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Warm Up

Given the following graph:

Determine:

a) the average degree of the graph.

b) the degree distribution.

c) its adjacency matrix.
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Average Degree

In a simple graph, the vector A1 gives the degrees. Thus
1
N 1

⊤A1 = 1
N

󰁓N
i,j=1 Aij gives the average degree. How about other cases?

Barabási denotes the average degree by 〈k〉. We do not follow this convention.
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Today’s Lecture

1. Distances in a graph

1.1 Path / Shortest path / Distance
1.2 Breadth First Search
1.3 Diameter / Local Diameter
1.4 Eccentricity

2. Connectivity

2.1 Definition
2.2 Bridge

3. Trees, Regular Graphs

4. Introduction to centrality measures
◮ Degree centrality
◮ Closeness centrality
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Distances in graphs



Path

Definition

A walk in an undirected graph G = (V ,E ) is a sequence of vertices
(v0, . . . , vℓ) s.t. each consecutive pair vi−1vi is an edge in E .

A path in an undirected graph G = (V ,E ) is a sequence of distinct
vertices (v0, . . . , vℓ) s.t. each consecutive pair vi−1vi is an edge in E .

Length: the number of edges in the sequence, here ℓ.

In a weighted graph we could take the sum of the weights of the edges
on the path; path weight.

Examples: p1 = abfe, p2 = cdef ,
p3 = defba

5 / 27



Directed Path

Definition

A directed path in a directed graph G is a finite sequence of edges
ei = (xi , yi ) such that for each i ≥ 1, xi+1 = yi .

Examples:
p1 = 126, p2 = 523
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Shortest Path

Definition

A shortest path in a graph G between two nodes u, v is any path that
connects u with v having minimum length.

abe is the shortest path between a and e

abcd and abed are both shortest path be-
tween a and d

In NetworkX:
path = nx.shortest_path(G, source=1, target=3)

print("Shortest path:", path)

length = nx.shortest_path_length(G, source=1, target=3)

print("Path length:", length)
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Distance

Definition

The distance dG (u, v) in a graph G between two nodes u, v is the
length of any shortest path connecting u with v or infinite if there is no
such path.

d(a, e) = 2
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Properties of the graph distance

Let G = (V ,E ) be a graph. The distance d(u, v) between nodes u, v has
the following properties:

• d(u, v) ≥ 0, and d(u, v) = 0 ⇐⇒ u = v .

• d(u, v) = d(v , u) (symmetry).

• d(u, v) ≤ d(u,w) + d(w , v) (triangle inequality).

• If there is no path between u and v , then d(u, v) = ∞.

Connectedness: G is connected if d(u, v) < ∞ for every pair u, v ∈ V .

Extension: In weighted graphs with nonnegative edge weights, d(u, v) is
the minimum total weight of any path between u and v .
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Diameter of a graph



Diameter and the Moore bound

Definition

The diameter diam(G ) of a graph G = (V ,E ) is the maximum distance
between two vertices:

diam(G ) = maxu,v∈V d(u, v).
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Diameter and the Moore bound

Definition

The diameter diam(G ) of a graph G = (V ,E ) is the maximum distance
between two vertices:

diam(G ) = maxu,v∈V d(u, v).

Theorem (Moore Bound )

N ≤ 1 +∆ ·
󰁓D−1

k=0 (∆− 1)k .
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Diameter and the Moore bound

Definition

The diameter diam(G ) of a graph G = (V ,E ) is the maximum distance
between two vertices:

diam(G ) = maxu,v∈V d(u, v).

Theorem (Moore Bound )

N ≤ 1 +∆ ·
󰁓D−1

k=0 (∆− 1)k .

Why is this useful?

It shows that, if degrees are bounded, you cannot have both a very small
diameter and a very large N.

Small-world networks keep diameters small using hubs or shortcuts.
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Proof: Moore Bound

Fix a vertex v . Since the diameter is D, every vertex lies within distance
D of v . To get the maximal N given the constraints:

• Distance 0: only v .

• Distance 1: at most ∆ neighbors of v .

• Distance 2: each neighbor adds at most ∆− 1 new vertices, giving
at most ∆(∆− 1).

• Distance i : at most ∆(∆− 1)i−1 vertices.

Summing up to distance D,

N ≤ 1 +∆
D−1󰁛

i=0

(∆− 1)i .

When ∆ = 2, the graph is a path or cycle, giving N ≤ 2D + 1. □



Breath–First Search (BFS)

Definition

The Breadth–First Search explores a graph starting from a root node v :

• Discover all neighbors of v first.

• Then, in order, discover neighbors of those neighbors, and so on.
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Breath–First Search (BFS)

Definition

The Breadth–First Search explores a graph starting from a root node v :

• Discover all neighbors of v first.

• Then, in order, discover neighbors of those neighbors, and so on.

1 2

3

4

5 6

BFS naturally finds shortest paths from the root to all other vertices.

• First add all nodes at distance 1 from v .

• Then add all nodes at distance 2, etc. . .

The marked path 1–2–4–6 is a shortest path from 1 to 6 (length 3). 11 / 27



BFS Bookkeeping for Shortest Paths

Goal (unweighted graphs, source s): compute

• d [v ] = distance from s to v (in edges),

• σ[v ] = number of shortest s→v paths,

• Pred[v ] = predecessors of v on shortest s→v paths.

Initialization:

• For all v : d [v ] = ∞, σ[v ] = 0, Pred[v ] = ∅.
• Set d [s] = 0, σ[s] = 1, push s in a queue Q.

