frac{\log N}{N}$, the graph is connected w.h.p.

Average degree: dense vs sparse graphs

When N grows, the connection probability $p = p_N$ can scale differently.

Dense regime: (p_N) tends to a constant c > 0.

- $\mathbb{E}[\deg(v)] \approx cN$ grows linearly with N.
- The number of edges $L \approx c \binom{N}{2}$.
- Not a realistic large network, but a useful contrast.

Sparse regime: $p_N = \lambda/N$ (or smaller).

- $\mathbb{E}[\deg(v)] \approx \lambda$ stays constant as $N \to \infty$.
- The total number of edges $L \approx \lambda N/2$ grows linearly with N.

Average degree: dense vs sparse graphs

When N grows, the connection probability $p = p_N$ can scale differently.

Dense regime: (p_N) tends to a constant c > 0.

- $\mathbb{E}[\deg(v)] \approx cN$ grows linearly with N.
- The number of edges $L \approx c \binom{N}{2}$.
- Not a realistic large network, but a useful contrast.

Sparse regime: $p_N = \lambda/N$ (or smaller).

- $\mathbb{E}[\deg(v)] \approx \lambda$ stays constant as $N \to \infty$.
- The total number of edges $L \approx \lambda N/2$ grows linearly with N.

Language note:

- Saying "real networks are sparse" means that as they grow, the average degree stays bounded, not that p is small for a fixed N.
- The scaling of p_N determines which asymptotic regime we are in.

Maximum degree in G(N, p)

Let $\Delta = \max_{v} \deg(v)$ be the **maximum degree**.

Dense regime: (p_N) tends to a constant c > 0.

• With high probability (remember we ignore constants here):

$$\Delta = (N-1)p + O(\sqrt{N \log N}).$$

(use Slide 6 to argue for this asymptotic formula)

Maximum degree in G(N, p)

Let $\Delta = \max_{\nu} \deg(\nu)$ be the **maximum degree**.

Dense regime: (p_N) tends to a constant c > 0.

• With high probability (remember we ignore constants here):

$$\Delta = (N-1)p + O(\sqrt{N \log N}).$$

(use Slide 6 to argue for this asymptotic formula)

Sparse regime: $p_N = \lambda/N$ (or smaller).

- Each $deg(v) \approx Pois(\lambda)$ mean λ .
- By extreme-value theory for Poisson tails:

$$\Delta \approx \frac{\log N}{\log \log N}.$$

This is very thin tailed: $N=10^3, 10^6, 10^{12}$ gives $\frac{\log N}{\log \log N}=4.3, 6.3, 9.2$. In real networks we observe "hubs".

Threshold phenomena and giant component

Threshold phenomena in ER (concept)

Definition

A **threshold** for a graph property \mathcal{P} is a function $p^*(N)$ such that:

$$p \ll p^*(N) \Rightarrow G(N, p)$$
 has $\neg P$ w.h.p.,
 $p \gg p^*(N) \Rightarrow G(N, p)$ has P w.h.p.

ER graphs display many sharp thresholds:

- Emergence of a giant component.
- Connectivity (no isolated vertices).
- Appearance of fixed subgraphs (e.g., triangles).

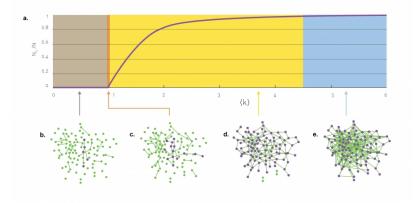
Regimes of G(N, p) (sparse case p = c/N)

It is useful to describe random graphs in terms of the expected degree

$$\mathbb{E}[\deg(v)] = c.$$

- Subcritical regime (c < 1): only small tree-like components; largest size $\sim \log N$.
- Critical point (c=1): largest component has size $\sim N^{2/3}$; no giant yet.
- Supercritical regime (c > 1): a unique giant component emerges, containing a positive fraction of nodes.
- Connected regime ($c \gtrsim \log N$): almost surely the whole graph becomes connected.

