
Lecture 17 · Spreading Phenomena
Networks, Crowds and Markets



Today’s Lecture

1. Spreading phenomena

2. Modelling hypotheses

3. Epidemic modelling

3.1 Susceptible-Infected (SI)

3.2 Susceptible-Infected-Susceptible (SIS)

3.3 Susceptible-Infected-Recovered (SIR)

4. Epidemics on networks (rumor spread)
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Spreading Phenomena

Despite their differences, many spreading processes follow similar
patterns and can be described within a common framework.

PHENOMENA AGENT NETWORK

Venereal Disease Pathogens Sexual Network

Rumor Spreading Information, Memes Communication Network

Diffusion of Innovations Ideas, Knowledge Communication Network

Computer Viruses Malware, digital viruses Internet

Mobile Phone Virus Mobile Viruses Social / Proximity Network

Bedbugs Parasitic Insects Hotel–Traveler Network

Malaria Plasmodium Mosquito–Human Network

In the first part of this lecture the network will not appear explicitly.
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Modelling hypotheses
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Compartmentalization Hypothesis

Epidemic models classify each individual according to the stage of the
disease. A simple classification is:

• Susceptible (S) – can become infected,

• Infectious (I) – currently contagious,

• Recovered (R) – has cleared the infection and is immune.

S
β−→ I.

S
β−→ I

µ−→ S.

S
β−→ I

µ−→ R.

More detailed models add states such as latent individuals, who have
been exposed but are not yet contagious.
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Homogeneous Mixing Hypothesis

Homogeneous mixing assumes that each individual has the same
chance of coming into contact with any given infected individual.

This hypothesis removes the need to know the precise contact network
on which the disease spreads. Instead, we assume that anyone can infect
anyone else (as if the population formed a complete graph).
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Susceptible-Infected Model (SI)

S
β−→ I.
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Susceptible-Infected Model (SI)

Consider a disease that spreads in a population of N individuals.

• S(t) is the number of individuals who are susceptible at time t.

• I (t) is the number of individuals that have been infected by time t.
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Susceptible-Infected Model (SI)

Consider a disease that spreads in a population of N individuals.

• S(t) is the number of individuals who are susceptible at time t.

• I (t) is the number of individuals that have been infected by time t.

The question we ask is:

If a single individual becomes infected at time t = 0 (i.e. I (0) = 1),
how many individuals will be infected at some later time t?
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Susceptible-Infected Model (SI)

Consider a disease that spreads in a population of N individuals.

• S(t) is the number of individuals who are susceptible at time t.

• I (t) is the number of individuals that have been infected by time t.

The question we ask is:

If a single individual becomes infected at time t = 0 (i.e. I (0) = 1),
how many individuals will be infected at some later time t?

Assume:

• Each individual makes on average c contacts per unit time, c > 0.

• The probability that the disease is transmitted from an infected to a
susceptible individual in a unit time is β.
◮ Over a small time interval ∆t this probability is β∆t + o(∆t).
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Susceptible-Infected Model (SI)

At each time t there are I (t) infected individuals.

Each of them gets in touch with c S(t)
N susceptible individuals.

Each new person gets infected in time ∆t with probability β∆t + o(∆t).
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Susceptible-Infected Model (SI)

At each time t there are I (t) infected individuals.

Each of them gets in touch with c S(t)
N susceptible individuals.

Each new person gets infected in time ∆t with probability β∆t + o(∆t).

We conclude:

I (t +∆t)− I (t) = I (t)c S(t)
N (β∆t + o(∆t)) = I (t)c S(t)

N β∆t + o(∆t).

Taking the limit ∆t → 0, we get the expression for the derivative.

dI (t)

dt
= I (t)c

S(t)

N
β .
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Susceptible-Infected Model (SI)

Recall:
dI (t)

dt
= βc

S(t)I (t)

N
. Denote s(t) := S(t)/N and i(t) := I (t)/N.

The equation becomes

di

dt
= βc s(t) i(t) = βc

󰀃
1− i(t)

󰀄
i(t),

with solution

i(t) =
i0e

βct

1− i0 + i0eβct
,

where i0 = i(0). Verify this!
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t

FRACTION INFECTED i(t)

exponential
regime

If i is small,

i ≈ i0e
βct

saturation
regime

As i → 1,
di

dt
→ 0

In the SI model the epidemic ends only when everyone is infected.
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Susceptible-Infected-Susceptible
Model (SIS)

S
β−→ I

µ−→ S.
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Motivation for a different model

Most pathogens are eventually defeated by the immune system or by
treatment. We therefore allow individuals to recover at rate µ.

• The probability of recovering in time ∆t is µ∆t + o(∆t).

Once an individual recovers:

• they become susceptible again;

• they cease to spread the disease.
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Susceptible-Infected-Susceptible Model (SIS)

The equation to be solved is now

di

dt
= βc

󰀃
1− i(t)

󰀄
i(t)− µ i(t) = (βc − µ) i(t)− βc i2(t).

Set
r := βc − µ, i∗ := 1− µ

βc
.

Case βc > µ (endemic regime). Then r > 0 and i∗ ∈ (0, 1). For
i(0) = i0 ∈ (0, 1) the solution is

i(t) =
i∗

1 +
󰀃
i∗−i0
i0

󰀄
e−rt

,

which increases monotonically to the equilibrium i∗.

Case βc ≤ µ (disease-free regime). The only equilibrium in [0, 1] is
i = 0, and every solution with 0 < i0 < 1 decreases monotonically to 0.
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Endemic state: µ < βc
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If i is small,

i ≈ i0e
(βc−µ)t

endemic
state

i(∞) = 1 − µ

βc
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The Basic Reproductive Number

Basic reproductive number

R0 :=
βc

µ

is the average number of new infections caused by one infected
individual in an otherwise susceptible population.

• We can show that 1/µ is the average infectious period.
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The Basic Reproductive Number

Basic reproductive number

R0 :=
βc

µ

is the average number of new infections caused by one infected
individual in an otherwise susceptible population.

• We can show that 1/µ is the average infectious period.

If R0 > 1, the epidemic reaches an endemic state.

• If each infected individual infects on average more than one healthy
person, the pathogen is poised to spread and persist.

If R0 < 1 the epidemic dies out.

• If each infected individual infects on average fewer than one
additional person, the pathogen cannot persist in the population.
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Examples of R0 for some diseases

DISEASE TRANSMISSION R0

Measles Airborne 12–18

Pertussis Airborne droplet 12–17

Diphtheria Saliva 6–7

Smallpox Social contact 5–7

Polio Fecal–oral route 5–7

Rubella Airborne droplet 5–7

Mumps Airborne droplet 4–7

HIV/AIDS Sexual contact 2–5

SARS Airborne droplet 2–5

Influenza (1918 strain) Airborne droplet 2–3

Likely, we will never about any pathogen with R0 < 1.
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Exercise

Given the following function in the SIS model of an epidemic that affects
50 million people:

i(t) =
0.125e0.35t

1 + 0.25e0.35t
,

where t is time in years.

a) What is the state of the epidemic (endemic or disease-free)?

b) How many people were infected at the beginning of the disease?

c) At what time will more than 20 million people be infected?

d) What is the stationary state? How long will it take to get close to the
stationary state?
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