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Lecture 10 - Power laws and Hubs; Beyond
Erdos—Rényi: Models for Real Networks

Networks, Crowds and Markets
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Motivation: What ER misses

e In Lecture 9 we saw that real networks have:
» high clustering,

» heavy-tailed degree distributions,
» and short average distances.

e Erd6s—Rényi models explain only the last of these.

e Today we look closer into the power law and start building richer
models that match all three.
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Today's Lecture

1. Power laws and hubs

2. Universality of power laws across networks.
3. Distances: small world vs ultra-small world.
4. Statistic random network models

5. Random network models with prescribed degree distribution.
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Power laws and hubs



Historical roots: Pareto and the 80/20 law

Vilfredo Pareto (1848-1923), ltalian economist, observed that income
distribution in society is very uneven.

e Incomes followed a distribution with a heavy tail: a
small fraction of people held most of the wealth.

e This became the well-known “80/20 rule": e.g.
20% of people control 80% of wealth.
e Similar patterns appear in many domains:
> 80% of web links point to about 20% of webpages.
» A small number of firms or banks control a large
share of markets.
» A few researchers or papers receive most citations.

- -

Connection: Pareto’s law is an early example of a power law in
economics, closely related to what we now see in network degree
distributions.

4/18



Power law: Discrete formalism

Assume all degrees are > kmin > 1. If needed, model separately high
and low degree nodes. Power law is about high degree nodes.
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Power law: Discrete formalism

Assume all degrees are > ki, > 1. If needed, model separately high
and low degree nodes. Power law is about high degree nodes.

We model the degree distribution as

k=
VIO k > kmin,
<(7a kmin)

where (7, kmin) = >_y—, . k~7 is the normalizing constant.

Pk =
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Power law: Discrete formalism

Assume all degrees are > ki, > 1. If needed, model separately high
and low degree nodes. Power law is about high degree nodes.

We model the degree distribution as

k=
VIO k > kmin,
<(7a kmin)

where (7, kmin) = >_y—, . k~7 is the normalizing constant.

Pk =

C(7, kmin) is the Hurwitz zeta function; for kyij, = 1 it reduces to the
Riemann zeta {(7).

e The series converges if and only if v > 1.

e In many real networks, empirical exponents satisfy 2 < v < 3.
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First two moments

k-

If Z ~ (pk) with py = — for k > knin, then
( ) C(Va kmin)
1 —(v— C(’Y - 17 kmin)
EZ = kpe = ——— k(’yl):—,
kg(;in C(77 kmin) kzzkmin <(77 kmin)
Bz = — —-2) — SO0 =2 Kin)
C(77 kmin) k> ko C('% kmin)
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First two moments

k-

If Z ~ (pk) with py = — for k > knin, then
( ) C(Va kmin)
1 —(v— C(’Y - 17 kmin)
EZ = kpe = ——— k(’yl):—,
kg(;in C(77 kmin) kgﬂ:nin <(77 kmin)
Bz = — —-2) — SO0 =2 Kin)
C(’}/a kmin) k> ko C('% kmin)

The regime 2 < v < 3 is special:
e Since v — 1 > 1, the mean exists.
e Since v — 2 < 1, the variance does not!

(a very heavy-tailed distribution)
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Power law: Continuum formalism

Sums like Z,kain k=7 are hard to handle algebraically. For large
networks (and large kmin), approximate the sum by an integral:

k=7 %/ k=7 dk.
k

min

7/18



Power law: Continuum formalism

Sums like Z,kain k=7 are hard to handle algebraically. For large
networks (and large kmin), approximate the sum by an integral:

k=7 %/ k=7 dk.
k

k:kmin Ly

Define a density p(k) = C k=7 for k > kmin. Normalize:

o

min °

K
dk—C/ dezcm—'“l = C=(y—-1)k.*
mln ’y_

min

p(k)=(v— 1)KL k™, k> knin.

min
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Power law: Continuum formalism

Sums like Z,kain k=7 are hard to handle algebraically. For large
networks (and large kmin), approximate the sum by an integral:

k=7 z/ k=7 dk.
k

k:kmin Ly

Define a density p(k) = C k=7 for k > kmin. Normalize:

o

min °

dk—C/ Kdk= € miny ki _, C=(y-1)k1!

min

p(k)=(v— 1)KL k™, k> knin.

min

~ 1/¢(7, kmin) with relative error O( for fixed v > 1.

mln)
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Extreme value of a power law: scaling of kpax

With p(k) = (v — 1) k-1 k=, the survival tail is

min

o kmin -1
P(sz):/ p(x) dx = ( ” )7 L k> kmin.
k
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Extreme value of a power law: scaling of kpax

With p(k) = (v — 1) k-1 k=, the survival tail is

min

o kmin -1
P(sz):/ p(x) dx = ( ” )7 L k> kmin.
k

In a network with N nodes, we estimate the max-degree kmax by

~
~

=2l=

Kmin )7_1
Kmax

Pr(K > kmax) ~ L = (

N/ (v=1)

kmax ~ kmin

Notes.
e This captures the correct order; fluctuations are smaller-order.
e The same scaling holds for the discrete model up to constants.