Illustration of regimes



Interpretation: As c increases, the largest connected component grows from negligible size, through a sudden phase transition (c=1), and eventually absorbs almost all nodes.

Why the giant component matters (econ/social)

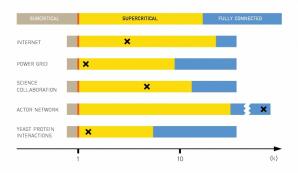
Consider the world's friendship network:

- Clearly disconnected (think small remote communities)
- But "our" component is large, spans most of the world.
- There should be no two big components.

Giant components are important:

- Contagion & diffusion: A giant component enables large cascades (diseases, information, bank runs).
- Market connectivity: Sufficient density is needed for trade/payment networks to connect most participants.
- Infrastructure design: Tuning p (or expected degree c) above 1 ensures large-scale reachability.

Where are real networks?



Most real-world networks live well above the critical point.

They are highly connected (often even "superconnected"), yet they also exhibit additional structure (clustering, hubs, communities).

The ER model a *baseline*: it shows that above c=1, large-scale connectivity is the default, but real networks have richer features.

Connectivity threshold in G(N, p)

Theorem

The threshold for connectivity in G(N, p) is

$$p^*(N) = \frac{\log N}{N}.$$

More precisely:

$$\begin{cases} p = \frac{\log N + \omega(N)}{N}, & G(N, p) \text{ is connected w.h.p.,} \\ p = \frac{\log N - \omega(N)}{N}, & G(N, p) \text{ is disconnected w.h.p..} \end{cases}$$

Here, $\omega(N)$ means any function that grows to infinity (however slowly). Examples: $\log \log N$, $\sqrt{\log N}$, or even $\log \log \log N$.

Idea of proof (intuition)

A vertex is isolated with probability

$$\mathbb{P}(v \text{ isolated}) = (1-p)^{N-1} \approx e^{-pN}.$$

• Expected number of isolated vertices:

$$\mathbb{E}[N_0] \approx Ne^{-pN}$$
.

• If $p = c \frac{\log N}{N}$, then

$$\mathbb{E}[N_0] \approx N^{1-c}$$
.

• For c < 1, $\mathbb{E}[N_0] \to \infty$; many isolated vertices \to disconnected.

For c > 1, $\mathbb{E}[N_0] \to 0$; isolated vertices disappear.

Careful: No isolated vertices do not automatically imply connectivity. However, one can show that once all isolated vertices disappear, all other components merge into one giant component w.h.p.

Simulation in NetworkX (Colab) — generate and inspect

Python (run in Google Colab)

```
import networkx as nx
import matplotlib.pyplot as plt
n, p = 200, 0.015 \# trv also p = 0.005, 0.02, 0.05
G = nx.erdos_renyi_graph(n, p)
print("Nodes:", G.number of nodes())
print("Edges:", G.number of edges())
# Empirical vs expected average degree
deg = [d for . d in G.degree()]
print("Empirical mean degree:", sum(deg)/n)
print("Theoretical mean degree:", (N-1)*p)
# Largest component size
components = list(nx.connected_components(G))
largest = max(components, kev=len)
print("Largest component size:", len(largest))
# Draw (small n looks better)
plt.figure(figsize=(5,5))
pos = nx.spring_layout(G, seed=7)
nx.draw(G, pos, node_size=30, edge_color="#cccccc")
plt.show()
```

Simulation in NetworkX — degree histogram

Python (run in Google Colab)

```
import numpy as np
import matplotlib.pyplot as plt

deg = np.array([d for _, d in G.degree()])
print("Empirical mean degree:", deg.mean())
print("Theoretical mean degree:", (N-1)*p)

plt.figure(figsize=(5,4))
bins = np.arange(deg.max()+2) - 0.5
plt.hist(deg, bins=bins)
plt.xlabel("Degree k"); plt.ylabel("Count")
plt.title("Degree distribution in G(N,p)")
plt.show()
```

Observation. For p = c/N the histogram should resemble a Poisson(c), with empirical mean degree $\overline{\deg}(G)$ close to theoretical $\mathbb{E}[\deg]$.

