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Today's Lecture

1. Linear Algebra, Random walks, and PageRank

2. Why random graphs? Motivation and Erdés—Rényi models.

3. Probability recap for G(N, p):

3.1 Binomial distribution (edges, degrees).
3.2 Poisson approximation in the sparse regime.
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Basic spectral theory



Why Linear Algebra for Networks?

e Adjacency matrix Ag: encodes all links of G.
o Degree vector: Agl = (deg(vi),...,deg(vn)).
e Laplacian L = D — Ag: central in diffusion, clustering, spanning trees.

e Many network measures (centrality, random walks, PageRank)
reduce to eigenvalue/eigenvector problems.

Eigenvalues of Ag reveal secrets of G.

e Google built its empire on one eigenvector (PageRank).

e Spotify/Youtube recommenders use eigenvector-like ideas.

e In social networks, eigenvector centrality captures being “friends
with important people.”
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Recall: Eigenvalues and Eigenvectors

Definition
Let A € R™" then v # 0 is called an eigenvector of A if

Av = v
for some ), called eigenvalue. Assume |lv| = VvIiv =1

If A has only real eigenvalues then it can be diagonalized: 3 invertible P

s.t.
A = PAPL with A = diag(\1, ..., \n).

The columns of P are the eigenvectors of A.

If Ais diagnosable then Ax = PAKP~=1 Ak = diag(\k, ..., \K).
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Spectral theorem

Theorem

If Ais symmetric (i.e. A= AT), all eigenvalues are real, and eigenvectors
form an orthogonal basis.

A is diagonalizable and for some orthogonal matrix U (i.e. UTU = 1,):
A = UNU".
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Spectral theorem

Theorem

If Ais symmetric (i.e. A= A"), all eigenvalues are real, and eigenvectors
form an orthogonal basis.

A is diagonalizable and for some orthogonal matrix U (i.e. UTU = I,):
A = UANUT.

The eigenvectors are the saddle points of x " Ax subject to ||x|| = 1:

e By KKT condition each optimum is a stationary point of
Lagrangian = x' Ax — A\(x'x — 1).

e This gives Ax = Ax. And for every such unit x, x " Ax = \.

In particular, the maximal eigenvalue is Amax = max|x|=1 x T Ax. e



Eigenvalue centrality



Motivation

In degree centrality all neighbours are treated equally.

Now: a node is important if connected to other important nodes.
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Motivation

In degree centrality all neighbours are treated equally.

Now: a node is important if connected to other important nodes.

e We try to define an importance measure x, for v € V s.t.
X, X qu.

In matrix form: there exists A > 0 and a positive x s.t.

Agx = Ax.
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Motivation

In degree centrality all neighbours are treated equally.

Now: a node is important if connected to other important nodes.

e We try to define an importance measure x, for v € V s.t.
X, X qu.

In matrix form: there exists A > 0 and a positive x s.t.
Agx = Ax.
So centrality is given by an eigenvector of Ag with a positive eigenvalue.

Theorem ( special case of Perron-Frobenius)

As A has nonnegative entries, maximal eigenvalue is positive.
Since 1T Agl = 2L > 0 then Amax > O.

The principal eigenvector has positive entries.
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Eigenvector Centrality — Core—Periphery Example

D B Setup. A small core (A,B,C) connected as a
A triangle; three peripheral nodes (D,E,F) each
attach to the core.

Why sizes differ.

E e A connects to two central nodes (B,C)
Cc and two peripherals (D,E) — very

. . central.
Adjacency matrix (A): )
e B beats C because it also connects to F.

e D, E, F are peripheral and get low scores.

01 1.1 10
1 01 0 0 1
a_ |t 1000 of |Netel(Potential problems) I
1 0 000 O
1 0 0 00O O e What if G is disconnected?
01 0 0 0 O

e What if Amax has multiplicity > 27

Normalized ratios:

XA:XB:Xc:Xp:Xg:xF~1.00:0.87:0.76:0.41:0.41:0.35. 8 /20
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Exercise 1

Determine the eigenvector centrality for all the nodes in the graph:

You may use a software in order to find the eigenvalues and vectors.
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Random Walks and PageRank



Random Walks on a Graph

Definition ( Random Walk on a Graph G = (V,E))
This is a stochastic process (X;)72, with each X; € V s.t.:

e Start with a node vy = Xy chosen uniformly at random.

o If X; =/ then X;11 is a neighbour of i chosen uniformly at random
from all its neighbours:

1 er .
— s a link
PIJ = Pr(Xt+1 :_]’Xt = I) = deg(i) ul 'In
0, otherwise.
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Random Walks on a Graph

Definition ( Random Walk on a Graph G = (V,E))
This is a stochastic process (X;)72, with each X; € V s.t.:

e Start with a node vy = Xy chosen uniformly at random.

o If X; =/ then X;11 is a neighbour of i chosen uniformly at random
from all its neighbours:

1 er .
e s a link
PIJ = Pr(Xt+1 :_]’Xt = I) = deg(l) Ut 'In
0, otherwise.

The matrix P = (P;) € RV*N s called the transition matrix.

