
Lecture 5 · Centrality Measures I
Networks, Crowds and Markets

October 14, 2025

Today’s Lecture

1. Degree centrality

2. Closeness centrality

3. Betweenness centrality

4. NetworkX examples.

5. Linear Algebra tools for centrality

6. Eigenvector Centrality

2 / 21

Recall: Degree centrality

Definition

The degree centrality of a node v is its degree:

Cdeg(v) = deg(v).

Interpretation:

• High degree node can directly influence/reach many others.

• In undirected networks: count of adjacent edges.

• In directed networks: sometimes split into in-degree and out-degree
centrality, e.g. on Twitter in-degree centrality is more relevant.

3 / 21

Closeness centrality

Closeness Centrality

Given v ∈ V , its average distance to other nodes in the graph is

d(v) :=
1

N − 1

󰁛

u ∕=v

d(u, v).

Definition

The closeness centrality of v ∈ V is

Cclose(v) =
1

d(v)
,

where d(u, v) is the distance between u and v .

• Large if v is on average close to everyone else.

• Small if many nodes are far from v .

4 / 21

Distance matrix

Definition

The distance matrix DG has entries DG (i , j) = d(i , j).

Example:

DG =

󰀳

󰁅󰁅󰁅󰁅󰁃

0 2 2 1 2
2 0 2 1 2
2 2 0 1 2
1 1 1 0 1
2 2 2 1 0

󰀴

󰁆󰁆󰁆󰁆󰁄
.

Average distances from each node are computed as 1
N−1DG1.

5 / 21

Closeness Centrality

1

N − 1
DG · 1 =

1

4

󰀳

󰁅󰁅󰁅󰁅󰁃

0 2 2 1 2
2 0 2 1 2
2 2 0 1 2
1 1 1 0 1
2 2 2 1 0

󰀴

󰁆󰁆󰁆󰁆󰁄

󰀳

󰁅󰁅󰁅󰁅󰁃

1
1
1
1
1

󰀴

󰁆󰁆󰁆󰁆󰁄
=

1

4

󰀳

󰁅󰁅󰁅󰁅󰁃

7
7
7
4
7

󰀴

󰁆󰁆󰁆󰁆󰁄
→ c =

󰀳

󰁅󰁅󰁅󰁅󰁃

4/7
4/7
4/7
1

4/7

󰀴

󰁆󰁆󰁆󰁆󰁄

Note that D is the most central also under degree centrality.
6 / 21

Eccentricity centrality

Recall: the eccentricity of a node v is

ecc(v) = max
u∈V

d(u, v).

Definition

The eccentricity centrality of v is inversely proportional to its
eccentricity:

Cecc(v) =
1

ecc(v)
.

Note

To see how this differs from closeness centrality, imagine a dense “core”
graph with a long chain of nodes attached at one end.

7 / 21

Betweenness centrality

Betweenness Centrality

Definition

The betweenness centrality of a node u measures how often u lies on
shortest paths between other pairs of nodes:

Cbetw(u) =
󰁛

v ∕=u ∕=w

σvw (u)

σvw
,

where σvw is the number of shortest paths from v to w , and σvw (u) is
the number of those paths that pass through u.

• σvw (u)
σvw

is the proportion of path containing u in the set of all shortest
paths between v and w .

• Nodes on many shortest paths act as bridges.

• Captures the potential of u to control information flow.

8 / 21

Betweenness Centrality: Example

• Determine σvw and σvw (u) in the following graph.

• σvw = 2

• σvw (u) = 1

9 / 21

Betweenness Centrality: Example

• Determine σvw and σvw (u) in the following graph.

• σvw = 4

• σvw (u) = 3

10 / 21

Betweenness Centrality: Computing It Efficiently

Challenge: Directly counting all pairs of shortest paths costs O(n3).

Idea (Brandes, 2001): Each BFS from one source can capture all
shortest-path contributions involving that source.

Key insight: Instead of computing all pairs (v ,w), one BFS per node v
is enough to accumulate betweenness scores for every other node.

Complexity: O(nm) for unweighted graphs. Practical for graphs with up
to ∼ 105 edges.

11 / 21

Appendix: BFS Bookkeeping for Shortest Paths

Goal (unweighted graphs, source s): compute

• d [v] = distance from s to v (in edges),

• σ[v] = number of shortest s→v paths,

• Pred[v] = predecessors of v on shortest s→v paths.

Initialization:

• For all v : d [v] = ∞, σ[v] = 0, Pred[v] = ∅.
• Set d [s] = 0, σ[s] = 1, push s in a queue Q.

BFS loop (standard queue):

• While Q not empty:

◮ Pop v from Q.
◮ For each neighbor w of v :

◮ If d [w] = ∞ then
d [w] = d [v] + 1; σ[w] = σ[v]; Pred[w] = {v}; push w .

◮ Else if d [w] = d [v] + 1 then
σ[w] ← σ[w] + σ[v]; add v to Pred[w].

12 / 21

NetworkX examples

NetworkX quick start (Karate Club)

import networkx as nx

G = nx.karate_club_graph()

N, L = G.number_of_nodes(), G.number_of_edges()

print(f"N={N}, L={L}")

In NetworkX:

• nx.degree centrality returns deg(v)/(N − 1)

• nx.closeness centrality(G, wf improved=False)

• nx.betweenness centrality(G)

When plotting the network centrality measures can be used to color the nodes.

