
Lecture 14 · Communities
Networks, Crowds and Markets

November 14, 2025

What is coming next

1. What do we mean by a community?

2. Zachary’s Karate Club

3. Hypotheses and definitions (H1–H4)

4. The Girvan–Newman algorithm

5. The Stochastic Block Model (SBM)

2 / 18

Communities in graphs

What are communities?

Definition (Informal)

Groups of nodes with more connections inside than outside.

Examples:

• Social networks: circles of friends, political communities.

• Scientific collaboration: fields or subdisciplines.

• Biology: protein complexes in interaction networks.

• Infrastructure: airline networks with hubs and regional groups.

There is no single formal definition.

3 / 18

Communities in Economics

Trade Blocs: Countries cluster into EU, NAFTA, ASEAN.

Political Polarization: Twitter users cluster into left vs. right.

Firms: Industry supply chains reveal modular communities.

• Detecting communities = identifying hidden structure in markets.

A famous example: Communication structure in Belgium.

4 / 18

Zachary’s Karate Club

This is the first famous example of community structure in a network.

Initially analysed by Wayne W. Zachary, 1977.

Became the most classic network for community analysis.

• 34 members of a karate club, edges = friendships outside the club.

• Conflict between instructor (“Mr. Hi”) and administrator (“John
A”) led to a split of the club.

• Based on the friendship network, predict how the club splits.

• Zachary’s analysis correctly predicted all but one member’s side.

5 / 18

Karate Club Network

• Mr. Hi corresponds to node 0,

• John A corresponds to node 33.
6 / 18

Communities: Defining principles

Principle 1 – Fundamental

A network’s community structure is encoded in its wiring diagram.
That is, communities can in principle be discovered by looking only at
the graph structure.

7 / 18

Principle 2 – Connectedness & Density

A community should be a connected
subgraph. Links inside a community
should be denser than links going
outside.

8 / 18

Strong vs Weak Communities

degC (v) = #{edges from v to nodes in C}

degC (v) = #{edges from v to nodes outside C}.

9 / 18

Strong vs Weak Communities

degC (v) = #{edges from v to nodes in C}

degC (v) = #{edges from v to nodes outside C}.

Strong community (restrictive): every node v ∈ C satisfies

degC (v) > degC (v).

9 / 18

Strong vs Weak Communities

degC (v) = #{edges from v to nodes in C}

degC (v) = #{edges from v to nodes outside C}.

Strong community (restrictive): every node v ∈ C satisfies

degC (v) > degC (v).

Weak community: total internal degree exceeds external degree:

󰁛

v∈C
degC (v) >

󰁛

v∈C
degC (v).

(the average in-community degree larger than out-community degree)

9 / 18

Example · Strong vs Weak Community

Original graph (strong)

1

2

3

4

5

6

C = {1, 2, 3} C = {4, 5, 6}

After adding edge (2, 5)

1

2

3

4

5

6

C = {1, 2, 3} C = {4, 5, 6}

v degC (v) degC (v) Strong?
1 2 0 󰃀
2 2 1 󰃀
3 2 1 󰃀

⇒ C is a strong community.

10 / 18

Example · Strong vs Weak Community

Original graph (strong)

1

2

3

4

5

6

C = {1, 2, 3} C = {4, 5, 6}

After adding edge (2, 5)

1

2

3

4

5

6

C = {1, 2, 3} C = {4, 5, 6}

v degC (v) degC (v) Strong?
1 2 0 󰃀
2 2 1 󰃀
3 2 1 󰃀

⇒ C is a strong community.

Now add edge (2, 5): degC (2) = 2, degC (2) = 2 ⇒ not strong. But

󰁛

v∈C
degC (v) = 6,

󰁛

v∈C
degC (v) = 4,

so C is still a weak community.
10 / 18

Principle 3 – Random Baseline

Erdős–Rényi graphs do not have meaningful community structure.

• Communities are detected when the observed structure deviates
significantly from total randomness.

• Useful for benchmarking algorithms for community detection.

11 / 18

Modularity

Modularity Maximization

Connections within communities denser than expected by random chance.

Measured by modularity (Newman-Girvan 2004):

M =
1

2L

󰁛

i ,j

󰀓
Aij −

kikj
2L

󰀔
δ(ci , cj),

where

• Aij - adjacency matrix (1 if edge i–j exists, else 0),

• ki - degree of node i , 2L =
󰁓

i ki (total edge ends),

• δ(ci , cj) = 1 if i , j lie in the same community, 0 otherwise.

