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Quick recap

Erdés-Renyi model is a simple baseline model but it has problems:
e Not a good generative model for realistic networks.
e Degree distribution highly contrated around the mean.

e No community structure.

One problem with this model is that each node/edge is treated equally.

We introduced some static models giving heterogeneity in edges.
e Exponential Random Graph Models: e.g. p>-model.

e Latent space model.

Today we study the preferential attachment and configuration models.

e Generating networks with arbitrary degree distribution
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Configuration model



The Configuration Model

Goal: Generate graph with a given degree sequence {ki, ..., kn}.

Algorithm:
1. Give each node i exactly k; stubs (half-edges).
2. Randomly pair all 2L = ", k; stubs to form L edges.

3. Optionally discard self-loops or multi—edges for a simple graph.

Key property:

e Every network with the same degrees has equal probability.

Expected adjacency:

ik kik;
20—1 2L

E[A;] =
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Configuration Model: intuition and limitations

Intuition:

e Each node keeps the degree, but partners are chosen uniformly at random.
e This gives a uniform distribution on pairings with given degree sequence.
e E[Aj]  kikj: nodes with many stubs have higher expected connectivity,
even without any preference or dynamics.
Limitations:
e Can create self-loops or parallel edges (rare for large n).

e Produces no community structure or clustering.

A static, structureless baseline for networks with given degree sequence.
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Preferential attachment



From Static to Growing Models

All previous models assumed a fixed number of nodes and edges.

But real networks grow over time: new users, new webpages, new firms.

Preferential attachment: New node attaches to existing node v with
probability proportional to deg(v).

e “Rich get richer” — hubs emerge.
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From Static to Growing Models

All previous models assumed a fixed number of nodes and edges.

But real networks grow over time: new users, new webpages, new firms.

Preferential attachment: New node attaches to existing node v with
probability proportional to deg(v).

e “Rich get richer” — hubs emerge.

Result: degree distribution follows a power law.
e Few very large hubs.
e Many low-degree nodes.

e Matches data: web, citation networks, finance.
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Preferential Attachment: Formal Definition

We construct a growing sequence of graphs G, Gpmi1, Gmaas - - -

1. Initialization: Start from a complete graph G, on m nodes (so each node
initially has degree m—1).

2. Growth rule: For each step t = m+1, m+2,.. .

» Add a new node v; and m edges sticking out of it.
» Connect each edge to a node u with probability

~ deg(u,t-1)
e deg )

Thus, high-degree nodes are more likely to receive new links.

This process defines the Barabasi—Albert (BA) model.
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Evolution of the Barabasi-Albert model
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Expected degree growth in the BA model

If t, is the time when u appears, we can show

E[d] ~ m,/L

ty’

Derivation: At time t > m, the network has L, = () + m(t — m) edges. Up
to constants depending only on m, we may write Ly ~ mt (think large t).
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Expected degree growth in the BA model

If t, is the time when u appears, we can show

Derivation: At time t > m, the network has L, = () + m(t — m) edges. Up

to constants depending only on m, we may write Ly ~ mt (think large t).

Fix a node u, d; := deg(u, t). When a new node arrives, it creates m new edges,
each connecting to an existing node with probability proportional to its degree:

d d d
P(edge connects to u) = ETQ(Vt) = i ~ Tr;t
v ’ t
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Expected degree growth in the BA model

If t, is the time when u appears, we can show
t

Derivation: At time t > m, the network has L, = () + m(t — m) edges. Up
to constants depending only on m, we may write Ly ~ mt (think large t).

Fix a node u, d; := deg(u, t). When a new node arrives, it creates m new edges
each connecting to an existing node with probability proportional to its degree:
dy dy dy

P(edge connects to u) = S, deg(v,t) 2L, 2mt’

Expected increment:
d; d;

E — ~ . .
[devr —de|d] = m-o 0 = o
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Expected degree growth in the BA model

If t, is the time when u appears, we can show
t

Derivation: At time t > m, the network has L, = () + m(t — m) edges. Up

to constants depending only on m, we may write Ly &~ mt (think large t).

Fix a node u, d; := deg(u, t). When a new node arrives, it creates m new edges

each connecting to an existing node with probability proportional to its degree:
d; i d

]P’(edge connects to U) = m = 27Lt ~ Tmt

Expected increment:
d; d;

E — ~ . = .
[devr —de|d] = m-o 0 = o

This gives a recursion that gives the expected degree growth:

1
Elde] ~ Eld)(1+ ).  t>m .



Evolution of the degree

Simulated degrees of a few nodes in the log-log scale:

SINGLE NETWORK
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Quick comparison (who becomes a hub?)

Recall: E[d;] ~ m,/+.

ty

Two nodes joined at t, = 10 and t, = 100. After t = 1000 with m = 3:

deg(u, 1000) 1000/10 _ oo o

deg(v, 1000) 1000/100

deg(u,1000) = 3v/100 = 30,  deg(v, 1000) = 3v/10 ~ 9.48.

Earlier arrival systematically advantages degree.

The ratio of expected degrees depends on t,, t, but not on m.
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Heuristic derivation of the degree distribution

From the recursion we found:

E[deg(u, t)] ~ m<ti> .

u

To find the degree distribution at time t, note that

1/2 m>
d t) =~ — = t~t—.
v =m( ) sl 7
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Heuristic derivation of the degree distribution
From the recursion we found:

E[deg(u, t)] ~ m<ti> .

u

To find the degree distribution at time t, note that

1/2 2
deg(u,t) = m| — — t~t—
’ ty ! deg(u, t)?
Since arrival times t, are roughly uniform on {1,2,... t}, we can
compute

m? m?
P(deg(u,t) > k) =~ ]P’(tu < tk2> N T
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Asymptotic tail

The prob. that a node has degree > k decreases quadratically in k:
P(deg > k) o k™2 =  px =P(deg = k) o k3.
(at least for large k)

Hence: the Barabasi—Albert model produces a power-law degree
distribution with

v=3.
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Asymptotic tail

The prob. that a node has degree > k decreases quadratically in k:
P(deg > k) o k™2 =  px =P(deg = k) o k3.
(at least for large k)

Hence: the Barabasi—Albert model produces a power-law degree
distribution with

v=3.

Takeaways

e The tail exponent v = 3 is universal for the BA model (all m).

e This formula matches simulations closely.
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Exercise (preferential attachment probabilities)

Consider the preferential attachment model with m = 1. Given the
degree multiset {1,1,1,1,2,3,3,4,4,5,5,8}, let a new node add one
link using BA attachment Pr{u} = deg(u)/(2L).

a) Probability it attaches to the highest—degree node:

Pr{choose k =8} = Zileg = 3%
b) Probability it attaches to a node of degree 1: there are four such

nodes, each with probability 1/38: 4 x % = 3%.
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