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Today's Lecture

1.

2.

Wrapping-up centrality measures: PageRank and HITS.

Random graphs, Erdés—Rényi model.

. Probability recap: binomial and Poisson distribution.

. Probability recap: Chebyshev and Hoeffding inequality.
. Degree distribution in Erdés—Rényi graphs.

. Asymptotics in networks.

. Threshold phenomena and giant component.
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Recall: PageRank

We define random walk on a directed graph in a natural way. The walk
can only follow the direction of arrows.

Algebraically more complicated as Ag is not symmetric and the
eigenvalues are complex.

e Web graph = directed network of pages and hyperlinks.

e Eigenvector centrality does not work directly in directed graphs with
sinks or disconnected components.

e PageRank modifies the random walk with teleportation:
1
Py =aP + (1 — a)NllT,

where P is the transition matrix of the web, « € (0, 1).

e Stationary distribution of P, = PageRank vector.
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Beyond PageRank: The HITS Algorithm

Goal: Identify both authorities and hubs in a directed network.

e A good hub points to many good authorities.

e A good authority is pointed to by many good hubs.
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Beyond PageRank: The HITS Algorithm

Goal: Identify both authorities and hubs in a directed network.

e A good hub points to many good authorities.

e A good authority is pointed to by many good hubs.
fur
fur
Context:

e Introduced by Jon Kleinberg (1999).

e Used originally to rank web pages within a topic query.

&

e Query-dependent — unlike PageRank, which is global.

4/29



Mathematics of HITS

Let A be the adjacency matrix (A; = 1if i— ).

Each node i has: authority score a;,  hub score h;.
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Mathematics of HITS

Let A be the adjacency matrix (A; = 1if i— ).

Each node i has: authority score a;,  hub score h;.

They satisfy the mutual reinforcement relations:

{h x Aa,  (hubs get votes from authorities)

aoc ATh, (authorities get votes from hubs)

Combining gives:
ax Al Aa, h o AATh.

e Take a and h to be dominant eigenvectors of AT A and AAT.

e In the iterative HITS algorithm, a and h are renormalized at each
step, so the proportionality becomes equality after scaling.

e Equivalent viewpoint: HITS computes the first left and right
singular vectors of A.
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Example: Hubs and Authorities in a Small Web

Adjacency matrix: Graph representation:
0110 (2)
0 01O
A=1lo 0 0 1 @ ®
0000 (3)
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Example: Hubs and Authorities in a Small Web

Adjacency matrix: Graph representation:
0110 (2)
0 01O
A=1lo 0 0 1 @ ®
0000 (3)

Iterative algorithm:
1. Initialize a; = h; = 1.

2. Repeat a + AT h, normalize: h < Aa, normalize.
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Example: Hubs and Authorities in a Small Web
Adjacency matrix: Graph representation:
0
0
A= 1o @
0 0

Iterative algorithm:

1
0
0

O O - =
o= OO

1. Initialize a; = h; = 1.
2. Repeat a + AT h, normalize; h + Aa, normalize.
Python demo:

import networkx as nx

G = nx.DiGraph()
G.add_edges_from([(1,2),(1,3),(2,3),(3,4)]1)
hubs, auth = nx.hits(G)
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Example: Hubs and Authorities in a Small Web

Adjacency matrix: Graph representation:
0110
0 01O

A= 0 001 @
0 00O

Iterative algorithm:

1. Initialize a; = h; = 1.

2. Repeat a + AT h, normalize; h + Aa, normalize.
Python demo:

import networkx as nx

G = nx.DiGraph()
G.add_edges_from([(1,2),(1,3),(2,3),(3,4)]1)
hubs, auth = nx.hits(G)

Interpretation:
e Node 1 — strong hub (points to many).
e Node 4 — strong authority (pointed to by many).
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Random graphs and Erdos—Rényi
model



Why random graphs?

Real networks (social, economic, financial) are noisy and constantly
evolving. We need a simple baseline model to compare against.

Definition ( Erdés—Rényi (ER) model)

G(N, p): a random graph on N nodes where each of the (g’) possible
edges appears independently with probability p.
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Why random graphs?
Real networks (social, economic, financial) are noisy and constantly
evolving. We need a simple baseline model to compare against.
Definition ( Erdés—Rényi (ER) model)

G(N, p): a random graph on N nodes where each of the (g’) possible
edges appears independently with probability p.