M compares the observed edges (Aij) to what we would expect at
random (kikj/2L; see configuration model).

12 / 18

The Girvan-Newman Algorithm

13 / 18

Identifying communities

Community detection via hierarchical clustering

Find a computationally efficient community detection procedure.

Let S = [δij] be a similarity matrix:

• S symmetric;

• sij ≥ 0 for all i ∕= j .

If i , j are “close”, sij is higher.

• Build a similarity matrix sij from the network.

• Iteratively group (or split) nodes using sij .

• Output is a dendrogram; cutting it gives a partition.

14 / 18

An agglomerative algorithm

Ravasz agglomerative algorithm

Let Bi := {j : d(i , j) ≤ 1}. Let A be the adjacency matrix.

We define node similarity using the topological overlap:

sij =
|Bi ∩ Bj |

min{|Bi |, |Bj |}
∈ [0, 1], (i ∕= j).

• sij = 0 iff i , j are not connected and they share no neighbors.

• sij = 1 iff Bi ⊆ Bj or Bj ⊆ Bj .

15 / 18

Ravasz agglomerative algorithm

Let Bi := {j : d(i , j) ≤ 1}. Let A be the adjacency matrix.

We define node similarity using the topological overlap:

sij =
|Bi ∩ Bj |

min{|Bi |, |Bj |}
∈ [0, 1], (i ∕= j).

• sij = 0 iff i , j are not connected and they share no neighbors.

• sij = 1 iff Bi ⊆ Bj or Bj ⊆ Bj .

Many authors subtract Aij in both the nominator and denominator to
slightly down-weight the direct edge when i and j are linked (s̃ij).

15 / 18

Toy example

A B C
D

E

F

Pair |Bi | |Bj | |Bi ∩ Bj | sij s̃ij Aij

A–B 2 3 2 1.00 1.00 1
B–C 3 3 2 0.67 0.50 1
C–D (bridge) 3 4 2 0.67 0.33 1
D–E 4 3 3 1.00 1.00 1
D–F 4 3 3 1.00 1.00 1
E–F 3 3 3 1.00 1.00 1
A–C 2 3 1 0.50 0.50 0
B–D 3 4 1 0.33 0.33 0
C–E 3 3 1 0.33 0.33 0
A–D 2 4 0 0.00 0.00 0
A–E 2 3 0 0.00 0.00 0
A–F 2 3 0 0.00 0.00 0

16 / 18

Ravasz agglomerative algorithm: hierarchical clustering

We apply standard hierarchical clustering to S .

Algorithm.

1. Compute the similarity matrix sij =
|Bi∩Bj |

min(|Bi |,|Bj |) for i , j .

2. Treat each node as a separate cluster.

17 / 18

Ravasz agglomerative algorithm: hierarchical clustering

We apply standard hierarchical clustering to S .

Algorithm.

1. Compute the similarity matrix sij =
|Bi∩Bj |

min(|Bi |,|Bj |) for i , j .

2. Treat each node as a separate cluster.
3. Find the two clusters with the largest average pairwise sij .
4. Merge them into a new cluster. Compute similarities between this

new cluster and every other cluster using a chosen linkage rule:

sA,B =

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

maxi∈A,j∈B sij , (single linkage),

mini∈A,j∈B sij , (complete linkage),

averagei∈A,j∈B sij , (average linkage).

17 / 18

Ravasz agglomerative algorithm: hierarchical clustering

We apply standard hierarchical clustering to S .

Algorithm.

1. Compute the similarity matrix sij =
|Bi∩Bj |

min(|Bi |,|Bj |) for i , j .

2. Treat each node as a separate cluster.
3. Find the two clusters with the largest average pairwise sij .
4. Merge them into a new cluster. Compute similarities between this

new cluster and every other cluster using a chosen linkage rule:

sA,B =

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

maxi∈A,j∈B sij , (single linkage),

mini∈A,j∈B sij , (complete linkage),

averagei∈A,j∈B sij , (average linkage).

5. Repeat Step 3–4 until all nodes are merged into one cluster.

Output. The sequence of merges defines a dendrogram. Cutting it at a
chosen similarity threshold yields the community partition.

17 / 18

Next week we will discuss in detail an example.

18 / 18

