
Lecture 10 · Power laws and Hubs; Beyond
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Motivation: What ER misses

• In Lecture 9 we saw that real networks have:
◮ high clustering,
◮ heavy-tailed degree distributions,
◮ and short average distances.

• Erdős–Rényi models explain only the last of these.

• Today we look closer into the power law and start building richer
models that match all three.
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Today’s Lecture

1. Power laws and hubs

2. Universality of power laws across networks.

3. Distances: small world vs ultra-small world.

4. Statistic random network models

5. Random network models with prescribed degree distribution.
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Power laws and hubs



Historical roots: Pareto and the 80/20 law

Vilfredo Pareto (1848–1923), Italian economist, observed that income
distribution in society is very uneven.

• Incomes followed a distribution with a heavy tail: a
small fraction of people held most of the wealth.

• This became the well-known “80/20 rule”: e.g.
20% of people control 80% of wealth.

• Similar patterns appear in many domains:
◮ 80% of web links point to about 20% of webpages.
◮ A small number of firms or banks control a large

share of markets.
◮ A few researchers or papers receive most citations.

Connection: Pareto’s law is an early example of a power law in
economics, closely related to what we now see in network degree
distributions.
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Power law: Discrete formalism

Assume all degrees are ≥ kmin ≥ 1. If needed, model separately high
and low degree nodes. Power law is about high degree nodes.
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Power law: Discrete formalism

Assume all degrees are ≥ kmin ≥ 1. If needed, model separately high
and low degree nodes. Power law is about high degree nodes.

We model the degree distribution as

pk =
k−γ

ζ(γ, kmin)
, k ≥ kmin,

where ζ(γ, kmin) =
󰁓∞

k=kmin
k−γ is the normalizing constant.
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Power law: Discrete formalism

Assume all degrees are ≥ kmin ≥ 1. If needed, model separately high
and low degree nodes. Power law is about high degree nodes.

We model the degree distribution as

pk =
k−γ

ζ(γ, kmin)
, k ≥ kmin,

where ζ(γ, kmin) =
󰁓∞

k=kmin
k−γ is the normalizing constant.

ζ(γ, kmin) is the Hurwitz zeta function; for kmin = 1 it reduces to the
Riemann zeta ζ(γ).

• The series converges if and only if γ > 1.

• In many real networks, empirical exponents satisfy 2 < γ ≤ 3.
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First two moments

If Z ∼ (pk) with pk =
k−γ

ζ(γ, kmin)
for k ≥ kmin, then

EZ =
󰁛

k≥kmin

k pk =
1

ζ(γ, kmin)

󰁛

k≥kmin

k−(γ−1) =
ζ(γ − 1, kmin)

ζ(γ, kmin)
,

EZ 2 =
1

ζ(γ, kmin)

󰁛

k≥kmin

k−(γ−2) =
ζ(γ − 2, kmin)

ζ(γ, kmin)
.
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First two moments

If Z ∼ (pk) with pk =
k−γ

ζ(γ, kmin)
for k ≥ kmin, then

EZ =
󰁛

k≥kmin

k pk =
1

ζ(γ, kmin)

󰁛

k≥kmin

k−(γ−1) =
ζ(γ − 1, kmin)

ζ(γ, kmin)
,

EZ 2 =
1

ζ(γ, kmin)

󰁛

k≥kmin

k−(γ−2) =
ζ(γ − 2, kmin)

ζ(γ, kmin)
.

The regime 2 < γ ≤ 3 is special:

• Since γ − 1 > 1, the mean exists.

• Since γ − 2 ≤ 1, the variance does not!

(a very heavy-tailed distribution)
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Power law: Continuum formalism

Sums like
󰁓

k≥kmin
k−γ are hard to handle algebraically. For large

networks (and large kmin), approximate the sum by an integral:

∞󰁛

k=kmin

k−γ ≈
󰁝 ∞

kmin

k−γ dk .
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Power law: Continuum formalism

Sums like
󰁓

k≥kmin
k−γ are hard to handle algebraically. For large

networks (and large kmin), approximate the sum by an integral:

∞󰁛

k=kmin

k−γ ≈
󰁝 ∞

kmin

k−γ dk .