Paul Erdés (1913 - 1996)  Alfréd Rényi (1921-1970)

Erdds and Rényi (1959-60) launched the probabilistic study of graphs.
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G(N, p) Model

Take N = 4 then the graph can have up to six edges. Each with
distribution Bern(p):

N A A s
M@ )= P21 p)’

If p= % each graph appears with the same probability 2—15 =1

6_4 .
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Probability recap: Binomial

Definition
If X ~ Bin(n, p) then

n e
P(X = k) = (k) pM(1—p)™*, E[X]=np, Var(X)=np(1— p).
Useful characterization: X = Y "_; Z; with independent Z; ~ Bern(p).

- m((3)5)

e Degree of a fixed vertex v:

In the ER graph G(N, p):
e Number of edges:

deg(v) ~ Bin(N —1,p).
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Probability recap: Poisson (as Binomial limit)

Theorem
If X, ~ Bin(n, p,) with n — co and np, — A > 0, then

Xn — X ~ Pois()), P(X =k)=—e

The approximation Bin(n, p) ~ Poiss(\) for A = pn is particularly good
if pis small.

Example ( Quick check)

For n = 2000, p = 0.003, A = np = 6. Compare P(X = 0): Binomial
= (1 — p)?9% ~ 0.00245 vs. Poisson e~® ~ 0.00248 (very close).
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Degree distribution in G(N, p)

If p=A/(N —1), then, for any v € V,

deg(v) ~ Bin(N —1,p) ~ Pois()).

e Mean degree: E[deg(v)] = (N —1)p.

This gives closed forms for expectations; Poisson is a great approximation
when N is large and p small.

11/29



Degree distribution: finite N
concentration bounds



Concentration: Chebyshev (simple but general)

Theorem ( Chebyshev inequality )
2

For any r.v. X with mean p and variance o

2
g
PIX 2 1) < 7.

For degree: deg(v) ~ Bin(N — 1, p), so

B(|deg(v) (N - 1)p| > 1) < V= DPLZP)

Chebyshev already gives some concentration guarantees (e.g. take

to = \/%p(l — p) for small 6 > 0) but sharper results are possible.
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Appendix: Proof of the Chebyshev inequality

Theorem ( Markov's inequality )
If Z>0 then P(Z>t)<iE[Z].

Indeed,
E[Z] < E[Z1(Z > t)] < tE[L(Z > t)] = tP(Z > t).

Now, Chebyshev's inequality follows easily from Markov's. Take
Z = |X — p| then

E(X — p)? o?

P(IX —pl > t) = P(X —p)* > ¢) < = =



Sharper concentration: Hoeffding for Binomial

Theorem ( Hoeffding inequality )
If X =37 ; Z; with independent Z; € [0,1] and EX = y, then for t > 0,

P(IX -l 21) < 2exp(-2).
Applied to degree: deg(v) has N — 1 independent Bernoulli summands,

2
P(|deg(v) — (N — 1)p| > t) < 2exp<—N2i1>.

Fix v € V. Taking to = % Iog(%) for small 6 > 0 gives

P(|deg(v) — (N —1)p| > to) < 6.

note much better behavior of t; on §

14 /29



Sharper concentration: Hoeffding for Binomial

Theorem ( Hoeffding inequality )
If X =37 ; Z; with independent Z; € [0,1] and EX = y, then for t > 0,

P(IX -l 21) < 2exp(-2).
Applied to degree: deg(v) has N — 1 independent Bernoulli summands,

2
P(|deg(v) — (N — 1)p| > t) < 2exp<—N2i1>.

Fix v € V. Taking to = % Iog(%) for small 6 > 0 gives

P(|deg(v) — (N —1)p| > to) < 6.
note much better behavior of ty on §

e.g. N =1001, 06 =0.05, p=0.1. Then with prob. > 0.95
deg(v) € (100 — 42.95,100 + 42.95) = (57.05,142.95).
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Uniform degree bounds

Recall: P(|deg(v) — (N —1)p| > t) < 2exp<—%_21) for all t > 0.

Suppose we now want to provide a bound for the degrees all v € V.
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Take tp = % Iog(%) we get that, for any fixed v € V,
)
P(|deg(v) — (N~ 1)p| > 1) < .
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Uniform degree bounds

Recall: B(|deg(v) — (N — 1)p| > t) < 2exp< ) for all t > 0.