8/ 18



Consequences of the k. scaling

From kmax ~ kmian/(V_l):

y=2 = kmax ~ kminN (a single hub touches a linear fraction)
2<~7<3 = kmax ~ kmin N/~ sublinear but large

v = = kmax ~ kminN/2

v >3 = kmax grows slowly; tails are lighter
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Path lenghts in Scale-Free
Networks



Average path length in random networks

Let d(u, v) be the distance between two vertices and E[d] the average

distance across all pairs.
e In Erd6s—Rényi graphs with mean degree c fixed,
In N

E[d] ~ 7.

e In scale-free networks with degree tail py ~ k™7,

constant, v =2,

Inin N, 2 <y <3,

Eld] ~ § .n
nin N * v =3,
In N, v > 3.

Idea: The scaling of E[d] reflects how large the biggest hub can grow,
kmax & kmin N/('"1) and how efficiently hubs act as shortcuts.
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Case v = 2: hub-and-spoke regime

Here E[d] = O(1).

o From kmax~ kminNY/(7=1) we get kmax~ N: one hub connects to
almost all nodes.

e The graph becomes star-like (hub—and—spoke structure). Any two
peripheral nodes connect via the hub in at most two steps.

e Therefore E[d] remains bounded independently of N.

e Networks with v = 2 are extremely centralized and fragile to hub
removal.
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Case 2 < v < 3: ultra-small world

Here kmaxwkmian/(V_l) grows faster than any power of In N but
slower than N.

e A few very large hubs act as shortcuts, giving
E[d] ~ InlIn N (“ultra-small world™).

The mean degree E[deg] is finite but E[deg?] = oo: variance
diverges, so hubs dominate connectivity.

Most empirical scale-free networks (social, technological, biological)
fall in this range.
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Case v = 3: critical point

o The largest degree scales as kmax~ N1/2.
e The second moment E[deg?] stops diverging but is still large.
e This produces a slower, logarithmically corrected growth:
In N
E[d] ~ .
[4] Inln N/
e Paths are longer than in the 7 <3 case but still shorter than in

Erdés—Rényi graphs.
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Case v > 3: small-world regime

Both mean and variance of deg are finite: hubs are limited in size.

kmax ~ NY/(=1) grows slowly, producing no global shortcuts.

The average distance recovers the classic small-world scaling:

E[d] ~ In N.

This regime behaves similarly to Erd6s—Rényi graphs in terms of
average distance.
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When v < 2: nonphysical limit

e Then1/(y—1)>1, so
kmax ~ kmin Nl/(’yil)

grows faster than N.

e This would require nodes of degree larger than the entire network —
impossible in a simple graph.

e Moreover E[deg] diverges: even the mean degree is infinite.

e = Infinite scale-free networks with v < 2 cannot exist; finite
networks must have an effective cutoff.
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Note that for large networks the difference in average degrees between
the four regimes is much larger than for small networks.
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Conclusions

In summary, the effects on distances in scale-free networks are:

e They shrink average path lengths. Most scale-free networks of
practical interest are “ultra-small”, because hubs act as bridges
linking many low-degree nodes.

e They change the scaling of E[d] with system size: the smaller
the exponent +, the shorter the distances between nodes.

e Only for v > 3 do we recover the E[d]~In N scaling — the
small-world behavior characteristic of Erdés—Rényi graphs.

Next: we explore richer models that explain how such networks emerge.
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Need for more sophisticated models

Erd6s—Rényi: clean benchmark for randomness in networks.

e Degrees: Binomial — Poisson in sparse regime, sharply concentrated
(Hoeffding).

e Sharp thresholds: giant component at p~1/N, full connectivity at
p~(log N)/N.

Analytic power: every property can be studied precisely—gives language
for thresholds, asymptotics, and “with high probability” results.

But realism is limited:
e Clustering E[C,] = p — 0 as N — oo (in the sparse regime).
e Degree distribution thin-tailed: no hubs or communities.

e Real social, financial, and web networks are way more structured.

This motivates a study of other random graph models.
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