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Today’s Lecture

1. Wrapping-up centrality measures: PageRank and HITS.

2. Random graphs, Erdős–Rényi model.

3. Probability recap: binomial and Poisson distribution.

4. Probability recap: Chebyshev and Hoeffding inequality.

5. Degree distribution in Erdős–Rényi graphs.

6. Asymptotics in networks.

7. Threshold phenomena and giant component.
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Recall: PageRank

Note

We define random walk on a directed graph in a natural way. The walk
can only follow the direction of arrows.

Algebraically more complicated as AG is not symmetric and the
eigenvalues are complex.

• Web graph = directed network of pages and hyperlinks.

• Eigenvector centrality does not work directly in directed graphs with
sinks or disconnected components.

• PageRank modifies the random walk with teleportation:

Pα = αP + (1− α)
1

N
11T ,

where P is the transition matrix of the web, α ∈ (0, 1).

• Stationary distribution of Pα = PageRank vector.
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Beyond PageRank: The HITS Algorithm

Goal: Identify both authorities and hubs in a directed network.

• A good hub points to many good authorities.

• A good authority is pointed to by many good hubs.
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Beyond PageRank: The HITS Algorithm

Goal: Identify both authorities and hubs in a directed network.

• A good hub points to many good authorities.

• A good authority is pointed to by many good hubs.

Hub

Auth.

Auth.

Context:

• Introduced by Jon Kleinberg (1999).

• Used originally to rank web pages within a topic query.

• Query-dependent — unlike PageRank, which is global.
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Mathematics of HITS

Let A be the adjacency matrix (Aij = 1 if i→ j).

Each node i has: authority score ai , hub score hi .
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Mathematics of HITS

Let A be the adjacency matrix (Aij = 1 if i→ j).

Each node i has: authority score ai , hub score hi .

They satisfy the mutual reinforcement relations:

󰀫
h ∝ Aa, (hubs get votes from authorities)

a ∝ A⊤h, (authorities get votes from hubs)

Combining gives:
a ∝ A⊤Aa, h ∝ AA⊤h.

• Take a and h to be dominant eigenvectors of A⊤A and AA⊤.
• In the iterative HITS algorithm, a and h are renormalized at each

step, so the proportionality becomes equality after scaling.
• Equivalent viewpoint: HITS computes the first left and right

singular vectors of A.
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Example: Hubs and Authorities in a Small Web

Adjacency matrix:

A =

󰀳

󰁅󰁅󰁃

0 1 1 0
0 0 1 0
0 0 0 1
0 0 0 0

󰀴

󰁆󰁆󰁄

Graph representation:

1

2

3

4

6 / 29



Example: Hubs and Authorities in a Small Web

Adjacency matrix:

A =

󰀳

󰁅󰁅󰁃

0 1 1 0
0 0 1 0
0 0 0 1
0 0 0 0

󰀴

󰁆󰁆󰁄

Graph representation:

1

2

3

4

Iterative algorithm:

1. Initialize ai = hi = 1.

2. Repeat a ← A⊤h, normalize; h ← Aa, normalize.

6 / 29



Example: Hubs and Authorities in a Small Web

Adjacency matrix:

A =

󰀳

󰁅󰁅󰁃

0 1 1 0
0 0 1 0
0 0 0 1
0 0 0 0

󰀴

󰁆󰁆󰁄

Graph representation:

1

2

3

4

Iterative algorithm:

1. Initialize ai = hi = 1.

2. Repeat a ← A⊤h, normalize; h ← Aa, normalize.

Python demo:

import networkx as nx

G = nx.DiGraph()

G.add_edges_from([(1,2),(1,3),(2,3),(3,4)])

hubs, auth = nx.hits(G)

6 / 29



Example: Hubs and Authorities in a Small Web

Adjacency matrix:

A =

󰀳

󰁅󰁅󰁃

0 1 1 0
0 0 1 0
0 0 0 1
0 0 0 0

󰀴

󰁆󰁆󰁄

Graph representation:

1

2

3

4

Iterative algorithm:

1. Initialize ai = hi = 1.

2. Repeat a ← A⊤h, normalize; h ← Aa, normalize.

Python demo:

import networkx as nx

G = nx.DiGraph()

G.add_edges_from([(1,2),(1,3),(2,3),(3,4)])

hubs, auth = nx.hits(G)

Interpretation:

• Node 1 → strong hub (points to many).

• Node 4 → strong authority (pointed to by many).
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Random graphs and Erdős–Rényi
model



Why random graphs?

Real networks (social, economic, financial) are noisy and constantly
evolving. We need a simple baseline model to compare against.

Definition ( Erdős–Rényi (ER) model )

G (N, p): a random graph on N nodes where each of the
󰀃N
2

󰀄
possible

edges appears independently with probability p.
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Why random graphs?

