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Today’s Lecture

1. Linear Algebra, Random walks, and PageRank

2. Why random graphs? Motivation and Erdős–Rényi models.

3. Probability recap for G (N, p):

3.1 Binomial distribution (edges, degrees).
3.2 Poisson approximation in the sparse regime.
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Basic spectral theory



Why Linear Algebra for Networks?

• Adjacency matrix AG : encodes all links of G .

• Degree vector: AG1 = (deg(v1), . . . , deg(vN)).

• Laplacian L = D −AG : central in diffusion, clustering, spanning trees.

• Many network measures (centrality, random walks, PageRank)
reduce to eigenvalue/eigenvector problems.

Note

Eigenvalues of AG reveal secrets of G .

• Google built its empire on one eigenvector (PageRank).

• Spotify/Youtube recommenders use eigenvector-like ideas.

• In social networks, eigenvector centrality captures being “friends
with important people.”
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Recall: Eigenvalues and Eigenvectors

Definition

Let A ∈ Rn×n then v ∕= 0 is called an eigenvector of A if

Av = λv

for some λ, called eigenvalue. Assume 󰀂v󰀂 =
√

v⊤v = 1.

If A has only real eigenvalues then it can be diagonalized: ∃ invertible P
s.t.

A = PΛP−1 with Λ = diag(λ1, . . . ,λn).

The columns of P are the eigenvectors of A.

Note

If A is diagnosable then Ak = PΛkP−1, Λk = diag(λk
1 , . . . ,λ

k
n).
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Spectral theorem

Theorem

If A is symmetric (i.e. A = A⊤), all eigenvalues are real, and eigenvectors
form an orthogonal basis.

A is diagonalizable and for some orthogonal matrix U (i.e. U⊤U = In):

A = UΛU⊤.
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Spectral theorem

Theorem

If A is symmetric (i.e. A = A⊤), all eigenvalues are real, and eigenvectors
form an orthogonal basis.

A is diagonalizable and for some orthogonal matrix U (i.e. U⊤U = In):

A = UΛU⊤.

Note ( Variational characterization of eigenvectors )

The eigenvectors are the saddle points of x⊤Ax subject to 󰀂x󰀂 = 1:

• By KKT condition each optimum is a stationary point of

Lagrangian = x⊤Ax − λ(x⊤x − 1).

• This gives Ax = λx . And for every such unit x , x⊤Ax = λ.

In particular, the maximal eigenvalue is λmax = max󰀂x󰀂=1 x⊤Ax . 5 / 20



Eigenvalue centrality



Motivation

In degree centrality all neighbours are treated equally.

Now: a node is important if connected to other important nodes.
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Motivation

In degree centrality all neighbours are treated equally.

Now: a node is important if connected to other important nodes.

• We try to define an importance measure xv for v ∈ V s.t.

xv ∝
󰁛

u∼v

xu.

In matrix form: there exists λ > 0 and a positive x s.t.

AGx = λx .
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Motivation

In degree centrality all neighbours are treated equally.

Now: a node is important if connected to other important nodes.

• We try to define an importance measure xv for v ∈ V s.t.

xv ∝
󰁛

u∼v

xu.

In matrix form: there exists λ > 0 and a positive x s.t.

AGx = λx .

So centrality is given by an eigenvector of AG with a positive eigenvalue.

Theorem ( special case of Perron-Frobenius )

As AG has nonnegative entries, maximal eigenvalue is positive.
Since 1⊤AG1 = 2L > 0 then λmax > 0.

The principal eigenvector has positive entries.
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Eigenvector Centrality – Core–Periphery Example

A
B

C

D

E

F

Adjacency matrix (A):

A =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁃

0 1 1 1 1 0
1 0 1 0 0 1
1 1 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁄

Setup. A small core (A,B,C) connected as a
triangle; three peripheral nodes (D,E,F) each
attach to the core.

Why sizes differ.

• A connects to two central nodes (B,C)
and two peripherals (D,E) — very
central.

