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Today's Lecture

[

. Probability recap: Chebyshev and Hoeffding inequality.

2. Degree distribution in Erdés—Rényi graphs.

3. Threshold phenomena and giant component.

4. The clustering coefficient: definition, motivation, formulas.
5. Static random graph models: ER as binary vectors, ERGMs.
6. Recursive random graph models: preferential attachment.

7. Why random models matter for economics and social sciences.
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Degree distribution: finite N
concentration bounds



Concentration: Chebyshev (simple but general)

Theorem ( Chebyshev inequality )

For any r.v. X with mean p and variance o2,

2

g
P(X - 21) < 7.

For degree: deg(v) ~ Bin(N — 1, p), so

N—1)p(1 - p)
t2 '

P(|deg(v) — (N — 1)p| > ) < &

Chebyshev already gives some concentration guarantees (e.g. take

to = \/%p(l — p) for small 6 > 0) but sharper results are possible.
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Appendix: Proof of the Chebyshev inequality

Markov's inequality: If Z >0 then P(Z >t) < 1E[Z].
Markov's inequality follows immediately from the following calculation,

E[Z] < E[Z1(Z > t)] < tE[1(Z > t)] = tP(Z > t).

Now, Chebyshev's inequality follows easily from Markov's. Take
Z = |X — p| then

N2 o2
BUX > 1) = B(X —pf? 2 ) < PO O



Sharper concentration: Hoeffding for Binomial

Theorem ( Hoeffding inequality )
If X =37 ; Z; with independent Z; € [0,1] and EX = y, then for t > 0,

P(IX -l 21) < 2exp(-2).
Applied to degree: deg(v) has N — 1 independent Bernoulli summands,

2
P(|deg(v) — (N — 1)p| > t) < 2exp<—N2i1>.

Fix v € V. Taking to = % Iog(%) for small 6 > 0 gives

P(|deg(v) — (N —1)p| > to) < 6.

note much better behavior of ty as a function of §
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Sharper concentration: Hoeffding for Binomial

Theorem ( Hoeffding inequality )
If X =37 ; Z; with independent Z; € [0,1] and EX = y, then for t > 0,

P(IX -l 21) < 2exp(-2).
Applied to degree: deg(v) has N — 1 independent Bernoulli summands,

2
P(|deg(v) — (N — 1)p| > t) < 2exp<—N2i1>.

Fix v € V. Taking to = % Iog(%) for small 6 > 0 gives

P(|deg(v) — (N —1)p| > to) < 6.
note much better behavior of ty as a function of §

e.g. N=1001, p=0.1, 6 = 0.05. Then with prob. > 0.95
deg(v) € (100 — 42.95,100 + 42.95) = (57.05,142.95).
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Uniform degree bounds

Recall: P(|deg(v) — (N —1)p| > t) < 2exp<—%_21) for all t > 0.

Suppose we now want to provide a bound for the degrees all v € V.
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Uniform degree bounds
Recall: B(|deg(v) — (N — 1)p| > t) < 2exp< ) for all t > 0.
Suppose we now want to provide a bound for the degrees all v € V.

Take to = /N2 Iog(TN) we get that, for any fixed v € V,

(| deg(v) ~ (N~ 1)p| > t0) < +.
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Uniform degree bounds

Recall: B(|deg(v) — (N — 1)p| > t) < 2exp< ) for all t > 0.

Suppose we now want to provide a bound for the degrees all v € V.

Take to = /N2 Iog(TN) we get that, for any fixed v € V,

(| deg(v) ~ (N - 1)pl 2 1) < 7.

Union bound: For any two events P(AU B) < P(A) + P(B).

P(3v |deg(v) — (N —1)p| > to) < > P(|deg(v ~1)p| > 1) < 4.
veVv
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Uniform degree bounds

Recall: B(|deg(v) — (N — 1)p| > t) < 2exp< ) for all t > 0.

Suppose we now want to provide a bound for the degrees all v € V.

Take to = /N2 Iog(TN) we get that, for any fixed v € V,

o

P(|deg(v) — (N =1)p| 2 t0) = -

Union bound: For any two events P(AU B) < P(A) + P(B).

