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What is coming next

Communities:

• Community detection algorithms

• The Stochastic Block Model (SBM)

Social networks:

• Why social networks? Micro–mechanisms for tie formation.

• Strong vs. weak ties; triadic closure; bridges and local bridges.

• Strong Triadic Closure (STC): statement and consequence.

• Homophily: measurement, selection vs. influence.

• Affiliation (bipartite) networks and closures.
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An agglomerative algorithm



Ravasz agglomerative algorithm

Let Bi := {j : d(i , j) ≤ 1}. Let A be the adjacency matrix.

We define node similarity using the topological overlap:

sij =
|Bi ∩ Bj |

min{|Bi |, |Bj |}
∈ [0, 1], (i ∕= j).

• sij = 0 iff i , j are not connected and they share no neighbors.

• sij = 1 iff Bi ⊆ Bj or Bj ⊆ Bj .
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Ravasz agglomerative algorithm

Let Bi := {j : d(i , j) ≤ 1}. Let A be the adjacency matrix.

We define node similarity using the topological overlap:

sij =
|Bi ∩ Bj |

min{|Bi |, |Bj |}
∈ [0, 1], (i ∕= j).

• sij = 0 iff i , j are not connected and they share no neighbors.

• sij = 1 iff Bi ⊆ Bj or Bj ⊆ Bj .

Many authors subtract Aij in both the nominator and denominator to
slightly down-weight the direct edge when i and j are linked (s̃ij).
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Toy example

A B C
D

E

F

Pair |Bi | |Bj | |Bi ∩ Bj | sij s̃ij Aij

A–B 2 3 2 1.00 1.00 1
B–C 3 3 2 0.67 0.50 1
C–D (bridge) 3 4 2 0.67 0.50 1
D–E 4 3 3 1.00 1.00 1
D–F 4 3 3 1.00 1.00 1
E–F 3 3 3 1.00 1.00 1
A–C 2 3 1 0.50 0.50 0
B–D 3 4 1 0.33 0.33 0
C–E 3 3 1 0.33 0.33 0
A–D 2 4 0 0.00 0.00 0
A–E 2 3 0 0.00 0.00 0
A–F 2 3 0 0.00 0.00 0
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Ravasz agglomerative algorithm: hierarchical clustering

We apply standard hierarchical clustering to S .

Algorithm.

1. Compute the similarity matrix sij =
|Bi∩Bj |

min(|Bi |,|Bj |) for i , j .

2. Treat each node as a separate cluster.
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Ravasz agglomerative algorithm: hierarchical clustering

We apply standard hierarchical clustering to S .

Algorithm.

1. Compute the similarity matrix sij =
|Bi∩Bj |

min(|Bi |,|Bj |) for i , j .

2. Treat each node as a separate cluster.
3. Find the two clusters with the largest average pairwise sij .
4. Merge them into a new cluster. Compute similarities between this

new cluster and every other cluster using a chosen linkage rule:

sA,B =

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

maxi∈A,j∈B sij , (single linkage),

mini∈A,j∈B sij , (complete linkage),

averagei∈A,j∈B sij , (average linkage).
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Ravasz agglomerative algorithm: hierarchical clustering

We apply standard hierarchical clustering to S .

Algorithm.

1. Compute the similarity matrix sij =
|Bi∩Bj |

min(|Bi |,|Bj |) for i , j .

2. Treat each node as a separate cluster.
3. Find the two clusters with the largest average pairwise sij .
4. Merge them into a new cluster. Compute similarities between this

new cluster and every other cluster using a chosen linkage rule:

sA,B =

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

maxi∈A,j∈B sij , (single linkage),

mini∈A,j∈B sij , (complete linkage),

averagei∈A,j∈B sij , (average linkage).

5. Repeat Step 3–4 until all nodes are merged into one cluster.

Output. The sequence of merges defines a dendrogram. Cutting it at a
chosen similarity threshold yields the community partition.
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Average linkage: explicit calculations

Step 1. Merge all cliques with all edges s = 1.
These are:

{A,B}, {D,E ,F}.

Thus we obtain three initial clusters:

AB , C , DEF .

Cluster–cluster similarities (average linkage):

sAB,C = 1
2 (sAC + sBC ) =

1
2

󰀓
1
2 + 2

3

󰀔
= 7

12 ≈ 0.583,

sAB,DEF = 1
6

󰀃
sA,D + sA,E + sA,F + sB,D + sB,E + sB,F

󰀄
= 1

6 · 1
3 = 1

18 ,

sC ,DEF = 1
3

󰀃
sC ,D + sC ,E + sC ,F

󰀄
= 1

3

󰀓
2
3 + 1

3 + 1
3

󰀔
= 4

9 ≈ 0.444.

Next merge: AB and C , since sAB,C ≈ 0.583 is the largest.
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After merging AB and C the clusters are: ABC and DEF .

Cluster similarity sABC ,DEF .
We average sij over all i ∈ {A,B ,C}, j ∈ {D,E ,F}. Non-zero terms are:

sB,D = 1
3 , sC ,D = 2

3 , sC ,E = 1
3 , sC ,F = 1

3 .