• B beats C because it also connects to F .

• D, E , F are peripheral and get low scores.

Note ( Potential problems )

• What if G is disconnected?

• What if λmax has multiplicity ≥ 2?

Normalized ratios:

xA : xB : xC : xD : xE : xF ≈ 1.00 : 0.87 : 0.76 : 0.41 : 0.41 : 0.35. 8 / 20
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Exercise 1

Determine the eigenvector centrality for all the nodes in the graph:

You may use a software in order to find the eigenvalues and vectors.
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Random Walks and PageRank
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Random Walks on a Graph

Definition ( Random Walk on a Graph G = (V ,E ) )

This is a stochastic process (Xt)
∞
t=0 with each Xt ∈ V s.t.:

• Start with a node v0 = X0 chosen uniformly at random.

• If Xt = i then Xt+1 is a neighbour of i chosen uniformly at random
from all its neighbours:

Pij := Pr(Xt+1 = j |Xt = i) =

󰀫
1

deg(i) , ij is a link

0, otherwise.
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Random Walks on a Graph

Definition ( Random Walk on a Graph G = (V ,E ) )

This is a stochastic process (Xt)
∞
t=0 with each Xt ∈ V s.t.:

• Start with a node v0 = X0 chosen uniformly at random.

• If Xt = i then Xt+1 is a neighbour of i chosen uniformly at random
from all its neighbours:

Pij := Pr(Xt+1 = j |Xt = i) =

󰀫
1

deg(i) , ij is a link

0, otherwise.

The matrix P = (Pij) ∈ RN×N is called the transition matrix.

Note: P = D+AG , where D = diag(deg(1), . . . , deg(N)).

→ (D+)ii = 1/Dii is Dii ∕= 0 and (D+)ii = 0 otherwise.
12 / 20



The resulting Markov chain

Let π(t) ∈ RN be the distribution of Xt , i.e., π
(t)
i = Pr(Xt = i). We have

π
(t+1)
i =

N󰁛

j=1

Pr(Xt = j) Pr(Xt+1 = i |Xt = j) =
N󰁛

j=1

π
(t)
j Pj ,i .

In other words, π(t+1) = P⊤π(t).
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The resulting Markov chain

Let π(t) ∈ RN be the distribution of Xt , i.e., π
(t)
i = Pr(Xt = i). We have

π
(t+1)
i =

N󰁛

j=1

Pr(Xt = j) Pr(Xt+1 = i |Xt = j) =
N󰁛

j=1

π
(t)
j Pj ,i .

In other words, π(t+1) = P⊤π(t).

Note

• Define π = 1
tr(D)D1 and recall P = D+AG . So that

P⊤π = 1
tr(D)AGD

+D1 = 1
tr(D)AG1 = 1

tr(D)D1 = π.

• We have πi =
deg(i)󰁓N
j=1 deg(j)

and so π is a probability distribution.

(π defines the degree centrality!!)

• If π(t) = π then π(s) = π for all s ≥ t; stationary distribution.
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Eigenvalues of P

Note ( Assume for simplicity all degrees positive; D+ = D−1 )

The transition matrix P is similar to a symmetric matrix:

P = D−1AG = D−1/2D−1/2AGD
−1/2D1/2 = D−1/2SD1/2

and so it is diagonalizable. All eigenvalues lie in [−1, 1].

Theorem (About the eigenvalues of P )

If G has no bipartite component, eigenvalues lie in (−1, 1].

If G is connected, λ = 1 has multiplicity one.

Let S = UΛU⊤ with U orthogonal. Let u i be the i-th column of U. Then

S =
N󰁛

i=1

λiu iu⊤
i and so Sk =

N󰁛

i=1

λk
i u iu⊤

i −→
k→∞

u1u⊤
1 ,

where u1 is s.t. Su1 = u1.
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Eigenvalues of P

Note ( Assume for simplicity all degrees positive; D+ = D−1 )

The transition matrix P is similar to a symmetric matrix:

P = D−1AG = D−1/2D−1/2AGD
−1/2D1/2 = D−1/2SD1/2

and so it is diagonalizable. All eigenvalues lie in [−1, 1].

