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What is coming next

1. What do we mean by a community?
2. Zachary's Karate Club

3. Hypotheses and definitions (H1-H4)
4. The Girvan—Newman algorithm

5. The Stochastic Block Model (SBM)
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Communities in graphs



What are communities?

Definition ( Informal)

Groups of nodes with more connections inside than outside.

Examples:
e Social networks: circles of friends, political communities.
e Scientific collaboration: fields or subdisciplines.
e Biology: protein complexes in interaction networks.

e Infrastructure: airline networks with hubs and regional groups.

There is no single formal definition.
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Communities in Economics

Trade Blocs: Countries cluster into EU, NAFTA, ASEAN.
Political Polarization: Twitter users cluster into left vs. right.

Firms: Industry supply chains reveal modular communities.

e Detecting communities = identifying hidden structure in markets.

A famous example: Communication structure in Belgium.
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Zachary's Karate Club

This is the first famous example of community structure in a network.
Initially analysed by Wayne W. Zachary, 1977.

Became the most classic network for community analysis.

e 34 members of a karate club, edges = friendships outside the club.

e Conflict between instructor (“Mr. Hi") and administrator (“John
A") led to a split of the club.

e Based on the friendship network, predict how the club splits.

e Zachary's analysis correctly predicted all but one member’s side.
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Karate Club Network

Zachary's Karate Club

e Mr. Hi corresponds to node O,

e John A corresponds to node 33.
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Communities: Defining principles



Principle 1 — Fundamental

A network’s community structure is encoded in its wiring diagram.
That is, communities can in principle be discovered by looking only at
the graph structure.

7/18



Principle 2 — Connectedness & Density

Toy Example: Communities and Inter-Community Links

A community should be a connected
subgraph. Links inside a community
should be denser than links going

outside. o
o
\ /10
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Strong vs Weak Communities

deg(v) = #{edges from v to nodes in C}
deg(v) = #{edges from v to nodes outside C}.
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Strong vs Weak Communities

deg(v) = #{edges from v to nodes in C}
deg(v) = #{edges from v to nodes outside C}.

Strong community (restrictive): every node v € C satisfies

degc(v) > dege(v).
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Strong vs Weak Communities

deg(v) = #{edges from v to nodes in C}
deg(v) = #{edges from v to nodes outside C}.

Strong community (restrictive): every node v € C satisfies

degc(v) > dege(v).

Weak community: total internal degree exceeds external degree:

Zdegc(v) > Zdegg(v).

veC veC

(the average in-community degree larger than out-community degree)
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Example - Strong vs Weak Community

Original graph (strong) After adding edge (2,5)
1/2 T\6 1/2\\ 4\6
S35 B T 1
C=1{1,2,3} C=1{4,5,6} C={1,2.3} C={4,56}
v | degc(v) degg(v) Strong?
L 2 0 v = C is a strong communit
2| 2 1 v & untey:
3 2 1 v
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Example - Strong vs Weak Community

Original graph (strong) After adding edge (2,5)
1/2 T\6 1/2\\ 4\6
S35 B T 1
C=1{1,2,3} C=1{4,5,6} C={1,2.3} C={4,56}
v | degc(v) degg(v) Strong?
L 2 0 v = C is a strong community
2 2 1 v '
3 2 1 v

Now add edge (2,5): degc(2) = 2, deg(2) = 2 = not strong. But
> degc(v) =6, > dege(v) =4,
veC veC

so C is still a weak community.
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Principle 3 — Random Baseline

Erdés—Rényi graphs do not have meaningful community structure.

e Communities are detected when the observed structure deviates
significantly from total randomness.

e Useful for benchmarking algorithms for community detection.
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Modularity



Modularity Maximization

Connections within communities denser than expected by random chance.

Measured by modularity (Newman-Girvan 2004):
1 kikj
M = Z Z (AU — T)(S(C,,CJ),
L)

where
e Aj - adjacency matrix (1 if edge i—j exists, else 0),
e ki - degree of node i, 2L = ). k; (total edge ends),

e 6(cj,cj) =1if i,j lie in the same community, 0 otherwise.

M compares the observed edges (Aj;) to what we would expect at
random (kik;/2L; see configuration model).
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The Girvan-Newman Algorithm

a. OPTIMAL PARTITION b. SUBOPTIMAL PARTITION
M=0.41 M =0 .22
c. SINGLE COMMUNITY d. NEGATIVE MODULARITY

M=0 M= -0.12
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|dentifying communities



Community detection via hierarchical clustering

Find a computationally efficient community detection procedure.

Let S = [§;;] be a similarity matrix:
e S symmetric;
e s;>0foralli#j.

If i,/ are “close”, s;; is higher.

e Build a similarity matrix s;; from the network.
e lteratively group (or split) nodes using s;;.

e Qutput is a dendrogram; cutting it gives a partition.
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An agglomerative algorithm



Ravasz agglomerative algorithm

Let B; :=={j : d(i,j) <1}. Let A be the adjacency matrix.
We define node similarity using the topological overlap:

|B,‘ﬁBj| L.
i = bl DIl )17 .
51 mln{|B;\,|Bj|} € [O ] (’75./)

e s; = 0 iff /,j are not connected and they share no neighbors.

os;jzlifFB;gBjorngBj.
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Ravasz agglomerative algorithm

Let B; :=={j : d(i,j) <1}. Let A be the adjacency matrix.
We define node similarity using the topological overlap:

|Bi N Bj| .
i = - b5l 1N )17 .
sj m|n{|B,\,|BJ|} S [O ] (’?é./)

e s; = 0 iff /,j are not connected and they share no neighbors.
° sijzlifFB;QBjorngBj.

Many authors subtract Aj; in both the nominator and denominator to
slightly down-weight the direct edge when i and j are linked (5j).
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Toy example
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Ravasz agglomerative algorithm: hierarchical clustering

We apply standard hierarchical clustering to S.

Algorithm.

|B;ﬂBj‘
min(|Bi],|B;])
2. Treat each node as a separate cluster.

1. Compute the similarity matrix s;; = for i,j.
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Ravasz agglomerative algorithm: hierarchical clustering

We apply standard hierarchical clustering to S.

Algorithm.

1.

Compute the similarity matrix s;; = % for i,j.
1Hh12)

2. Treat each node as a separate cluster.
3.
4. Merge them into a new cluster. Compute similarities between this

Find the two clusters with the largest average pairwise s;;.

new cluster and every other cluster using a chosen linkage rule:
maX;cA jeB Sij, (single linkage),
SAB = | MinjcajeB S (complete linkage),

average;ca jcp Sij;  (average linkage).
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Ravasz agglomerative algorithm: hierarchical clustering

We apply standard hierarchical clustering to S.

Algorithm.
1. Compute the similarity matrix s; = —208L__for j
: pu Y i = min(BLIEN
2. Treat each node as a separate cluster.
3. Find the two clusters with the largest average pairwise s;;.
4. Merge them into a new cluster. Compute similarities between this

new cluster and every other cluster using a chosen linkage rule:
Max;eA jeB Sijs (single linkage),
SAB = minieA,jeB Sijs (complete Iinkage),
average;ca jcp Sij;  (average linkage).

5. Repeat Step 3—4 until all nodes are merged into one cluster.

Output. The sequence of merges defines a dendrogram. Cutting it at a

chosen similarity threshold yields the community partition.
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Next week we will discuss in detail an example.
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