Suppose we now want to provide a bound for the degrees all v € V.

Take tp = % Iog(%) we get that, for any fixed v € V,
)
P(|deg(v) — (N~ 1)p| > 1) < .
Union bound: For any two events P(AU B) < P(A) + P(B).

P(3v |deg(v) — (N —1)p| > to) < > P(|deg(v) — (N —1)p| > to) < 4.
veVv

e.g. N =1001, 6 =0.05, p=0.1. Then with prob. > 0.95 all degrees
lie in (100 — 72.8,100 + 72.8) = (27.2,172.8).
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Asymptotics in networks



Asymptotic Thinking in Random Graphs
Why asymptotics?

e We study G(N, p) as N — oo to reveal general patterns.

e Precise constants matter less than the scaling behavior of p with N.
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Asymptotic Thinking in Random Graphs

Why asymptotics?
e We study G(N, p) as N — oo to reveal general patterns.

e Precise constants matter less than the scaling behavior of p with N.

f(N) = o(g(N)) means f(N)/g(N) — 0.
f(N) = O(g(N)) means |f(N)| < C|g(N)|; for some C >0 and N
large enough.

f(N) ~ g(N) means f(N)/g(N) — 1.

Probabilistic language:

e “With high probability” (w.h.p.) means P(event) — 1 as N — oc.

&N the graph is connected w.h.p.

e Example: in G(N, p) with p =
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Average degree: dense vs sparse graphs
When N grows, the connection probability p = py can scale differently.

Dense regime: (py) tends to a constant ¢ > 0.
o [E[deg(v)] ~ cN grows linearly with N.
e The number of edges L ~ c(gl)

e Not a realistic large network, but a useful contrast.

Sparse regime: py = A\/(N — 1) (or smaller).
e E[deg(v)] ~ A stays constant as N — oc.
e The total number of edges L ~ AN/2 grows linearly with N.
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Average degree: dense vs sparse graphs
When N grows, the connection probability p = py can scale differently.

Dense regime: (py) tends to a constant ¢ > 0.
o [E[deg(v)] ~ cN grows linearly with N.
e The number of edges L ~ c(gl)

e Not a realistic large network, but a useful contrast.

Sparse regime: py = A\/(N — 1) (or smaller).
e E[deg(v)] ~ A stays constant as N — oc.
e The total number of edges L ~ AN/2 grows linearly with N.

Language note:

e Saying “real networks are sparse” means that as they grow, the
average degree stays bounded, not that p is small for a fixed N.

e The scaling of py determines which asymptotic regime we are in.
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Maximum degree in G(N, p)
Let A = max, deg(v) be the maximum degree.

Dense regime: (py) tends to a constant ¢ > 0.
e With high probability (remember we ignore constants here):

A = Np + O(\/NlogN).

Sparse regime: py = A\/(N — 1) (or smaller).
e Each deg(v) = Pois(A) — mean .
e By extreme—value theory for Poisson tails:
. logN
~ loglog N

This is very thin tailed: N = 103,10°, 10'2 gives %875 = 4.3,6.3,9.2.
In real networks we observe “hubs”.
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Notation: average degree vs expected degree

For a graph G with N vertices and L edges:

e The empirical average degree is (a random variable)

Zdeg = %

e The expected degree under a random graph model is

E[deg(v)] = E[deg(G)] forall ve V.
Example (Erdés—Rényi G(N, p)):
deg(G) ~ (N —1)p,  E[deg(v)] = (N —1)p.

We saw that for large N, deg(G) is concentrated around E[deg].
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Threshold phenomena and giant
component



Threshold phenomena in ER (concept)

Definition
A threshold for a graph property P is a function p*(N) such that:

p < p*(N)= G(N,p) has =P w.h.p.,
p> p*(N) = G(N, p) has P w.h.p.
ER graphs display many sharp thresholds:
e Emergence of a giant component.

e Connectivity (no isolated vertices).

e Appearance of fixed subgraphs (e.g., triangles).
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Regimes of G(N, p) (sparse case p = c/N)

It is useful to describe random graphs in terms of the expected degree

E[deg(v)] =~ c.

e Subcritical regime (¢ < 1): only small tree-like components;
largest size ~ log V.

e Critical point (c = 1): largest component has size ~ N?/3; no
giant yet.

e Supercritical regime (¢ > 1): a unique giant component
emerges, containing a positive fraction of nodes.

e Connected regime (c = log N): almost surely the whole graph
becomes connected.
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lllustration of regimes

Interpretation: As c increases, the largest connected component grows
from negligible size, through a sudden phase transition (¢ = 1), and
eventually absorbs almost all nodes.
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Why the giant component matters (econ/social)

Consider the world's friendship network:
e Clearly disconnected (think small remote communities)
e But “our” component is large, spans most of the world.

e There should be no two big components.