P(3v |deg(v) — (N —1)p| > to) < > P(|deg(v ~1)p| > 1) < 4.
veVv

e.g. N =1001, 6 =0.05, p=0.1. Then with prob. > 0.95 all degrees
lie in (100 — 72.8,100 + 72.8) = (27.2,172.8).
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Asymptotics in networks



Asymptotic Thinking in Random Graphs
Why asymptotics?

e We study G(N, p) as N — oo to reveal general patterns.

e Precise constants matter less than the scaling behavior of p with N.
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Asymptotic Thinking in Random Graphs

Why asymptotics?
e We study G(N, p) as N — oo to reveal general patterns.

e Precise constants matter less than the scaling behavior of p with N.

f(N) = o(g(N)) means f(N)/g(N) — 0.
f(N) = O(g(N)) means |f(N)| < C|g(N)|; for some C >0 and N
large enough.

f(N) ~ g(N) means f(N)/g(N) — 1.
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Asymptotic Thinking in Random Graphs

Why asymptotics?
e We study G(N, p) as N — oo to reveal general patterns.

e Precise constants matter less than the scaling behavior of p with N.

f(N) = o(g(N)) means f(N)/g(N) — 0.
f(N) = O(g(N)) means |f(N)| < C|g(N)|; for some C >0 and N
large enough.

f(N) ~ g(N) means f(N)/g(N) — 1.

Probabilistic language:

e “With high probability” (w.h.p.) means P(event) — 1 as N — oc.

&N the graph is connected w.h.p.

e Example: in G(N, p) with p =

7/29



Average degree: dense vs sparse graphs
When N grows, the connection probability p = py can scale differently.

Dense regime: (py) tends to a constant ¢ > 0.
o [E[deg(v)] ~ cN grows linearly with N.
e The number of edges L ~ c(gl)

e Not a realistic large network, but a useful contrast.

Sparse regime: py = A\/N (or smaller).
e E[deg(v)] ~ A stays constant as N — oc.
e The total number of edges L ~ AN/2 grows linearly with N.
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Average degree: dense vs sparse graphs
When N grows, the connection probability p = py can scale differently.

Dense regime: (py) tends to a constant ¢ > 0.
o [E[deg(v)] ~ cN grows linearly with N.
e The number of edges L ~ c(gl)

e Not a realistic large network, but a useful contrast.

Sparse regime: py = A\/N (or smaller).
e E[deg(v)] ~ A stays constant as N — oc.
e The total number of edges L ~ AN/2 grows linearly with N.

Language note:

e Saying “real networks are sparse” means that as they grow, the
average degree stays bounded, not that p is small for a fixed N.

e The scaling of py determines which asymptotic regime we are in.
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Maximum degree in G(N, p)
Let A = max, deg(v) be the maximum degree.

Dense regime: (py) tends to a constant ¢ > 0.
e With high probability (remember we ignore constants here):

A = (N-1)p + O(/NlogN).

(use Slide 6 to argue for this asymptotic formula)
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Maximum degree in G(N, p)
Let A = max, deg(v) be the maximum degree.

Dense regime: (py) tends to a constant ¢ > 0.
e With high probability (remember we ignore constants here):

A = (N-1)p + O(/NlogN).

(use Slide 6 to argue for this asymptotic formula)

Sparse regime: py = A\/N (or smaller).
e Each deg(v) =~ Pois(\) — mean .
e By extreme—value theory for Poisson tails:
. logN
~ loglog N’

This is very thin tailed: N = 103,10°, 10'2 gives %875 = 4.3,6.3,9.2.
In real networks we observe “hubs”.
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Threshold phenomena and giant
component



Threshold phenomena in ER (concept)

Definition
A threshold for a graph property P is a function p*(N) such that:

p < p*(N)= G(N,p) has =P w.h.p.,
p> p*(N) = G(N, p) has P w.h.p.
ER graphs display many sharp thresholds:
e Emergence of a giant component.

e Connectivity (no isolated vertices).

e Appearance of fixed subgraphs (e.g., triangles).
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Regimes of G(N, p) (sparse case p = c/N)

It is useful to describe random graphs in terms of the expected degree

E[deg(v)] = c.

e Subcritical regime (¢ < 1): only small tree-like components;
largest size ~ log V.

e Critical point (c = 1): largest component has size ~ N?/3; no
giant yet.

e Supercritical regime (¢ > 1): a unique giant component
emerges, containing a positive fraction of nodes.

e Connected regime (c = log N): almost surely the whole graph
becomes connected.
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lllustration of regimes

Interpretation: As c increases, the largest connected component grows
from negligible size, through a sudden phase transition (¢ = 1), and

eventually absorbs almost all nodes.
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Why the giant component matters (econ/social)

Consider the world's friendship network:
e Clearly disconnected (think small remote communities)
e But “our” component is large, spans most of the world.

e There should be no two big components.