Hence

sABC ,DEF =
1

9

󰁛

i∈ABC

󰁛

j∈DEF

sij =
1

9

󰀓
1
3 + 2

3 + 1
3 + 1

3

󰀔
=

5

27
≈ 0.185.

Final merge: merge ABC with DEF at similarity s = 5/27.
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The dendrogram

Dendrogram heights. We use dissimilarity d = 1− s:

d(AB ,C ) = 1− 7
12 = 5

12 ≈ 0.417, d(ABC ,DEF ) = 1− 5
27 = 22

27 ≈ 0.815.

d

0

5
12

22
27

1

A B C D E F

This dendrogram encodes a family of community structures (horizontal cuts).
Choose the partition based on modularity.
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Modularity for the dendrogram partitions

Modularity: M = 1
2L

󰁓
C

󰁓
i,j∈C

󰀓
Aij − kikj

2L

󰀔

L = 6, (kA, . . . , kF ) = (1, 2, 2, 3, 2, 2).

Using this formula (summing only over pairs i , j in the same community):

• Partition 1: {A,B}, {C}, {D,E ,F}

M1 =
17

72
≈ 0.24.

• Partition 2: {A,B ,C}, {D,E ,F}

M2 =
23

72
≈ 0.32.

• Partition 3: single community {A,B ,C ,D,E ,F}
M3 = 0.

Conclusion: the best cut of the dendrogram (by modularity) is

{A,B ,C}, {D,E ,F}, since M2 > M1 > M3.
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A divisive algorithm



Divisive community detection: Girvan–Newman algorithm

Goal: detect communities by removing bridges between them.

For each edge (i , j), define its edge betweenness

bij =
󰁛

s ∕=t

σst(i , j)

σst
,

where σst is the number of shortest paths between nodes s and t, and σst(i , j)
counts how many of them go through edge (i , j).

• Edges with high bij tend to connect different communities.
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Divisive community detection: Girvan–Newman algorithm

Goal: detect communities by removing bridges between them.

For each edge (i , j), define its edge betweenness

bij =
󰁛

s ∕=t

σst(i , j)

σst
,

where σst is the number of shortest paths between nodes s and t, and σst(i , j)
counts how many of them go through edge (i , j).

• Edges with high bij tend to connect different communities.

Algorithm (top–down / divisive):

1. Compute bij for all edges.

2. Remove the edge with the highest bij .

3. Recompute betweenness on the updated graph.

4. Repeat until the graph splits.
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Girvan–Newman: toy example

A

B

C

D

E

F

Step 1. Compute edge betweenness

• Shortest paths inside each triangle use only local edges.

• All shortest paths between left and right triangles must go through (B ,D).

• ⇒ edge (B ,D) has the highest betweenness.

Step 2. Remove (B ,D)
Graph splits into two dense components:

{A,B ,C}, {D,E ,F}.

Communities recovered!
11 / 24



Girvan–Newman: selecting the best split

As in the Ravasz algorithm, the splits define a dendrogram.

The tree is constructed from top to bottom.

Cutting it defines a split.

Which split is best? Again, we can decide based on modularity.

As an exercise, you can go over this algorithm for the graph we
considered for the Ravasz algorithm.
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Agglomerative vs. Divisive (summary)

Agglomerative (Ravasz) Divisive (Girvan–Newman)

Direction Bottom–up merges Top–down edge removals

Input Node similarity sij Edge centrality sij

Linkage Single / complete / average Not applicable

Output Dendrogram of merges Dendrogram of splits

Cost O(N2) typical O(LN)–O(N3) (implementation)

Both yield a dendrogram; choose the cut to get communities.
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Stochastic Block Model



The Stochastic Block Model (SBM)

A simple generative model for networks with community structure.

Definition ( Stochastic Block Model )

• N nodes, each assigned to one of K groups: gi ∈ {1, . . . ,K}.
• Edge between i and j appears independently with probability

Pr[(i , j) ∈ E ] = pgi ,gj .

• The K × K matrix P = (pab) specifies connection probabilities
between groups.

• Within-group connection probability are higher.
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The Stochastic Block Model (SBM)

A simple generative model for networks with community structure.

Definition ( Stochastic Block Model )

• N nodes, each assigned to one of K groups: gi ∈ {1, . . . ,K}.
• Edge between i and j appears independently with probability

Pr[(i , j) ∈ E ] = pgi ,gj .

• The K × K matrix P = (pab) specifies connection probabilities
between groups.

• Within-group connection probability are higher.

Applications:

• Benchmark for testing community detection algorithms.
• Statistical inference: given the observed network, estimate group

labels {gi} and/or P .
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The probability matrix
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SBM (2 groups): signal in the spectrum

Model. Two communities of sizes N1,N2 (N = N1 + N2).

Pr[(i , j) ∈ E ] =

󰀫
p, gi = gj ,

q, gi ∕= gj .
with p > q.