Giant components are important:

e Contagion & diffusion: A giant component enables large cascades
(diseases, information, bank runs).

e Market connectivity: Sufficient density is needed for
trade/payment networks to connect most participants.

e Infrastructure design: Tuning p (or expected degree c) above 1
ensures large-scale reachability.
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Where are real networks?

I SUPERCRITICAL FULLY CONNECTED

INTERNET I X -

POWER GRID I X _
cottseorarion [N x e

ACTOR NETWORK I - -
INTERACTIONS

T T >
1 10 k)

Most real-world networks live well above the critical point.

They are highly connected (often even “superconnected”), yet they also
exhibit additional structure (clustering, hubs, communities).

The ER model a baseline: it shows that above ¢ = 1, large-scale
connectivity is the default, but real networks have richer features.
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Connectivity threshold in G(N, p)

Theorem
The threshold for connectivity in G(N, p) is

. log N

More precisely:

p= w, G(N, p) is connected w.h.p.,

= M, G(N, p) is disconnected w.h.p..

Here, w(N) means any function that grows to infinity (however slowly).
Examples: loglog N, /log N, or even loglog log N.
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|dea of proof (intuition)

A vertex is isolated with probability

Pr(v isolated) = (1 — p)V~=1 ~ 7PN,

Expected number of isolated vertices:

E[No] = Ne=PN.

If p= CIO%,N, then

E[No] ~ N*~<.

For ¢ < 1, E[Ng] — oo; many isolated vertices — disconnected.

For ¢ > 1, E[Ng] — O; isolated vertices disappear.

Careful: No isolated vertices do not automatically imply connectivity.
However, one can show that once all isolated vertices disappear, all
other components merge into one giant component w.h.p.
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Simulation in NetworkX (Colab) — generate and inspect

Python (run in Google Colab)

import networkx as nx
import matplotlib.pyplot as plt

n, p = 200, 0.015 # try also p = 0.005, 0.02, 0.05
G = nx.erdos_renyi_graph(n, p)

G.number_of_nodes())
, G.number_of_edges())

print ("Nodes:
print ("Edges:

# Empirical vs expected average degree

deg = [d for _, d in G.degree()]

print ("Empirical mean degree:", sum(deg)/n)
print ("Theoretical mean degree:", (N-1)%*p)

# Largest component size

components = list(nx.connected_components(G))
largest = max(components, key=len)
print("Largest component size:", len(largest))

# Draw (small n looks better)
plt.figure(figsize=(5,5))

pos = nx.spring_layout(G, seed=7)

nx.draw(G, pos, node_size=30, edge_color="#cccccc")
plt.show()
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Simulation in NetworkX — degree histogram

Python (run in Google Colab)

import numpy as np
import matplotlib.pyplot as plt

deg = np.array([d for _, d in G.degree()])
print ("Empirical mean degree:", deg.mean())
print ("Theoretical mean degree:", (N-1)*p)

plt.figure(figsize=(5,4))

bins = np.arange(deg.max()+2) - 0.5
plt.hist(deg, bins=bins)
plt.xlabel("Degree k"); plt.ylabel("Count")
plt.title("Degree distribution in G(N,p)")
plt.show()

Observation. For p = c¢/N the histogram should resemble a Poisson(c), with empirical mean

degree deg(G) close to theoretical E[deg].
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Summary

e ER G(N, p) is the baseline random network: tractable degrees and
component structure.

e Degrees: Binomial — Poisson in sparse regime; strong concentration
via Hoeffding.

e Phase transitions: giant component at p ~ 1/N; connectivity at
p ~ (log N)/N.

e Why we care: gives parameter ranges where large-scale behavior
becomes plausible.
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