Clustering

Why clustering matters

Real networks are not tree-like. Friends of friends often know each other (and so triangles are common).

Examples:

- Social networks: If Alice knows Bob and Carol, it's likely Bob and Carol also know each other. → Social circles, community structure.
- Trade networks: Countries trading with the same partner often trade with each other. → Formation of regional trade blocs.
- Financial networks: Two banks lending to the same counterparties are likely connected through risk exposures. → Triangles increase contagion channels.
- Citation or collaboration networks: If researcher A collaborates with both B and C, B–C collaboration becomes more probable. \rightarrow Knowledge diffusion through closed triads.

Clustering coefficient: definition

Definition

For node v with degree $deg(v) = k_v$:

$$C_v = rac{\# ext{ links among neighbors of } v}{{k_v \choose 2}} \ \in [0,1].$$

- Measures "friend-of-friend closure."
- $C_{\nu}=1$: neighbors form a clique; $C_{\nu}=0$: none connected.
- Average clustering coefficient: $\overline{C} = \frac{1}{N} \sum_{\nu} C_{\nu}$.

Clustering in Erdős-Rényi networks

Suppose $deg(v) = k_v$. Consider two neighbors u, w.

Each pair u, w gets connected (independently) with probability p.

The expected number of links among neighbors is $\mathbb{E}L_{\nu} = \rho\binom{k_{\nu}}{2}$.

Thus

$$\mathbb{E}[C_{\nu}] = \mathbb{E}\left[\frac{L_{\nu}}{\binom{k_{\nu}}{2}}\right] = \frac{\mathbb{E}[L_{\nu}]}{\binom{k_{\nu}}{2}} = p.$$

Implications:

- In the sparse regime p = c/N: $\mathbb{E}[C_i] \approx c/N \to 0$.
- Prediction: clustering vanishes as N grows.
- Real networks (social, financial, trade) exhibit far higher clustering.
 Mismatch: motivates richer models leading so sparse networks with nontrivial clustering coefficients.

Summary: What ER graphs teach us (and what they miss)

Erdős-Rényi: clean benchmark for randomness in networks.

- Degrees: Binomial \rightarrow Poisson in sparse regime, sharply concentrated (Hoeffding).
- Sharp thresholds: giant component at $p \sim 1/N$, full connectivity at $p \sim (\log N)/N$.

Analytic power: every property can be studied precisely—gives language for thresholds, asymptotics, and "with high probability" results.

But realism is limited:

- Clustering $\mathbb{E}[C_{\nu}] = p \to 0$ as $N \to \infty$ (in the sparse regime).
- Degree distribution thin-tailed: no hubs or communities.
- Real social, financial, and web networks are way more structured.

This motivates a study of other random graph models.

Static random graph models

Graphs as random objects

Consider an undirected graph G = (V, E).

Order all pairs of elements in V: $\{1,2\},\{1,3\},\ldots,\{N-1,N\}$.

Each graph is uniquely identified by a vector $\mathbf{y} = (y_{ij}) \in \{0,1\}^{\binom{N}{2}}$:

• $y_{ij} = 1$ if and only if $ij \in E$.

Graphs as random objects

Consider an undirected graph G = (V, E).

Order all pairs of elements in $V: \{1, 2\}, \{1, 3\}, \dots, \{N - 1, N\}$.

Each graph is uniquely identified by a vector $\mathbf{y} = (y_{ij}) \in \{0,1\}^{\binom{N}{2}}$:

• $y_{ij} = 1$ if and only if $ij \in E$.

