
Lecture 12 · Random Graph Models
Networks, Crowds and Markets



Summary

The goal of the lecture today is to give an overview of some approaches
to model random networks.

We start with static graphs, directly generalizing Erdős-Rényi.

• In ER(N, p) each of the
󰀃N
2

󰀄
edges is sampled independently from

Bern(p).

• What if each edge gets a separate parameter pij .

• What if there is no independence?

Later we study models for a dynamic formation of networks.
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Static random graph models



Graphs as random objects

Consider an undirected graph G = (V ,E ).

Order all pairs of elements in V : {1, 2}, {1, 3}, . . . , {N − 1,N}.

Each graph is uniquely identified by a vector y = (yij) ∈ {0, 1}(
N
2):

• yij = 1 if and only if ij ∈ E .
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Every family of distributions over {0, 1}(
N
2) gives a statistical model for

random graphs with N nodes.
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Erdős–Rényi model as an example

Recall: Every family of distributions over {0, 1}(
N
2) gives a statistical

model for random graphs with N nodes.

Erdős-Rényi model: for y = (yij) ∈ {0, 1}(
N
2) consider distribution

p(y) =
󰁜

i<j

p(yij) =
󰁜

i<j

(1− p)1−yijpyij .

Denote s =
󰁓

i<j yij (the number of edges) then

p(y) = (1− p)(
N
2)−sps = (1− p)(

N
2)
󰀕

p

1− p

󰀖s

.
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Exponential families

Let x ∈ X ⊆ Rn, T : Rn → Rd , θ ∈ Rd .

Definition ( Eponential family )

A family of probability distributions on X is an exponential family if the
probability mass functions (densities) take the form

pθ(x) = h(x) exp
󰀃
θTT (x)− ψ(θ)

󰀄
.

• T (x) = sufficient statistics (counts of edges, triangles, . . . ).

• θ = natural parameter.

• ψ(θ) = log-partition function (ensures normalization).

Bernoulli, binomial, Poisson, Ising models, multivariate Gaussian, and
many other popular statistical models are exponential families.

5 / 9



Exponential Random Graph Models

Definition ( Exponential Random Graph Models (ERGMs): )

P(Y = y) ∝ exp{θ1 ·#edges(y) + θ2 ·#triangles(y) + · · · }.

• The parameters: θ1 tunes density, θ2 tunes clustering, etc.

Erdős-Rényi model is a special case of ERGM:

P(Y = y) = (1− p)(
N
2)
󰀕

p

1− p

󰀖s

∝ exp(θ · s),

where s =
󰁓

i<j yij and θ = log
󰀓

p
1−p

󰀔
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Example: the p2 model for undirected networks

Extension of Erdős–Rényi that introduces node-specific propensities to form ties.

Model: All edges are independent with

Pr(Yij = 1 | αi ,αj) =
exp(µ+ αi + αj)

1 + exp(µ+ αi + αj)
.

Interpretation:

• µ — overall network density.

• αi — sociability of node i (a random effect).
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Extension of Erdős–Rényi that introduces node-specific propensities to form ties.

Model: All edges are independent with

Pr(Yij = 1 | αi ,αj) =
exp(µ+ αi + αj)

1 + exp(µ+ αi + αj)
.

Interpretation:

• µ — overall network density.

• αi — sociability of node i (a random effect).

Remarks:

• Reduces to Erdős–Rényi when αi ≡ 0.

• Adds degree heterogeneity while preserving tractability.

• Foundation for later hierarchical and latent-space models.

Why is it an ERGM? What are the sufficient statistics?
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Latent space random graphs

Definition

Each node i has a position zi in a latent feature space (e.g. Rd). The
probability of an edge depends on distance:

P(i ∼ j) = f
󰀃
󰀂zi − zj󰀂

󰀄
, f decreasing.

As an example, imagine an interaction network in a big company. Apart
from the usual topology that follows the company’s structure,
unexpected links may occur (e.g. among smokers etc).
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Example: latent space in economic networks

• Think of banks, firms, or households as nodes.

• Each actor has a position in a latent space:
◮ Geography (local vs. international).
◮ Sector (energy, tech, manufacturing).
◮ Risk profile or credit rating.

• Links (e.g. loans, partnerships, trade) are more likely between
nearby nodes in this space.

• A few “long-distance” links (large international banks, global supply
chains) can connect distant clusters and reduce path lengths.

Takeaway

Latent space models explain why real networks show both clustering
(local ties) and small-world shortcuts (rare global ties).
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