Real networks (social, economic, financial) are noisy and constantly
evolving. We need a simple baseline model to compare against.

Definition ( Erdős–Rényi (ER) model )

G (N, p): a random graph on N nodes where each of the
󰀃N
2

󰀄
possible

edges appears independently with probability p.

Paul Erdős (1913 - 1996) Alfréd Rényi (1921-1970)

Erdős and Rényi (1959–60) launched the probabilistic study of graphs.
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G (N , p) Model

Take N = 4 then the graph can have up to six edges. Each with
distribution Bern(p):

1

2

3

4

12

1

2

3

4

13

1

2

3

4

14

1

2

3

4

23

1

2

3

4

24

1

2

3

4

34

P(
1

2

3

4 ) = p2(1− p)4

If p = 1
2 , each graph appears with the same probability 1

26
= 1

64 .
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Probability recap: Binomial

Definition

If X ∼ Bin(n, p) then

P(X = k) =

󰀕
n

k

󰀖
pk(1− p)n−k , E[X ] = np, Var(X ) = np(1− p).

Useful characterization: X =
󰁓n

i=1 Zi with independent Zi ∼ Bern(p).

In the ER graph G (N, p):

• Number of edges:

L ∼ Bin

󰀕󰀕
N

2

󰀖
, p

󰀖
.

• Degree of a fixed vertex v :

deg(v) ∼ Bin(N − 1, p).
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Probability recap: Poisson (as Binomial limit)

Theorem

If Xn ∼ Bin(n, pn) with n → ∞ and npn → λ > 0, then

Xn −→ X ∼ Pois(λ), P(X = k) =
λk

k!
e−λ.

The approximation Bin(n, p) ≈ Poiss(λ) for λ = pn is particularly good
if p is small.

Example (Quick check )

For n = 2000, p = 0.003, λ = np = 6. Compare P(X = 0): Binomial
= (1− p)2000 ≈ 0.00245 vs. Poisson e−6 ≈ 0.00248 (very close).
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Degree distribution in G (N , p)

If p = λ/(N − 1), then, for any v ∈ V ,

deg(v) ∼ Bin(N − 1, p) ≈ Pois(λ).

• Mean degree: E[deg(v)] = (N − 1)p.

• P (deg(v) = k) ≈ λk

k!
e−λ.

Note

This gives closed forms for expectations; Poisson is a great approximation
when N is large and p small.
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Degree distribution: finite N
concentration bounds



Concentration: Chebyshev (simple but general)

Theorem (Chebyshev inequality )

For any r.v. X with mean µ and variance σ2,

P(|X − µ| ≥ t) ≤ σ2

t2
.

For degree: deg(v) ∼ Bin(N − 1, p), so

P
󰀃
| deg(v)− (N − 1)p| ≥ t

󰀄
≤ (N − 1)p(1− p)

t2
.

Chebyshev already gives some concentration guarantees (e.g. take

t0 =
󰁴

N
δ p(1− p) for small δ > 0) but sharper results are possible.
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Appendix: Proof of the Chebyshev inequality

Theorem (Markov’s inequality )

If Z ≥ 0 then P(Z ≥ t) ≤ 1
tE[Z ].

Indeed,

E[Z ] ≤ E[Z11(Z ≥ t)] ≤ tE[11(Z ≥ t)] = tP(Z ≥ t).

Now, Chebyshev’s inequality follows easily from Markov’s. Take
Z = |X − µ| then

P(|X − µ| ≥ t) = P((X − µ)2 ≥ t2) ≤ E(X − µ)2

t2
=

σ2

t2
.



Sharper concentration: Hoeffding for Binomial

Theorem (Hoeffding inequality )

If X =
󰁓n

i=1 Zi with independent Zi ∈ [0, 1] and EX = µ, then for t > 0,

P(|X − µ| ≥ t) ≤ 2 exp
󰀓
−2t2

n

󰀔
.

Applied to degree: deg(v) has N − 1 independent Bernoulli summands,

P(| deg(v)− (N − 1)p| ≥ t) ≤ 2 exp

󰀕
− 2t2

N − 1

󰀖
.

Fix v ∈ V . Taking t0 =
󰁴

N−1
2 log(2δ ) for small δ > 0 gives

P
󰀃
| deg(v)− (N − 1)p| ≥ t0

󰀄
≤ δ.

note much better behavior of t0 on δ
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P(| deg(v)− (N − 1)p| ≥ t) ≤ 2 exp

󰀕
− 2t2

N − 1

󰀖
.