Giant components are important:

e Contagion & diffusion: A giant component enables large cascades
(diseases, information, bank runs).

e Market connectivity: Sufficient density is needed for
trade/payment networks to connect most participants.

e Infrastructure design: Tuning p (or expected degree c) above 1
ensures large-scale reachability.
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Where are real networks?

I SUPERCRITICAL FULLY CONNECTED

INTERNET I X -

POWER GRID I X _
cottseorarion [N x e

ACTOR NETWORK I - -
INTERACTIONS

T T >
1 10 k)

Most real-world networks live well above the critical point.

They are highly connected (often even “superconnected”), yet they also
exhibit additional structure (clustering, hubs, communities).

The ER model a baseline: it shows that above ¢ = 1, large-scale
connectivity is the default, but real networks have richer features.
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Connectivity threshold in G(N, p)

Theorem
The threshold for connectivity in G(N, p) is

. log N

More precisely:

p= w, G(N, p) is connected w.h.p.,

= M, G(N, p) is disconnected w.h.p..

Here, w(N) means any function that grows to infinity (however slowly).
Examples: loglog N, /log N, or even loglog log N.
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|dea of proof (intuition)

A vertex is isolated with probability

P(v isolated) = (1 —p)V~! ~ e PN,

Expected number of isolated vertices:

E[No] ~ Ne~PN.

If p= CIO%,N, then

E[No] ~ N*~<.

For ¢ < 1, E[Ng] — oo; many isolated vertices — disconnected.

For ¢ > 1, E[Ng] — O; isolated vertices disappear.

Careful: No isolated vertices do not automatically imply connectivity.
However, one can show that once all isolated vertices disappear, all
other components merge into one giant component w.h.p.
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Simulation in NetworkX (Colab) — generate and inspect

Python (run in Google Colab)

import networkx as nx
import matplotlib.pyplot as plt

n, p = 200, 0.015 # try also p = 0.005, 0.02, 0.05
G = nx.erdos_renyi_graph(n, p)

G.number_of_nodes())
, G.number_of_edges())

print ("Nodes:
print ("Edges:

# Empirical vs expected average degree

deg = [d for _, d in G.degree()]

print ("Empirical mean degree:", sum(deg)/n)
print ("Theoretical mean degree:", (N-1)%*p)

# Largest component size

components = list(nx.connected_components(G))
largest = max(components, key=len)
print("Largest component size:", len(largest))

# Draw (small n looks better)
plt.figure(figsize=(5,5))

pos = nx.spring_layout(G, seed=7)

nx.draw(G, pos, node_size=30, edge_color="#cccccc")
plt.show()
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Simulation in NetworkX — degree histogram

Python (run in Google Colab)

import numpy as np
import matplotlib.pyplot as plt

deg = np.array([d for _, d in G.degree()])
print ("Empirical mean degree:", deg.mean())
print ("Theoretical mean degree:", (N-1)*p)

plt.figure(figsize=(5,4))

bins = np.arange(deg.max()+2) - 0.5
plt.hist(deg, bins=bins)
plt.xlabel("Degree k"); plt.ylabel("Count")
plt.title("Degree distribution in G(N,p)")
plt.show()

Observation. For p = c¢/N the histogram should resemble a Poisson(c), with empirical mean

degree deg(G) close to theoretical E[deg].
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Clustering



Why clustering matters

Real networks are not tree-like. Friends of friends often know each
other (and so triangles are common).

Examples:

e Social networks: If Alice knows Bob and Carol, it's likely Bob and
Carol also know each other. — Social circles, community structure.

e Trade networks: Countries trading with the same partner often
trade with each other. — Formation of regional trade blocs.

e Financial networks: Two banks lending to the same counterparties
are likely connected through risk exposures. — Triangles increase
contagion channels.

e Citation or collaboration networks: If researcher A collaborates
with both B and C, B—C collaboration becomes more probable. —

Knowledge diffusion through closed triads.
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Clustering coefficient: definition

Definition
For node v with degree deg(v) = ky:

# links among neighbors of v
e &)
2

€ [0, 1].

e Measures “friend-of-friend closure.”
e C, = 1: neighbors form a clique; C, = 0: none connected.

e Average clustering coefficient: C = % 3", C,.
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Clustering in Erdos—Rényi networks

Suppose deg(v) = k,. Consider two neighbors u, w.
Each pair u, w gets connected (independently) with probability p.
The expected number of links among neighbors is EL, = p(%).