In this sense, every distribution for a random binary vector in $\{0,1\}^{\binom{N}{2}}$ gives a distribution of a random graph with N nodes.

e.g. $(p_{000}, p_{001}, p_{010}, p_{011}, p_{100}, p_{101}, p_{110}, p_{111}) = (\frac{1}{2}, \frac{1}{14}, \frac{1}{14}, \frac{1}{14}, \frac{1}{14}, \frac{1}{14}, \frac{1}{14}, \frac{1}{14})$ gives a distribution over 3-node graphs.

Every family of distributions over $\{0,1\}^{\binom{N}{2}}$ gives a statistical model for random graphs with N nodes.

Erdős-Rényi model as an example

Recall: Every family of distributions over $\{0,1\}^{\binom{N}{2}}$ gives a statistical model for random graphs with N nodes.

Consider the distribution where, for $\mathbf{y} = (y_{ij}) \in \{0,1\}^{\binom{N}{2}}$

$$p(\mathbf{y}) = (1-p)^{1-y_{12}}p^{y_{12}}\cdots(1-p)^{1-y_{N-1,N}}p^{y_{N-1,N}} = (1-p)^{\binom{N}{2}-s}p^{s},$$

where $s = \sum_{i < j} y_{ij}$ is the number of edges.

Note: We can write $p(\mathbf{y}) = (1-p)^{\binom{N}{2}} \left(\frac{p}{1-p}\right)^s$.

Quick recall: exponential families

Let $\mathbf{x} \in \mathcal{X} \subseteq \mathbb{R}^n$, $T : \mathbb{R}^n \to \mathbb{R}^d$, $\theta \in \mathbb{R}^d$.

Definition

A probability distribution on $\mathcal X$ is an exponential family if the pms/density takes the form

$$p_{\theta}(\mathbf{x}) = h(\mathbf{x}) \exp \left(\theta^T T(\mathbf{x}) - \psi(\theta)\right).$$

- T(x) =sufficient statistics (counts of edges, triangles, ...).
- θ = natural parameter.
- $\psi(\theta) = \text{log-partition function (ensures normalization)}.$

Logistic regression, Ising models, multivariate Gaussian, and many other popular statistical models are exponential families.

Static random graph models

Definition (Exponential Random Graph Models (ERGMs):)

$$\mathbb{P}(G = g) \propto \exp\{\theta_1 \cdot \# \operatorname{edges}(g) + \theta_2 \cdot \# \operatorname{triangles}(g) + \cdots\}.$$

• The parameters: θ_1 tunes density, θ_2 tunes clustering, etc.

ER model is a special case of ERGM:

$$\mathbb{P}(G=g) = (1-p)^{\binom{N}{2}} \left(\frac{p}{1-p}\right)^{s} \propto \exp(\theta \cdot s),$$

where
$$\theta = \log\left(\frac{p}{1-p}\right)$$

Dynamic random graph models

Recursive growth: preferential attachment

Networks often grow over time (new users, new connections).

Preferential attachment: New node attaches to existing node v with probability proportional to deg(v).

ullet "Rich get richer" \to hubs emerge.

Recursive growth: preferential attachment

Networks often grow over time (new users, new connections).

Preferential attachment: New node attaches to existing node v with probability proportional to deg(v).

• "Rich get richer" \rightarrow hubs emerge.

Result: degree distribution follows a *power law*.

- Few very large hubs.
- Many low-degree nodes.
- Matches data: web, citation networks, finance.

Summary

- G(N, p) = simplest random graph; tractable but unrealistic.
- Subgraph thresholds (triangles) show how clustering begins.
- Clustering coefficient: vanishes in ER, but high in real networks.
- Static (ERGMs) and recursive (preferential attachment) models add realism.
- Small-world phenomena + hubs: explain short distances and inequalities.

Exercise

Determine the Clustering Coefficient for nodes w and y.