Let A be the adjacency matrix (random) and B = E[A] its expectation.
Block structure of B :

B =

󰀣
p1N1×N1 q1N1×N2

q1N2×N1 p1N2×N2

󰀤
,

a rank-2 matrix.

Eigenvectors (intuition):

• The top eigenvector points in a “degree/size” direction (it is close
to 1; exactly 1 only if N1 = N2).

• The second eigenvector is the community indicator: si = +1 for
group 1, si = −1 for group 2. Important insight.
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Spectral clustering (basic idea)

With K ≥ 2 communities, their structure in the first K eigenvectors of B .

The (random) adjacency matrix A satisfies EA = B .

Idea: If we compute the leading eigenvectors of the observed A, they
should align with those of B and reveal the partition.

This is the basic idea behind the spectral clustering.

Spectral clustering works because A concentrates around its mean B
and the “community” eigenvector survives the noise when separation
of eigenvalues is large enough.
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Social networks: basic concepts



Motivation: what creates edges in social graphs?

• Edges (friendships, follows, coauthors) are not completely random:
they arise from repeated social processes.

• Understanding these processes explains:
◮ Information/job access, diffusion and influence, inequality of

opportunity.
◮ Community structure and clustering; small-world effects.
◮ Predicting missing/future links (recommenders, growth).

• We will model edges via micro–mechanisms that we can test and
use algorithmically.

Links to random graph latent space models.
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How do social ties form? (five recurring mechanisms)

1. Triadic Closure: friends of friends become friends.

2. Homophily: similar attributes → higher linking probability.

3. Social Influence: after connecting, friends grow more alike.

4. Focal Closure: shared contexts (course, workplace) induce ties.

5. Membership Closure: people join contexts following friends.
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(1) Triadic Closure

Definition

Triadic Closure: if two people have a common friend, the edge between them
is more likely to form.

Potential Reasons

• Opportunity: shared settings increase meetings.

• Trust: a mutual friend reduces risk.

• Incentives: social pressure to “close the triangle”.

• Similarity: B , C may be close irrespective of
their link to A.

A

B C

Implications

• High clustering coefficient; redundant paths; robustness.

• Basis of many link-prediction features (common neighbors).
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Bridges and local bridges

Bridge: edge whose removal increases the number of connected components.

Local bridge: edge whose endpoints have no common neighbors.

C A

D E

B

Bridge

C A

D E

B

F H

J G K

Local bridgeWhy they matter:

• Carry novel information across communities.

• Rare in dense social graphs (triadic closure tends to “fill” them).

• Often weak ties (acquaintances) act as local bridges (Granovetter). 21 / 24



Strong vs. weak ties and Strong Triadic Closure (STC)

Model: label each edge as strong or weak (e.g. interaction frequency,
emotional closeness).

Strong Triadic Closure (STC): A vertex satisfies STC if any
neighbors with strong ties are connected by an edge (weak or strong).

Consequence (Granovetter): If u satisfies STC and has at least two
strong ties, then any local bridge involving u must be a weak tie.

Proof (by contradiction). Suppose uv is strong tie and a bridge. We
have that u has at least one other strong tie uw . STC forces the edge
vw to exist but then uv cannot be a local bridge. □
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(2) Homophily: measuring and interpreting

Homophily: people with similar attributes (age, interests, opinions, etc)
connect at higher rates than random.

Homophily is one of the basic notions governing the structure of social networks.
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(2) Homophily: measuring and interpreting

Homophily: people with similar attributes (age, interests, opinions, etc)
connect at higher rates than random.

Homophily is one of the basic notions governing the structure of social networks.

Quick test (binary attribute). Let fraction p be group A, q = 1− p group B.
Under random mixing, fraction of cross-group edges ≈ 2pq.

• If observed cross-group share ≪ 2pq, evidence of homophily.

• Caveat: if degrees are very unequal, the 2pq baseline is wrong; a better
null model fixes the degree sequence (configuration model / assortativity).
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(2) Homophily: measuring and interpreting

Homophily: people with similar attributes (age, interests, opinions, etc)
connect at higher rates than random.

Homophily is one of the basic notions governing the structure of social networks.

Quick test (binary attribute). Let fraction p be group A, q = 1− p group B.
Under random mixing, fraction of cross-group edges ≈ 2pq.

• If observed cross-group share ≪ 2pq, evidence of homophily.

• Caveat: if degrees are very unequal, the 2pq baseline is wrong; a better
null model fixes the degree sequence (configuration model / assortativity).

Two explanations

• Selection: people prefer similar others ⇒ edges form due to similarity.

• Influence: similarity increases after the edge forms (behaviors diffuse).
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Mini example: homophily quick check

Suppose N = 9 children: 6 girls (p =
2/3), 3 boys (q = 1/3).
Random mixing baseline for cross-gender
edges: 2pq = 4/9 ≈ 0.444.

If the observed cross-gender share is, say,
5/18 ≈ 0.278, then it is well below 2pq
⇒ evidence of homophily.
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