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Lecture 12 - Random Graph Models
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Summary

The goal of the lecture today is to give an overview of some approaches
to model random networks.

We start with static graphs, directly generalizing Erdds-Rényi.
e In ER(N, p) each of the (g’) edges is sampled independently from
Bern(p).
e What if each edge gets a separate parameter pj;.
e What if there is no independence?

Later we study models for a dynamic formation of networks.
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Static random graph models



Graphs as random objects

Consider an undirected graph G = (V, E).
Order all pairs of elements in V: {1,2},{1,3},...,{N —1,N}.

N
2

Each graph is uniquely identified by a vector y = (y;;) € {0, 1}( ).

e yj=1ifandonlyif j € E.
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Graphs as random objects

Consider an undirected graph G = (V, E).
Order all pairs of elements in V: {1,2},{1,3},...,{N —1,N}.

Each graph is uniquely identified by a vector y = (y;;) € {0, 1}(’;’)

e yj=1ifandonlyif j € E.
In this sense, every distribution for a random binary vector in {0, 1}(,;)
gives a distribution of a random graph with N nodes.

(11 1 1 1 1 1 1y gi
€.8. (Pooo; P00, Po10, Po11, P1oo; Pots P110s P111) = (3. 145 14 14> 14 14> 14 14) SIVES A

distribution over 3-node graphs.
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Each graph is uniquely identified by a vector y = (y;;) € {0, 1}(’;’)

e yj=1ifand only if jj € E.
In this sense, every distribution for a random binary vector in {0, 1}(,;)
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€.8. (Pooo; P00, Po10, Po11, P1oo; Pots P110s P111) = (3. 145 14 14> 14 14> 14 14) SIVES A

distribution over 3-node graphs.

Every family of distributions over {0, 1}(21) gives a statistical model for
random graphs with N nodes.

3/9



Erd6s—Rényi model as an example

Recall: Every family of distributions over {0, 1}(1;/) gives a statistical
model for random graphs with N nodes.

Erdds-Rényi model: for y = (y;;) € {0, 1}(2’) ceme e clEilsu e
py) = [1p0i) = [J(1=p)'=7p".

i<j i<j

Denote s = >, _; yj (the number of edges) then

py) = (1-p)B=p* = (1-p)(3) (TPPY'
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Exponential families

Let x € X CR", T:R" - R? 6 € R?.
Definition ( Eponential family)

A family of probability distributions on X is an exponential family if the
probability mass functions (densities) take the form

po(x) = h(x)exp (87 T(x) — ().

e T(x) = sufficient statistics (counts of edges, triangles, ...).
e O = natural parameter.

e (0) = log-partition function (ensures normalization).

Bernoulli, binomial, Poisson, Ising models, multivariate Gaussian, and
many other popular statistical models are exponential families.

5/9



Exponential Random Graph Models

Definition ( Exponential Random Graph Models (ERGMs): )
P(Y = y) o exp{61 - #edges(y) + 02 - #triangles(y) + - -- }.

e The parameters: 6y tunes density, #> tunes clustering, etc.

Erdés-Rényi model is a special case of ERGM:

P(Y=y) = (1- P)(g) (ﬁ> oc exp(f - s),
where s = >, y;j and 0 = log (ﬁ)
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Example: the p, model for undirected networks
Extension of Erd6s—Rényi that introduces node-specific propensities to form ties.
Model: All edges are independent with

exp(p + ai + ;)
1+ exp(p+ i+ aj)

Pr(Yj=1] aj, ) =

Interpretation:
e 1 — overall network density.

e «; — sociability of node i (a random effect).
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Example: the p, model for undirected networks
Extension of Erd6s—Rényi that introduces node-specific propensities to form ties.
Model: All edges are independent with

exp(p + ai + ;)
1+ exp(p+ i+ aj)

Pr(Yj=1] aj, ) =

Interpretation:

e 1 — overall network density.

e «; — sociability of node i (a random effect).
Remarks:

e Reduces to Erdés—Rényi when «; = 0.

e Adds degree heterogeneity while preserving tractability.

e Foundation for later hierarchical and latent-space models.

Why is it an ERGM? What are the sufficient statistics?
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Latent space random graphs

Definition
Each node i has a position z; in a latent feature space (e.g. RY). The
probability of an edge depends on distance:

P(i ~j)=f(||lzi — z||), f decreasing.

As an example, imagine an interaction network in a big company. Apart
from the usual topology that follows the company's structure,
unexpected links may occur (e.g. among smokers etc).
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Example: latent space in economic networks

Think of banks, firms, or households as nodes.

Each actor has a position in a latent space:
» Geography (local vs. international).
> Sector (energy, tech, manufacturing).
> Risk profile or credit rating.

Links (e.g. loans, partnerships, trade) are more likely between
nearby nodes in this space.

A few “long-distance” links (large international banks, global supply
chains) can connect distant clusters and reduce path lengths.

Takeaway

Latent space models explain why real networks show both clustering
(local ties) and small-world shortcuts (rare global ties).
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