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Warm Up

Given the following graph:

Determine:

a) the average degree of the graph.

b) the degree distribution.

c) its adjacency matrix.
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Average Degree

In a simple graph the vector Al gives the degrees. Thus

T .
LAl = & Z,J 1 Ajj gives the average degree. How about other cases?
a. Undirected 01150 b. Self-loops .. 0
1o 11 o0 1
1100 A=l 0 o
01 00 0.0 &
A, 0 A=A, 3i,A, =0 A=A
L&
% <k>=2L L=5 Z A+ DA ?
c. Multigraph 0 @ 1 0 d. Directed 01 00
(undirected) 2 o 1 B8 A 0o 0 1 1
1 00 "1 000
o oo \ 0000
A, =0 A=A, A=A,
% <k>:% L:‘EA, <k>7%

Barabasi denotes the average degree by (k). We do not follow this convention.
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Today's Lecture

1. Distances in a graph

1.1 Path / Shortest path / Distance
1.2 Breadth First Search

1.3 Diameter / Local Diameter

1.4 Eccentricity

2. Connectivity

2.1 Definition
2.2 Bridge

3. Trees, Regular Graphs

4. Introduction to centrality measures

» Degree centrality
» Closeness centrality
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Distances in graphs



Path

Definition
A walk in an undirected graph G = (V, E) is a sequence of vertices
(vo, ..., V) s.t. each consecutive pair v;_1v; is an edge in E.

A path in an undirected graph G = (V, E) is a sequence of distinct
vertices (v, ..., v) s.t. each consecutive pair v;_1v; is an edge in E.

Length: the number of edges in the sequence, here /.

In a weighted graph we could take the sum of the weights of the edges
on the path; path weight.

¢ b Examples: p; = abfe, p» = cdef,
p3 = defba

5/27



Directed Path

Definition
A directed path in a directed graph G is a finite sequence of edges
ei = (xi, yi) such that for each i > 1, xj1+1 = y;.

@ ©
® O (D Examples:

P1=m.Pzzm
© ©
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Shortest Path

Definition
A shortest path in a graph G between two nodes u, v is any path that
connects u with v having minimum length.

abe is the shortest path between a and e

[ b
abcd and abed are both shortest path be-
tween a and d
d ¢ e
In NetworkX:

path = nx.shortest_path(G, source=1, target=3)
print ("Shortest path:", path)
length = nx.shortest_path_length(G, source=1, target=3)

print("Path length:", length)
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Distance

Definition

The distance dg(u, v) in a graph G between two nodes u, v is the
length of any shortest path connecting u with v or infinite if there is no
such path.

d(a,e) =2
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Properties of the graph distance

Let G = (V, E) be a graph. The distance d(u, v) between nodes u, v has
the following properties:

d(u,v)>0,and d(u,v) =0 <= u=v.
d(u,v) = d(v,u) (symmetry).
d(u,v) < d(u,w)+ d(w, v) (triangle inequality).

If there is no path between u and v, then d(u,v) = co.

Connectedness: G is connected if d(u, v) < oo for every pair u,v € V.

Extension: In weighted graphs with nonnegative edge weights, d(u, v) is
the minimum total weight of any path between u and v.
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Diameter of a graph



Diameter and the Moore bound

Definition
The diameter diam(G) of a graph G = (V/, E) is the maximum distance
between two vertices:

diam(G) = max, vev d(u, v).
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Diameter and the Moore bound

Definition
The diameter diam(G) of a graph G = (V/, E) is the maximum distance
between two vertices:

diam(G) = max, vev d(u, v).

Theorem ( Moore Bound )
N < 1+A-375(A-1)k
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Diameter and the Moore bound

Definition
The diameter diam(G) of a graph G = (V/, E) is the maximum distance
between two vertices:

diam(G) = max, vev d(u, v).

Theorem ( Moore Bound )
N < 1+A-375(A-1)k

Why is this useful?

It shows that, if degrees are bounded, you cannot have both a very small
diameter and a very large N.

Small-world networks keep diameters small using hubs or shortcuts.
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Proof: Moore Bound

Fix a vertex v. Since the diameter is D, every vertex lies within distance
D of v. To get the maximal N given the constraints:

e Distance 0: only v.

e Distance 1: at most A neighbors of v.

e Distance 2: each neighbor adds at most A — 1 new vertices, giving
at most A(A —1).
e Distance i: at most A(A — 1)~ vertices.

Summing up to distance D,

D—-1
N<1+A> (A-1).
i=0

When A = 2, the graph is a path or cycle, giving N < 2D + 1. O



Breath—First Search (BFS)

Definition
The Breadth—First Search explores a graph starting from a root node v:
e Discover all neighbors of v first.

e Then, in order, discover neighbors of those neighbors, and so on.
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Breath—First Search (BFS)

Definition
The Breadth—First Search explores a graph starting from a root node v:
e Discover all neighbors of v first.

e Then, in order, discover neighbors of those neighbors, and so on.

BFS naturally finds shortest paths from the root to all other vertices.
e First add all nodes at distance 1 from v.
e Then add all nodes at distance 2, etc. ..