Fix v ∈ V . Taking t0 =
󰁴

N−1
2 log(2δ ) for small δ > 0 gives

P
󰀃
| deg(v)− (N − 1)p| ≥ t0

󰀄
≤ δ.

note much better behavior of t0 on δ

e.g. N = 1001, δ = 0.05, p = 0.1. Then with prob. ≥ 0.95
deg(v) ∈ (100− 42.95, 100 + 42.95) = (57.05, 142.95).
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Uniform degree bounds

Recall: P(| deg(v)− (N − 1)p| ≥ t) ≤ 2 exp
󰀓
− 2t2

N−1

󰀔
for all t > 0.

Suppose we now want to provide a bound for the degrees all v ∈ V .
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Uniform degree bounds

Recall: P(| deg(v)− (N − 1)p| ≥ t) ≤ 2 exp
󰀓
− 2t2

N−1

󰀔
for all t > 0.

Suppose we now want to provide a bound for the degrees all v ∈ V .

Take t0 =
󰁴

N−1
2 log(2Nδ ) we get that, for any fixed v ∈ V ,

P(| deg(v)− (N − 1)p| ≥ t0) ≤ δ

N
.

Union bound: For any two events P(A ∪ B) ≤ P(A) + P(B).

P(∃v | deg(v)− (N − 1)p| ≥ t0) ≤
󰁛

v∈V

P(| deg(v)− (N − 1)p| ≥ t0) ≤ δ.

e.g. N = 1001, δ = 0.05, p = 0.1. Then with prob. ≥ 0.95 all degrees
lie in (100− 72.8, 100 + 72.8) = (27.2, 172.8).
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Asymptotics in networks



Asymptotic Thinking in Random Graphs

Why asymptotics?

• We study G (N, p) as N → ∞ to reveal general patterns.

• Precise constants matter less than the scaling behavior of p with N.
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Asymptotic Thinking in Random Graphs

Why asymptotics?

• We study G (N, p) as N → ∞ to reveal general patterns.

• Precise constants matter less than the scaling behavior of p with N.

• f (N) = o(g(N)) means f (N)/g(N) → 0.

• f (N) = O(g(N)) means |f (N)| ≤ C |g(N)|; for some C > 0 and N
large enough.

• f (N) ∼ g(N) means f (N)/g(N) → 1.

Probabilistic language:

• “With high probability” (w.h.p.) means P(event) → 1 as N → ∞.

• Example: in G (N, p) with p = logN
N , the graph is connected w.h.p.
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Average degree: dense vs sparse graphs

When N grows, the connection probability p = pN can scale differently.

Dense regime: (pN) tends to a constant c > 0.

• E[deg(v)] ≈ cN grows linearly with N.

• The number of edges L ≈ c
󰀃N
2

󰀄
.

• Not a realistic large network, but a useful contrast.

Sparse regime: pN = λ/(N − 1) (or smaller).

• E[deg(v)] ≈ λ stays constant as N → ∞.

• The total number of edges L ≈ λN/2 grows linearly with N.
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Average degree: dense vs sparse graphs

When N grows, the connection probability p = pN can scale differently.

Dense regime: (pN) tends to a constant c > 0.

• E[deg(v)] ≈ cN grows linearly with N.

• The number of edges L ≈ c
󰀃N
2

󰀄
.

• Not a realistic large network, but a useful contrast.

Sparse regime: pN = λ/(N − 1) (or smaller).

• E[deg(v)] ≈ λ stays constant as N → ∞.

• The total number of edges L ≈ λN/2 grows linearly with N.

Language note:

• Saying “real networks are sparse” means that as they grow, the
average degree stays bounded, not that p is small for a fixed N.

• The scaling of pN determines which asymptotic regime we are in.
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Maximum degree in G (N , p)

Let ∆ = maxv deg(v) be the maximum degree.

Dense regime: (pN) tends to a constant c > 0.

• With high probability (remember we ignore constants here):

∆ = Np + O
󰀃󰁳

N logN
󰀄
.

Sparse regime: pN = λ/(N − 1) (or smaller).

• Each deg(v) ≈ Pois(λ) — mean λ.

• By extreme–value theory for Poisson tails:

∆ ≈ logN

log logN
.

This is very thin tailed: N = 103, 106, 1012 gives logN
log logN = 4.3, 6.3, 9.2.

In real networks we observe “hubs”.
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Notation: average degree vs expected degree

For a graph G with N vertices and L edges:

• The empirical average degree is (a random variable)

deg(G ) =
1

N

󰁛

v∈V
deg(v) =

2L

N
.

• The expected degree under a random graph model is

E[deg(v)] = E[deg(G )] for all v ∈ V .

Example (Erdős–Rényi G (N, p)):

deg(G ) ≈ (N − 1)p, E[deg(v)] = (N − 1)p.