13 / 21

Real network #1: Florentine families (Renaissance
credit/marriage)

F = nx.florentine_families_graph() # N=16, classic network

print("Nodes:", F.nodes())

degF = dict(F.degree())

cloF = nx.closeness_centrality(F, wf_improved=False)

betF = nx.betweenness_centrality(F, normalized=True)

def top5(name, d):

print(name, sorted(d.items(), key=lambda x: x[1], reverse=True)[:5])

top5("Degree:", degF)

top5("Closeness:", cloF)

top5("Betweenness:", betF)

Story: Medici emerge as top “brokers” by betweenness—consistent with their

historical role in finance and politics.
14 / 21

Real network #2: Karate Club (community split)

G = nx.karate_club_graph()

deg = nx.degree_centrality(G)

clo = nx.closeness_centrality(G, wf_improved=False)

bet = nx.betweenness_centrality(G, normalized=True)

def tab(name, d):

rows = sorted(d.items(), key=lambda x: x[1], reverse=True)[:5]

print(name, [(v, round(val,3)) for v,val in rows])

tab("Degree cent:", deg)

tab("Closeness cent:", clo)

tab("Betweenness cent:", bet)

Story: The two leaders (nodes usually labeled 0 and 33) rank highly; the broker

between factions has high betweenness.
15 / 21

Basic spectral theory

Why Linear Algebra for Networks?

• Adjacency matrix AG : encodes all links of G .

• Degree vector: AG1 = (deg(v1), . . . , deg(vN)).

• Laplacian L = D −AG : central in diffusion, clustering, spanning trees.

• Many network measures (centrality, random walks, PageRank)
reduce to eigenvalue/eigenvector problems.

Note

Eigenvalues of AG reveal secrets of G .

• Google built its empire on one eigenvector (PageRank).

• Spotify/Youtube recommenders use eigenvector-like ideas.

• In social networks, eigenvector centrality captures being “friends
with important people.”

16 / 21

Recall: Eigenvalues and Eigenvectors

Definition

Let A ∈ Rn×n then v ∕= 0 is called an eigenvector of A if

Av = λv

for some λ, called eigenvalue. Assume 󰀂v󰀂 =
√

v⊤v = 1.

If A has only real eigenvalues then it can be diagonalized: ∃ invertible P
s.t.

A = PΛP−1 with Λ = diag(λ1, . . . ,λn).

The columns of P are the eigenvectors of A.

Note

If A is diagnosable then Ak = PΛkP−1, Λk = diag(λk
1 , . . . ,λ

k
n).

17 / 21

Spectral theorem

Theorem

If A is symmetric (i.e. A = A⊤), all eigenvalues are real, and eigenvectors
form an orthogonal basis.

A is diagonalizable and for some orthogonal matrix U (i.e. U⊤U = In):

A = UΛU⊤.

18 / 21

Spectral theorem

Theorem

If A is symmetric (i.e. A = A⊤), all eigenvalues are real, and eigenvectors
form an orthogonal basis.

A is diagonalizable and for some orthogonal matrix U (i.e. U⊤U = In):

A = UΛU⊤.

Note (Variational characterization of eigenvectors)

The eigenvectors are the saddle points of x⊤Ax subject to 󰀂x󰀂 = 1:

• By KKT condition each optimum is a stationary point of

Lagrangian = x⊤Ax − λ(x⊤x − 1).

• This gives Ax = λx . And for every such unit x , x⊤Ax = λ.

In particular, the maximal eigenvalue is λmax = max󰀂x󰀂=1 x⊤Ax . 18 / 21

Eigenvalue centrality

Motivation

In degree centrality all neighbours are treated equally.

Now: a node is important if connected to other important nodes.

20 / 21

Motivation

In degree centrality all neighbours are treated equally.

Now: a node is important if connected to other important nodes.

• We try to define an importance measure xv for v ∈ V s.t.

xv ∝
󰁛

u∼v

xu.

In matrix form: there exists λ > 0 and a positive x s.t.

AGx = λx .

20 / 21

Motivation

In degree centrality all neighbours are treated equally.

Now: a node is important if connected to other important nodes.

• We try to define an importance measure xv for v ∈ V s.t.

xv ∝
󰁛

u∼v

xu.

In matrix form: there exists λ > 0 and a positive x s.t.

AGx = λx .

So centrality is given by an eigenvector of AG with a positive eigenvalue.

Theorem (special case of Perron-Frobenius)

As AG has nonnegative entries, maximal eigenvalue is positive.
Since 1⊤AG1 = 2L > 0 then λmax > 0.

The principal eigenvector has positive entries.

20 / 21

Eigenvector Centrality – Core–Periphery Example

A
B

C

D

E

F

Adjacency matrix (A):

A =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁃

0 1 1 1 1 0
1 0 1 0 0 1
1 1 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁄

Setup. A small core (A,B,C) connected as a
triangle; three peripheral nodes (D,E,F) each
attach to the core.

Why sizes differ.

• A connects to two central nodes (B,C)
and two peripherals (D,E) — very
central.

• B beats C because it also connects to F .

• D, E , F are peripheral and get low scores.

Note (Potential problems)

• What if G is disconnected?

• What if λmax has multiplicity ≥ 2?

Normalized ratios:

xA : xB : xC : xD : xE : xF ≈ 1.00 : 0.87 : 0.76 : 0.41 : 0.41 : 0.35. 21 / 21

