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Quick recap

Erdős-Renyi model is a simple baseline model but it has problems:

• Not a good generative model for realistic networks.

• Degree distribution highly contrated around the mean.

• No community structure.

One problem with this model is that each node/edge is treated equally.

We introduced some static models giving heterogeneity in edges.

• Exponential Random Graph Models: e.g. p2-model.

• Latent space model.

Today we study the preferential attachment and configuration models.

• Generating networks with arbitrary degree distribution
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Configuration model



The Configuration Model

Goal: Generate graph with a given degree sequence {k1, . . . , kn}.

Algorithm:

1. Give each node i exactly ki stubs (half–edges).

2. Randomly pair all 2L =
󰁓

i ki stubs to form L edges.

3. Optionally discard self–loops or multi–edges for a simple graph.

Key property:

• Every network with the same degrees has equal probability.

Expected adjacency:

E [Aij ] =
kikj

2L− 1
≈ kikj

2L
.
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Configuration Model: intuition and limitations

Intuition:

• Each node keeps the degree, but partners are chosen uniformly at random.

• This gives a uniform distribution on pairings with given degree sequence.

• E [Aij ] ∝ kikj : nodes with many stubs have higher expected connectivity,
even without any preference or dynamics.

Limitations:

• Can create self–loops or parallel edges (rare for large n).

• Produces no community structure or clustering.

A static, structureless baseline for networks with given degree sequence.
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Preferential attachment



From Static to Growing Models

All previous models assumed a fixed number of nodes and edges.

But real networks grow over time: new users, new webpages, new firms.

Preferential attachment: New node attaches to existing node v with
probability proportional to deg(v).

• “Rich get richer” → hubs emerge.
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From Static to Growing Models

All previous models assumed a fixed number of nodes and edges.

But real networks grow over time: new users, new webpages, new firms.

Preferential attachment: New node attaches to existing node v with
probability proportional to deg(v).

• “Rich get richer” → hubs emerge.

Result: degree distribution follows a power law.

• Few very large hubs.

• Many low-degree nodes.

• Matches data: web, citation networks, finance.
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Preferential Attachment: Formal Definition

We construct a growing sequence of graphs Gm,Gm+1,Gm+2, . . ..

1. Initialization: Start from a complete graph Gm on m nodes (so each node
initially has degree m−1).

2. Growth rule: For each step t = m+1,m+2, . . .:

◮ Add a new node vt and m edges sticking out of it.
◮ Connect each edge to a node u with probability

P(vt → u) =
deg(u, t−1)󰁓
w deg(w , t−1)

.

Thus, high-degree nodes are more likely to receive new links.

This process defines the Barabási–Albert (BA) model.
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Evolution of the Barabási-Albert model
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Expected degree growth in the BA model

If tu is the time when u appears, we can show

E[dt ] ≈ m
󰁴

t
tu
.

Derivation: At time t ≥ m, the network has Lt =
󰀃
m
2

󰀄
+m(t −m) edges. Up

to constants depending only on m, we may write Lt ≈ mt (think large t).
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Expected degree growth in the BA model

If tu is the time when u appears, we can show

E[dt ] ≈ m
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tu
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󰀄
+m(t −m) edges. Up

to constants depending only on m, we may write Lt ≈ mt (think large t).

Fix a node u, dt := deg(u, t). When a new node arrives, it creates m new edges,
each connecting to an existing node with probability proportional to its degree:

P(edge connects to u) =
dt󰁓

v deg(v , t)
=

dt
2Lt

≈ dt
2mt

.

Expected increment:

E[dt+1 − dt | dt ] ≈ m · dt
2mt

=
dt
2t

.

This gives a recursion that gives the expected degree growth:

E[dt+1] ≈ E[dt ]
󰀓
1 +

1

2t

󰀔
, t ≥ m.

8 / 13



Evolution of the degree

Simulated degrees of a few nodes in the log-log scale:

9 / 13



Quick comparison (who becomes a hub?)

Recall: E[dt ] ≈ m
󰁴

t
tu
.

Two nodes joined at tu = 10 and tv = 100. After t = 1000 with m = 3:

deg(u, 1000)

deg(v , 1000)
=

󰁶
1000/10

1000/100
=

√
10 ≈ 3.16,

deg(u, 1000) = 3
√
100 = 30, deg(v , 1000) = 3

√
10 ≈ 9.48.

Earlier arrival systematically advantages degree.

The ratio of expected degrees depends on tu, tv but not on m.
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Heuristic derivation of the degree distribution

From the recursion we found:

E[deg(u, t)] ≈ m

󰀕
t

tu

󰀖1/2

.

To find the degree distribution at time t, note that

deg(u, t) ≈ m

󰀕
t

tu

󰀖1/2

⇐⇒ tu ≈ t
m2

deg(u, t)2
.
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From the recursion we found:

E[deg(u, t)] ≈ m

󰀕
t

tu

󰀖1/2

.

To find the degree distribution at time t, note that

deg(u, t) ≈ m

󰀕
t

tu

󰀖1/2

⇐⇒ tu ≈ t
m2

deg(u, t)2
.

Since arrival times tu are roughly uniform on {1, 2, . . . , t}, we can
compute

P(deg(u, t) ≥ k) ≈ P
󰀕
tu ≤ t

m2

k2

󰀖
≈ m2

k2
.
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Asymptotic tail

The prob. that a node has degree ≥ k decreases quadratically in k :

P(deg ≥ k) ∝ k−2 =⇒ pk = P(deg = k) ∝ k−3.

(at least for large k)

Hence: the Barabási–Albert model produces a power-law degree
distribution with

γ = 3.

12 / 13



Asymptotic tail

The prob. that a node has degree ≥ k decreases quadratically in k :

P(deg ≥ k) ∝ k−2 =⇒ pk = P(deg = k) ∝ k−3.

(at least for large k)

Hence: the Barabási–Albert model produces a power-law degree
distribution with

γ = 3.

Takeaways

• The tail exponent γ = 3 is universal for the BA model (all m).

• This formula matches simulations closely.
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Exercise (preferential attachment probabilities)

Consider the preferential attachment model with m = 1. Given the
degree multiset {1, 1, 1, 1, 2, 3, 3, 4, 4, 5, 5, 8}, let a new node add one
link using BA attachment Pr{u} = deg(u)/(2L).

a) Probability it attaches to the highest–degree node:

Pr{choose k = 8} =
8󰁓
deg

=
8

38
.

b) Probability it attaches to a node of degree 1: there are four such
nodes, each with probability 1/38: 4× 1

38 = 4
38 .
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