The marked path 1-2-4-6 is a shortest path from 1 to 6 (length 3).
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BFS Bookkeeping for Shortest Paths

Goal (unweighted graphs, source s): compute

e d[v] = distance from s to v (in edges),

e o[v] = number of shortest s— v paths,

e Pred[v] = predecessors of v on shortest s— v paths.
Initialization:

e For all v: d[v] = oo, o[v] =0, Pred[v] = 0.

e Set d[s] =0, o[s] =1, push s in a queue Q.
BFS loop (standard queue):

e While Q not empty:

> Pop v from Q.
» For each neighbor w of v:
> If d[w] = oo then
diw] =d[v]+1;, o[w]=o[v]; Pred|w]={v}; push w.
» Else if d[w] = d[v] + 1 then
o[w] « o[w] + o[v]; add v to Pred|[w].
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Graph Eccentricity

Definition
The eccentricity of a vertex v is: e(u) = max,ev d(u, v).
The eccentricity of a graph is: ecc(G) = min ey e(u).

(every minimizer is in some sense central)

e Captures the distance from the “most central” vertex to the farthest node.

e Applications:

» In communication networks: optimal placement of a hub or server.
> In social networks: identifying the most central or influential actors.
> In epidemics: best/worst nodes to start monitoring or intervention.
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Exercise 1

Given the following graph:

a) Determine the shortest path and length between nodes u and x.
b
C

d

)
) Determine its diameter.

) Determine the eccentricity of node u

) Which is the minimum number of edges that we have to add to the
graph so that its eccentricity is 17
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Connectivity



Recall: Connectivity

Definition
Two nodes u, v are connected in G if there exists a path connecting
both nodes. A graph is connected if every two nodes are connected.
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Recall: Connectivity

Definition
Two nodes u, v are connected in G if there exists a path connecting
both nodes. A graph is connected if every two nodes are connected.

Definition

The connected components G are the maximal connected subgraphs.

15 /27



Bridge

Definition
A bridge in a graph G is any edge such that when removing it from the
graph, the number of connected components is increased.

bridge

16 / 27



(More) special graphs



Special Graphs: Trees

Definition

A tree is a connected and acyclic graph

Paths P,, Stars S, are trees

e In a tree, every pair of vertices is joined by a unique path.
e The number of edges is one less than the number of vertices.

e Every connected graph contains a tree as a subgraph with the same
vertex set (spanning tree).

Trees appear everywhere

Internet routing (spanning trees avoid cycles); Data structures in
computer science (binary search trees, decision trees); Phylogenetics in
biology (evolutionary trees); Epidemics and rumor spreading
(branching processes); Hierarchical clustering (data science).
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Special Graphs: Regular Graphs

Definition

A graph is called r-regular if every node has exactly degree r.

e Example: a cycle Cy is 2-regular.

e Example: a complete graph Ky is (N — 1)-regular.
For an r-regular graph with N vertices:
_ Nr
==

(try to prove it; see also Exercise C below)

L
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Exercise A: Complements

a) Show that the complement of an r—regular graph on N nodes is
(N — r — 1)-regular.

b) Is the complement of a bipartite graph always bipartite? Give a
counterexample if not.

c) Give an example of a 4-node graph G such that both G and its
complement are connected.
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Exercise B: Connectivity

a) Show that if a graph G is not connected, then its complement G
must be connected.

b) Consider a tree T (connected, acyclic). Is its complement always
connected? Give an example.
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Exercise C: Adjacency matrix

Let A be the adjacency matrix of a graph G.
a) Show that G is r—regular if and only if

A].N = rlN,

where 1y is the all-ones vector in RV,

b) Suppose
|+ A+ A2+ A3 =,

where J is the all-ones matrix. What does this imply about the
diameter of G?
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Centrality: Motivation



Why centrality?

Which is the most important node in a network?

e In a social network: the most influential person.
» Advertisers buy access to central nodes.

e In trade or finance: the most systemic firm or bank.
» Lehman Brothers was “central” in interbank lending.

e In transport: the airport whose closure causes the largest disruption.

Challenge: “importance” is not unique. Different aspects motivate
different measures:

e Many neighbours — Degree centrality.
e Close to everyone — Closeness centrality.

e On many shortest paths — Betweenness centrality.
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Why centrality? Motivating examples

Different networks = different notions of importance

e Social media (Twitter/X): A user with millions of followers is
central by degree. Another user might have fewer followers but be
the main source of breaking news retweets = central by
betweenness.

e Transport networks: Heathrow or Atlanta airports are central
because they connect many international routes. Closure disrupts
global traffic. = degree & betweenness both matter.

e Electric power grids: Centrality can mean carrying the largest
electrical load (flow-based), or being geographically close to all
others (closeness).

e Economics and finance: A highly connected bank in the interbank
lending network may be systemically important (degree). A bank
that connects otherwise disjoint clusters may trigger contagion

(betweenness).
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Centrality measures (overview)

e Degree centrality: deg(v).
e Closeness centrality: inverse average distance from v to all others.
e Betweenness centrality: share of shortest paths that go through v.

e Eigenvector centrality: v is important if its neighbours are
important.

e PageRank: adapted to directed graphs (web, citation networks),
weighting incoming links by their sources.

24 /21



Degree centrality



Degree centrality

Definition
The degree centrality of a node v is its degree:

Caeg(v) = deg(v).

Interpretation:
e High degree node can directly influence/reach many others.
e In undirected networks: count of adjacent edges.
e In directed networks: sometimes split into in-degree and out-degree
centrality.
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Degree via adjacency matrix

Let Ag be the N x N adjacency matrix of G. For 1 = (1,...,1)7,

deg(1)
deg(2)

deg'(N)
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Normalised degree centrality

To compare networks of different sizes, normalise by N — 1:

Clualv) = S8 c 0.1)

Interpretation: fraction of all possible nodes to which v is directly

connected.

21 /21



