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Today's Lecture

1. Degree centrality

2. Closeness centrality

3. Betweenness centrality

4. NetworkX examples.

5. Linear Algebra tools for centrality

6. Eigenvector Centrality
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Recall: Degree centrality

Definition
The degree centrality of a node v is its degree:
Caeg(v) = deg(v).
Interpretation:
e High degree node can directly influence/reach many others.
e In undirected networks: count of adjacent edges.

e In directed networks: sometimes split into in-degree and out-degree
centrality, e.g. on Twitter in-degree centrality is more relevant.
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Closeness centrality



Closeness Centrality

Given v € V, its average distance to other nodes in the graph is

d(v) = ﬁ Z d(u,v).

u#v
Definition
The closeness centrality of v € V' is
1
Cclose(v) = a(v)a

where d(u, v) is the distance between u and v.

e Large if v is on average close to everyone else.
e Small if many nodes are far from v.
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Distance matrix

Definition
The distance matrix D¢ has entries Dg(i,j) = d(i,J).

Example:
02212
2 0 21 2
Dc=12 2 0 1 2
11101
2 2210

Average distances from each node are computed as ﬁDGI.
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Closeness Centrality

0221 2\ /1 7 4/7
. 2021 2| 1] |7 4/7
2 pe-1=-|2201 2||1|=2]7|5c=]47
N-1 1110 1||1] *|a 1
2221 0/ \1 7 4)7

Note that D is the most central also under degree centrality.
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Eccentricity centrality

Recall: the eccentricity of a node v is

ecc(v) = max d(u,v).

Definition

The eccentricity centrality of v is inversely proportional to its
eccentricity:

Cecc(v) =

ecc(v)’

To see how this differs from closeness centrality, imagine a dense “core”
graph with a long chain of nodes attached at one end.
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Betweenness centrality



Betweenness Centrality

Definition
The betweenness centrality of a node u measures how often u lies on
shortest paths between other pairs of nodes:

Cbetw(u): Z GL(U)>

g
vAUFW vw

where o, is the number of shortest paths from v to w, and o, (u) is
the number of those paths that pass through u.

° JV#EVU) is the proportion of path containing v in the set of all shortest

paths between v and w.
e Nodes on many shortest paths act as bridges.

e Captures the potential of u to control information flow.
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Betweenness Centrality: Example

e Determine o, and o, (u) in the following graph.

e o,y =2

e o(u)=1
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Betweenness Centrality: Example

e Determine o, and o, (u) in the following graph.

e o =4

e oy(u)=3
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Betweenness Centrality: Computing It Efficiently

Challenge: Directly counting all pairs of shortest paths costs O(n?).

Idea (Brandes, 2001): Each BFS from one source can capture all
shortest-path contributions involving that source.

Key insight: Instead of computing all pairs (v, w), one BFS per node v
is enough to accumulate betweenness scores for every other node.

Complexity: O(nm) for unweighted graphs. Practical for graphs with up
to ~ 10° edges.
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Appendix: BFS Bookkeeping for Shortest Paths

Goal (unweighted graphs, source s): compute

e d[v] = distance from s to v (in edges),

e o[v] = number of shortest s— v paths,

e Pred[v] = predecessors of v on shortest s— v paths.
Initialization:

e For all v: d[v] = oo, o[v] =0, Pred[v] = 0.

e Set d[s] =0, o[s] =1, push s in a queue Q.
BFS loop (standard queue):

e While Q not empty:

> Pop v from Q.
» For each neighbor w of v:
> If d[w] = oo then
diw] =d[v]+1;, o[w]=o[v]; Pred|w]={v}; push w.
» Else if d[w] = d[v] + 1 then
o[w] « o[w] + o[v]; add v to Pred|[w].
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NetworkX examples



NetworkX quick start (Karate Club)

import networkx as nx
G = nx.karate_club_graph()

N, L = G.number_of_nodes(), G.number_of_edges()
print (£"N={N}, L={L}")

In NetworkX:
e nx.degree centrality returns deg(v)/(N —1)
e nx.closeness_centrality(G, wf_improved=False)

e nx.betweenness_centrality(G)

When plotting the network centrality measures can be used to color the nodes.
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Real network #1: Florentine families (Renaissance
credit/marriage)

F = nx.florentine_families_graph() # N=16, classic network
print ("Nodes:", F.nodes())

degF = dict(F.degree())
cloF = nx.closeness_centrality(F, wf_improved=False)
betF = nx.betweenness_centrality(F, normalized=True)

def topb5(name, d):
print (name, sorted(d.items(), key=lambda x: x[1], reverse=True)

top5("Degree:", degF)
top5("Closeness:", cloF)
top5("Betweenness:", betF)