Theorem (About the eigenvalues of P )

If G has no bipartite component, eigenvalues lie in (−1, 1].

If G is connected, λ = 1 has multiplicity one.

Let S = UΛU⊤ with U orthogonal. Let u i be the i-th column of U. Then

S =
N󰁛

i=1

λiu iu⊤
i and so Sk =

N󰁛

i=1

λk
i u iu⊤

i −→
k→∞

u1u⊤
1 ,

where u1 is s.t. Su1 = u1. It follows that Pk −→ 1π⊤ .
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Appendix: More formal arguments for λ = −1

Statement: P has eigenvalue λ = −1 if and only if G is bipartite.

Proof. ⇐ If G is bipartite with partition V = A ∪ B define eA to be a
0/1-vector with 1s on coordinates corresponding to A and 0s otherwise.
It is a direct check that P(eA − eB) = −(eA − eB).
⇒ There exists x such that Px = −x . Assume that G is connected.
Otherwise apply the same argument to each connected component.
The condition implies that for all i ∈ V

N󰁛

j=1

Pijxj =
1

deg(i)

󰁛

j∼i

xj = −xi . (1)

If xi = 0 then (1) implies that xj = 0 for j ∼ i . Since G is connected, we
would have x = 0, which is impossible. We conclude, that xi ∕= 0 for all i .
By (1), deg(i)|xi | = |

󰁓
j∼i xj | ≤

󰁓
j∼i |xj |. Summing over all i we get󰁓

i deg(i)|xi | ≤
󰁓

i deg(i)|xi | and hence the inequality must be equality
for each i . This is only possible if ∀i the sign of all xj for j ∼ i is the
same. Since all xi are non-zero, this is only possible if G is bipartite.



Appendix: More formal arguments for λ = 1

Statement: If G is connected then λ = 1 has multiplicity one or, in other
words, if Px = x then x = c1 for some c ∕= 0.

Proof. For every i , we have

N󰁛

j=1

Pijxj =
1

deg(i)

󰁛

j∼i

xj = xi . (2)

Suppose that xk = maxi xi . The equation 1
deg(k)

󰁓
j∼k xj = xk implies

that xj = xk for all j ∼ k . Using the fact that G is connected, we
propagate this equality across the whole graph and so all the entries of x
must be equal (and non-zero).



PageRank

Note

We define random walk on a directed graph in analogous way.

Algebraically more complicated as AG is not symmetric and the
eigenvalues are complex.

• Web graph = directed network of pages and hyperlinks.

• Eigenvector centrality does not work directly in directed graphs with
sinks or disconnected components.

• PageRank modifies the random walk with teleportation:

Pα = αP + (1− α)
1

N
11T ,

where P is the transition matrix of the web, α ∈ (0, 1).

• Stationary distribution of Pα = PageRank vector.
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https://www.google.com/search/howsearchworks/our-history/

• Solving for π = solving a huge eigenvector problem (∼ 1010 nodes).
• Power iteration with α = 0.85 converges in ∼ 50 steps. 18 / 20
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Computing Centrality in Python (NetworkX)

import networkx as nx

G = nx.karate_club_graph()

# Eigenvector centrality

eig = nx.eigenvector_centrality(G)

print(max(eig, key=eig.get))

# PageRank

pr = nx.pagerank(G, alpha=0.85)

print(max(pr, key=pr.get))

Karate club example: - Eigenvector centrality highlights the main hub
(node 33). - PageRank is similar but also adapts to directed networks.
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Conclusions

• Eigenvector centrality: nodes are important if linked to other
important nodes.

• Perron–Frobenius ensures uniqueness and positivity of the principal
eigenvector.

• PageRank extends the same idea to the Web via teleportation.

• Linear algebra (largest eigenvalue, eigenvector) is the foundation of
centrality measures.
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