We saw that for large N, deg(G ) is concentrated around E[deg].
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Threshold phenomena and giant
component



Threshold phenomena in ER (concept)

Definition

A threshold for a graph property P is a function p∗(N) such that:

p ≪ p∗(N) ⇒ G (N, p) has ¬P w.h.p.,

p ≫ p∗(N) ⇒ G (N, p) has P w.h.p.

ER graphs display many sharp thresholds:

• Emergence of a giant component.

• Connectivity (no isolated vertices).

• Appearance of fixed subgraphs (e.g., triangles).
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Regimes of G (N , p) (sparse case p = c/N)

It is useful to describe random graphs in terms of the expected degree

E[deg(v)] ≈ c .

• Subcritical regime (c < 1): only small tree-like components;
largest size ∼ logN.

• Critical point (c = 1): largest component has size ∼ N2/3; no
giant yet.

• Supercritical regime (c > 1): a unique giant component
emerges, containing a positive fraction of nodes.

• Connected regime (c ≳ logN): almost surely the whole graph
becomes connected.

21 / 29



Illustration of regimes

Interpretation: As c increases, the largest connected component grows
from negligible size, through a sudden phase transition (c = 1), and
eventually absorbs almost all nodes.
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Why the giant component matters (econ/social)

Consider the world’s friendship network:

• Clearly disconnected (think small remote communities)

• But “our” component is large, spans most of the world.

• There should be no two big components.

Giant components are important:

• Contagion & diffusion: A giant component enables large cascades
(diseases, information, bank runs).

• Market connectivity: Sufficient density is needed for
trade/payment networks to connect most participants.

• Infrastructure design: Tuning p (or expected degree c) above 1
ensures large-scale reachability.
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Where are real networks?

Most real-world networks live well above the critical point.

They are highly connected (often even “superconnected”), yet they also
exhibit additional structure (clustering, hubs, communities).

The ER model a baseline: it shows that above c = 1, large-scale
connectivity is the default, but real networks have richer features.
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Connectivity threshold in G (N , p)

Theorem

The threshold for connectivity in G (N, p) is

p∗(N) =
logN

N
.

More precisely:

󰀻
󰀿

󰀽
p = logN+ω(N)

N , G (N, p) is connected w.h.p.,

p = logN−ω(N)
N , G (N, p) is disconnected w.h.p..

Here, ω(N) means any function that grows to infinity (however slowly).
Examples: log logN,

√
logN, or even log log logN.
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Idea of proof (intuition)

• A vertex is isolated with probability

Pr(v isolated) = (1− p)N−1 ≈ e−pN .

• Expected number of isolated vertices:

E[N0] = Ne−pN .

• If p = c logN
N , then

E[N0] ≈ N1−c .

• For c < 1, E[N0] → ∞; many isolated vertices → disconnected.

For c > 1, E[N0] → 0; isolated vertices disappear.

Careful: No isolated vertices do not automatically imply connectivity.
However, one can show that once all isolated vertices disappear, all
other components merge into one giant component w.h.p.
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Simulation in NetworkX (Colab) — generate and inspect

Python (run in Google Colab)

import networkx as nx

import matplotlib.pyplot as plt

n, p = 200, 0.015 # try also p = 0.005, 0.02, 0.05

G = nx.erdos_renyi_graph(n, p)

print("Nodes:", G.number_of_nodes())

print("Edges:", G.number_of_edges())

# Empirical vs expected average degree

deg = [d for _, d in G.degree()]

print("Empirical mean degree:", sum(deg)/n)

print("Theoretical mean degree:", (N-1)*p)

# Largest component size

components = list(nx.connected_components(G))

largest = max(components, key=len)

print("Largest component size:", len(largest))

# Draw (small n looks better)

plt.figure(figsize=(5,5))

pos = nx.spring_layout(G, seed=7)

nx.draw(G, pos, node_size=30, edge_color="#cccccc")

plt.show()
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Simulation in NetworkX — degree histogram

Python (run in Google Colab)

import numpy as np

import matplotlib.pyplot as plt

deg = np.array([d for _, d in G.degree()])

print("Empirical mean degree:", deg.mean())

print("Theoretical mean degree:", (N-1)*p)

plt.figure(figsize=(5,4))

bins = np.arange(deg.max()+2) - 0.5

plt.hist(deg, bins=bins)

plt.xlabel("Degree k"); plt.ylabel("Count")

plt.title("Degree distribution in G(N,p)")

plt.show()

Observation. For p = c/N the histogram should resemble a Poisson(c), with empirical mean

degree deg(G) close to theoretical E[deg].
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Summary

• ER G (N, p) is the baseline random network: tractable degrees and
component structure.

• Degrees: Binomial → Poisson in sparse regime; strong concentration
via Hoeffding.

• Phase transitions: giant component at p ∼ 1/N; connectivity at
p ∼ (logN)/N.

• Why we care: gives parameter ranges where large-scale behavior
becomes plausible.
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