Story: Medici emerge as top “brokers” by betweenness—consistent with their

historical role in finance and politics.
14 /21



Real network #2: Karate Club (community split)

G = nx.karate_club_graph()

deg = nx.degree_centrality(G)
nx.closeness_centrality(G, wf_improved=False)
nx.betweenness_centrality(G, normalized=True)

clo
bet

def tab(name, d):
rows = sorted(d.items(), key=lambda x: x[1], reverse=True) [:5]
print (name, [(v, round(val,3)) for v,val in rows])

tab("Degree cent:", deg)
tab("Closeness cent:", clo)
tab("Betweenness cent:", bet)

Story: The two leaders (nodes usually labeled 0 and 33) rank highly; the broker

between factions has high betweenness.
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Basic spectral theory



Why Linear Algebra for Networks?

e Adjacency matrix Ag: encodes all links of G.
o Degree vector: Agl = (deg(vi),...,deg(vn)).
e Laplacian L = D — Ag: central in diffusion, clustering, spanning trees.

e Many network measures (centrality, random walks, PageRank)
reduce to eigenvalue/eigenvector problems.

Eigenvalues of Ag reveal secrets of G.

e Google built its empire on one eigenvector (PageRank).

e Spotify/Youtube recommenders use eigenvector-like ideas.

e In social networks, eigenvector centrality captures being “friends
with important people.”
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Recall: Eigenvalues and Eigenvectors

Definition
Let A € R™" then v # 0 is called an eigenvector of A if

Av = v
for some ), called eigenvalue. Assume |lv| = VvIiv =1

If A has only real eigenvalues then it can be diagonalized: 3 invertible P

s.t.
A = PAPL with A = diag(\1, ..., \n).

The columns of P are the eigenvectors of A.

If Ais diagnosable then Ax = PAKP~=1 Ak = diag(\k, ..., \K).
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Spectral theorem

Theorem

If Ais symmetric (i.e. A= AT), all eigenvalues are real, and eigenvectors
form an orthogonal basis.

A is diagonalizable and for some orthogonal matrix U (i.e. UTU = 1,):
A = UNU".
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Spectral theorem

Theorem

If Ais symmetric (i.e. A= A"), all eigenvalues are real, and eigenvectors
form an orthogonal basis.

A is diagonalizable and for some orthogonal matrix U (i.e. UTU = I,):
A = UANUT.

The eigenvectors are the saddle points of x " Ax subject to ||x|| = 1:

e By KKT condition each optimum is a stationary point of
Lagrangian = x' Ax — A\(x'x — 1).

e This gives Ax = Ax. And for every such unit x, x " Ax = \.

In particular, the maximal eigenvalue is Amax = max|x|=1 x T Ax. i )



Eigenvalue centrality



Motivation

In degree centrality all neighbours are treated equally.

Now: a node is important if connected to other important nodes.
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Motivation

In degree centrality all neighbours are treated equally.

Now: a node is important if connected to other important nodes.

e We try to define an importance measure x, for v € V s.t.
X, X qu.

In matrix form: there exists A > 0 and a positive x s.t.

Agx = Ax.
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Motivation

In degree centrality all neighbours are treated equally.

Now: a node is important if connected to other important nodes.

e We try to define an importance measure x, for v € V s.t.
X, X qu.

In matrix form: there exists A > 0 and a positive x s.t.
Agx = Ax.
So centrality is given by an eigenvector of Ag with a positive eigenvalue.

Theorem ( special case of Perron-Frobenius)

As A has nonnegative entries, maximal eigenvalue is positive.
Since 1T Agl = 2L > 0 then Amax > O.

The principal eigenvector has positive entries.
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Eigenvector Centrality — Core—Periphery Example

D B Setup. A small core (A,B,C) connected as a
A triangle; three peripheral nodes (D,E,F) each
attach to the core.

Why sizes differ.

E e A connects to two central nodes (B,C)
Cc and two peripherals (D,E) — very

. . central.
Adjacency matrix (A): )
e B beats C because it also connects to F.

e D, E, F are peripheral and get low scores.

01 1.1 10
1 01 0 0 1
a_ |t 1000 of |Netel(Potential problems) I
1 0 000 O
1 0 0 00O O e What if G is disconnected?
01 0 0 0 O

e What if Amax has multiplicity > 27

Normalized ratios:

XA:XB:Xc:Xp:Xg:xF~1.00:0.87:0.76:0.41:0.41:0.35. 21/21