Note: P = Dt Ag, where D = diag(deg(1),...,deg(N)).
— (D%);i =1/D;; is D;j # 0 and (DT);; = 0 otherwise.
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The resulting Markov chain
Let 7(t) € RV be the distribution of X;, i.e., TI'I(t) = Pr(X: = 7). We have
N N
w1 = S UPHXe = ) Pr(Xe = i1Xe =) = Y 7Py
j=1

j=1

In other words, 7(t+1) = pT (1),
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The resulting Markov chain

Let 7(t) € RV be the distribution of X;, i.e., W(t) = Pr(X¢ = i). We have

N
I(t—i—l) Z Pr(X; =) Pr(Xer1 = i|Xe =) = ZW}r)P
j=1 -

In other words, 7(t+1) = pT (1),

o Define m = (D)Dl and recall P = Dt Ag. So that

pT AcDtD1 = Acl = D1 = .

= tr(D) tr(D) tr(D)

deg(/)

o We havew;:m

and so 7 is a probability distribution.
(m defines the degree centrality!!)

o If #(t) = 7 then #(5) = & for all s > t; stationary distribution.
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Eigenvalues of P

The transition matrix P is similar to a symmetric matrix:
P — D—lAG _ D—1/2Dfl/2AGDfl/2Dl/2 _ D—1/25D1/2
and so it is diagonalizable. All eigenvalues lie in [—1, 1].

Theorem ( About the eigenvalues of P)
If G has no bipartite component, eigenvalues lie in (—1, 1].

If G is connected, A = 1 has multiplicity one.

Let S = UAUT with U orthogonal. Let u; be the i-th column of U. Then
N N
S= ;)\,-u,-u,-T and so Sk = .Zl)\ffu;u;T e uiug

. 14 /20
where uq is s.t. Sup = u.



Eigenvalues of P

The transition matrix P is similar to a symmetric matrix:
P — D—lAG _ D—1/2Dfl/2AGDfl/2Dl/2 _ D—1/2SD1/2
and so it is diagonalizable. All eigenvalues lie in [—1, 1].

Theorem ( About the eigenvalues of P)
If G has no bipartite component, eigenvalues lie in (—1, 1].

If G is connected, A = 1 has multiplicity one.

Let S = UAUT with U orthogonal. Let u; be the i-th column of U. Then
N N
S= ;)\,-u,-u,-T and so Sk = .Zl)\ffu;u;T e uiug

. 14 /20
where uy is s.t. Suy = uy. It follows that m



Appendix: More formal arguments for A = —1
Statement: P has eigenvalue A = —1 if and only if G is bipartite.

Proof. If G is bipartite with partition V = AU B define e4 to be a
0/1-vector with 1s on coordinates corresponding to A and Os otherwise.
It is a direct check that P(ea — eg) = —(ea — eB).

There exists x such that Px = —x. Assume that G is connected.
Otherwise apply the same argument to each connected component.
The condition implies that for all i € V

Y Pix = deg Z X = —x;. (1)

If x; = 0 then (1) implies that x; = 0 for j ~ i. Since G is connected, we
would have x = 0, which is impossible. We conclude, that x; £ 0 for all i.
By (1), deg(i)[xi| = [>_;; x| < >_;; [x;[. Summing over all i we get
> deg(i)|xi| <>, deg(i)|xi| and hence the inequality must be equality
for each i. This is only possible if Vi the sign of all x; for j ~ i is the
same. Since all x; are non-zero, this is only possible if G is bipartite. []



Appendix: More formal arguments for A =1

Statement: If G is connected then A = 1 has multiplicity one or, in other
words, if Px = x then x = c1 for some ¢ # 0.

Proof. For every i, we have

N

ZPUXJ = deg Z J = X (2)

Jj=1

Suppose that x, = max; x;. The equation deg(k) ijkxj = xy implies
that x; = x for all j ~ k. Using the fact that G is connected, we
propagate this equality across the whole graph and so all the entries of x
must be equal (and non-zero). [



PageRank
Note

We define random walk on a directed graph in analogous way.

Algebraically more complicated as Ag is not symmetric and the
eigenvalues are complex.

Web graph = directed network of pages and hyperlinks.

Eigenvector centrality does not work directly in directed graphs with
sinks or disconnected components.

PageRank modifies the random walk with teleportation:
1
P,=aP+(1- a)NllT,

where P is the transition matrix of the web, « € (0, 1).

Stationary distribution of P, = PageRank vector.
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https://www.google.com/search/howsearchworks/our-history/

Go gle Search Overview Our approach How Search works Features Our history

Larry Page and Sergey Brin develop a search Fi

" 5 irst
innovation - PageRank - as part of a research

project at Stanford University. Their idea? That

the best way to understand the quality of a

web page is to analyze the quantity and

quality of the links that point to it. Today,

PageRank is just one of many systems we use

to identify reliable sources from the hundreds

of billions of pages in our index.

Google.comis
registered as a domain

S

e Solving for ™ = solving a huge eigenvector problem (~ 101° nodes).
e Power iteration with a = 0.85 converges in ~ 50 steps. 18 / 20


https://www.google.com/search/howsearchworks/our-history/

Computing Centrality in Python (NetworkX)

import networkx as nx
G = nx.karate_club_graph()

# Eigenvector centrality
eig = nx.eigenvector_centrality(G)
print (max(eig, key=eig.get))

# PageRank
pr = nx.pagerank(G, alpha=0.85)
print (max(pr, key=pr.get))

Karate club example: - Eigenvector centrality highlights the main hub
(node 33). - PageRank is similar but also adapts to directed networks.
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Conclusions

e Eigenvector centrality: nodes are important if linked to other
important nodes.

e Perron—Frobenius ensures uniqueness and positivity of the principal
eigenvector.

e PageRank extends the same idea to the Web via teleportation.

e Linear algebra (largest eigenvalue, eigenvector) is the foundation of
centrality measures.
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