BFS loop (standard queue):

• While Q not empty:

◮ Pop v from Q.
◮ For each neighbor w of v :

◮ If d [w ] = ∞ then
d [w ] = d [v ] + 1; σ[w ] = σ[v ]; Pred[w ] = {v}; push w .

◮ Else if d [w ] = d [v ] + 1 then
σ[w ] ← σ[w ] + σ[v ]; add v to Pred[w ].
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Graph Eccentricity

Definition

The eccentricity of a vertex u is: ε(u) = maxv∈V d(u, v).

The eccentricity of a graph is: ecc(G ) = minu∈V ε(u).

(every minimizer is in some sense central)

• Captures the distance from the “most central” vertex to the farthest node.

• Applications:

◮ In communication networks: optimal placement of a hub or server.
◮ In social networks: identifying the most central or influential actors.
◮ In epidemics: best/worst nodes to start monitoring or intervention.
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Exercise 1

Given the following graph:

u

x

a) Determine the shortest path and length between nodes u and x .

b) Determine its diameter.

c) Determine the eccentricity of node u

d) Which is the minimum number of edges that we have to add to the
graph so that its eccentricity is 1?
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Connectivity



Recall: Connectivity

Definition

Two nodes u, v are connected in G if there exists a path connecting
both nodes. A graph is connected if every two nodes are connected.
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Recall: Connectivity

Definition

Two nodes u, v are connected in G if there exists a path connecting
both nodes. A graph is connected if every two nodes are connected.

Definition

The connected components G are the maximal connected subgraphs.
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Bridge

Definition

A bridge in a graph G is any edge such that when removing it from the
graph, the number of connected components is increased.
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(More) special graphs



Special Graphs: Trees

Definition

A tree is a connected and acyclic graph

Paths Pn, Stars Sn are trees

• In a tree, every pair of vertices is joined by a unique path.

• The number of edges is one less than the number of vertices.

• Every connected graph contains a tree as a subgraph with the same
vertex set (spanning tree).

Trees appear everywhere

Internet routing (spanning trees avoid cycles); Data structures in
computer science (binary search trees, decision trees); Phylogenetics in
biology (evolutionary trees); Epidemics and rumor spreading
(branching processes); Hierarchical clustering (data science).

17 / 27



Special Graphs: Regular Graphs

Definition

A graph is called r-regular if every node has exactly degree r .

• Example: a cycle CN is 2-regular.

• Example: a complete graph KN is (N − 1)-regular.

For an r -regular graph with N vertices:

L =
Nr

2
.

(try to prove it; see also Exercise C below)
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Exercise A: Complements

a) Show that the complement of an r–regular graph on N nodes is
(N − r − 1)–regular.

b) Is the complement of a bipartite graph always bipartite? Give a
counterexample if not.

c) Give an example of a 4-node graph G such that both G and its
complement are connected.
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Exercise B: Connectivity

a) Show that if a graph G is not connected, then its complement G
must be connected.

b) Consider a tree T (connected, acyclic). Is its complement always
connected? Give an example.
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Exercise C: Adjacency matrix

Let A be the adjacency matrix of a graph G .

a) Show that G is r–regular if and only if

A1N = r1N ,

where 1N is the all-ones vector in RN .

b) Suppose
I + A+ A2 + A3 = J,

where J is the all-ones matrix. What does this imply about the
diameter of G?
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Centrality: Motivation



Why centrality?
Which is the most important node in a network?

• In a social network: the most influential person.
◮ Advertisers buy access to central nodes.

• In trade or finance: the most systemic firm or bank.
◮ Lehman Brothers was “central” in interbank lending.

• In transport: the airport whose closure causes the largest disruption.

Challenge: “importance” is not unique. Different aspects motivate
different measures:

• Many neighbours → Degree centrality.

• Close to everyone → Closeness centrality.

• On many shortest paths → Betweenness centrality.
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Why centrality? Motivating examples

Different networks ⇒ different notions of importance

• Social media (Twitter/X): A user with millions of followers is
central by degree. Another user might have fewer followers but be
the main source of breaking news retweets ⇒ central by
betweenness.

• Transport networks: Heathrow or Atlanta airports are central
because they connect many international routes. Closure disrupts
global traffic. ⇒ degree & betweenness both matter.

• Electric power grids: Centrality can mean carrying the largest
electrical load (flow-based), or being geographically close to all
others (closeness).

• Economics and finance: A highly connected bank in the interbank
lending network may be systemically important (degree). A bank
that connects otherwise disjoint clusters may trigger contagion
(betweenness).
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Centrality measures (overview)

• Degree centrality: deg(v).

• Closeness centrality: inverse average distance from v to all others.

• Betweenness centrality: share of shortest paths that go through v .

• Eigenvector centrality: v is important if its neighbours are
important.

• PageRank: adapted to directed graphs (web, citation networks),
weighting incoming links by their sources.
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Degree centrality



Degree centrality

Definition

The degree centrality of a node v is its degree:

Cdeg(v) = deg(v).

Interpretation:

• High degree node can directly influence/reach many others.

• In undirected networks: count of adjacent edges.

• In directed networks: sometimes split into in-degree and out-degree
centrality.
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Degree via adjacency matrix

Let AG be the N × N adjacency matrix of G . For 1 = (1, . . . , 1)T ,

w = AG1 =

󰀳

󰁅󰁅󰁅󰁃

deg(1)
deg(2)

...
deg(N)

󰀴

󰁆󰁆󰁆󰁄
.
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Normalised degree centrality

To compare networks of different sizes, normalise by N − 1:

C ′
deg(v) =

deg(v)

N − 1
∈ [0, 1].

Interpretation: fraction of all possible nodes to which v is directly

connected.
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