Thus
L,

(%)

_E[L)

(%)

E[C,] = E

Implications:
e In the sparse regime p = ¢/N: E[Cj] ~ ¢/N — 0.
e Prediction: clustering vanishes as N grows.

e Real networks (social, financial, trade) exhibit far higher clustering.
= Mismatch: motivates richer models leading so sparse networks
with nontrivial clustering coefficients.
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Summary: What ER graphs teach us (and what they miss)

Erd6s—Rényi: clean benchmark for randomness in networks.

e Degrees: Binomial — Poisson in sparse regime, sharply concentrated
(Hoeffding).

e Sharp thresholds: giant component at p~1/N, full connectivity at
p~(log N)/N.

Analytic power: every property can be studied precisely—gives language
for thresholds, asymptotics, and “with high probability” results.

But realism is limited:
e Clustering E[C,] = p — 0 as N — oo (in the sparse regime).
e Degree distribution thin-tailed: no hubs or communities.

e Real social, financial, and web networks are way more structured.

This motivates a study of other random graph models.
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Static random graph models



Graphs as random objects

Consider an undirected graph G = (V, E).
Order all pairs of elements in V: {1,2},{1,3},...,{N —1,N}.

Each graph is uniquely identified by a vector y = (y;;) € {0, 1}(’;’)
e yj=1ifandonlyif j € E.
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Graphs as random objects

Consider an undirected graph G = (V, E).
Order all pairs of elements in V: {1,2},{1,3},...,{N —1,N}.

Each graph is uniquely identified by a vector y = (y;;) € {0, 1}(’;’)

e yj=1ifand only if jj € E.
In this sense, every distribution for a random binary vector in {0, 1}(,;)
gives a distribution of a random graph with N nodes.

(11 1 1 1 1 1 1y gi
€.8. (Pooo; P00, Po10, Po11, P1oo; Pots P110s P111) = (3. 145 14 14> 14 14> 14 14) SIVES A

distribution over 3-node graphs.

Every family of distributions over {0, 1}(21) gives a statistical model for
random graphs with N nodes.
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Erd6s—Rényi model as an example

Recall: Every family of distributions over {0, 1}(21) gives a statistical
model for random graphs with N nodes.

Consider the distribution where, for y = (y;;) € {0, l}(g)
p(_y) = (1 _ p)lf)/upyp o (1 _ p)1*YN71,Np)/N71,N _ (1 _ p)(’;’)—sps’

where s = Zl-<j yij is the number of edges.

Note: We can write p(y) = (1 — p)(g) (ﬁ)s.
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Quick recall: exponential families

let xe YCR", T:R" >R 9 cRY,
Definition

A probability distribution on X is an exponential family if the
pms/density takes the form

po(x) = h(x) exp (QTT(X) = 1/1(0)).

e T(x) = sufficient statistics (counts of edges, triangles, ...).
e 0 = natural parameter.

e (0) = log-partition function (ensures normalization).

Logistic regression, Ising models, multivariate Gaussian, and many
other popular statistical models are exponential families.
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Static random graph models

Definition ( Exponential Random Graph Models (ERGMs): )
P(G = g) o exp{0; - #edges(g) + 0> - #triangles(g) + - - - }.

e The parameters: 6y tunes density, #> tunes clustering, etc.

ER model is a special case of ERGM:
N P s
PG =) = (1= (12 xexn(v-s)
where 6 = log (ﬁ)
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Dynamic random graph models



Recursive growth: preferential attachment

Networks often grow over time (new users, new connections).

Preferential attachment: New node attaches to existing node v with
probability proportional to deg(v).

e “Rich get richer” — hubs emerge.
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Recursive growth: preferential attachment

Networks often grow over time (new users, new connections).

Preferential attachment: New node attaches to existing node v with
probability proportional to deg(v).

e “Rich get richer” — hubs emerge.

Result: degree distribution follows a power law.
e Few very large hubs.
e Many low-degree nodes.

e Matches data: web, citation networks, finance.
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Summary

e G(N,p) = simplest random graph; tractable but unrealistic.
e Subgraph thresholds (triangles) show how clustering begins.
e Clustering coefficient: vanishes in ER, but high in real networks.

e Static (ERGMs) and recursive (preferential attachment) models add
realism.

e Small-world phenomena + hubs: explain short distances and
inequalities.
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Exercise

Determine the Clustering Coefficient for nodes w and y.

v w
/ / @
u ~_
z Y
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