Define a density p(k) = C k−γ for k ≥ kmin. Normalize:

1 =

󰁝 ∞

kmin

p(k) dk = C

󰁝 ∞

kmin

k−γ dk = C
k1−γ
min

γ − 1
⇒ C = (γ − 1) kγ−1

min .

p(k) = (γ − 1) kγ−1
min k−γ , k ≥ kmin.
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Power law: Continuum formalism

Sums like
󰁓

k≥kmin
k−γ are hard to handle algebraically. For large

networks (and large kmin), approximate the sum by an integral:

∞󰁛

k=kmin

k−γ ≈
󰁝 ∞

kmin

k−γ dk .

Define a density p(k) = C k−γ for k ≥ kmin. Normalize:

1 =

󰁝 ∞

kmin

p(k) dk = C

󰁝 ∞

kmin

k−γ dk = C
k1−γ
min

γ − 1
⇒ C = (γ − 1) kγ−1

min .

p(k) = (γ − 1) kγ−1
min k−γ , k ≥ kmin.

C ≈ 1/ζ(γ, kmin) with relative error O(k−γ
min) for fixed γ > 1.
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Extreme value of a power law: scaling of kmax

With p(k) = (γ − 1) kγ−1
min k−γ , the survival tail is

P(K ≥ k) =

󰁝 ∞

k
p(x) dx =

󰀓kmin

k

󰀔γ−1
, k ≥ kmin.

8 / 18



Extreme value of a power law: scaling of kmax

With p(k) = (γ − 1) kγ−1
min k−γ , the survival tail is

P(K ≥ k) =

󰁝 ∞

k
p(x) dx =

󰀓kmin

k

󰀔γ−1
, k ≥ kmin.

In a network with N nodes, we estimate the max-degree kmax by

Pr(K ≥ kmax) ≈ 1
N =⇒

󰀓 kmin

kmax

󰀔γ−1
≈ 1

N

kmax ≈ kmin N
1/(γ−1) .

Notes.

• This captures the correct order; fluctuations are smaller-order.

• The same scaling holds for the discrete model up to constants.
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Consequences of the kmax scaling

From kmax ≈ kminN
1/(γ−1):

γ = 2 ⇒ kmax ∼ kminN (a single hub touches a linear fraction)

2 < γ < 3 ⇒ kmax ∼ kminN
1/(γ−1) sublinear but large

γ = 3 ⇒ kmax ∼ kminN
1/2

γ > 3 ⇒ kmax grows slowly; tails are lighter
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Path lenghts in Scale-Free
Networks



Average path length in random networks

Let d(u, v) be the distance between two vertices and E[d ] the average
distance across all pairs.

• In Erdős–Rényi graphs with mean degree c fixed,

E[d ] ∼ lnN

ln c
.

• In scale-free networks with degree tail pk ∼ k−γ ,

E[d ] ∼

󰀻
󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰀽

constant, γ = 2,

lnlnN, 2 < γ < 3,

lnN
lnlnN , γ = 3,

lnN, γ > 3.

Idea: The scaling of E[d ] reflects how large the biggest hub can grow,
kmax ≈ kminN

1/(γ−1), and how efficiently hubs act as shortcuts.
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Case γ = 2: hub-and-spoke regime

Here E[d ] = O(1).

• From kmax∼kminN
1/(γ−1), we get kmax∼N: one hub connects to

almost all nodes.

• The graph becomes star-like (hub–and–spoke structure). Any two
peripheral nodes connect via the hub in at most two steps.

• Therefore E[d ] remains bounded independently of N.

• Networks with γ = 2 are extremely centralized and fragile to hub
removal.

11 / 18



Case 2 < γ < 3: ultra-small world

• Here kmax∼kminN
1/(γ−1) grows faster than any power of lnN but

slower than N.

• A few very large hubs act as shortcuts, giving

E[d ] ∼ lnlnN (“ultra-small world”).

• The mean degree E[deg] is finite but E[deg2] = ∞: variance
diverges, so hubs dominate connectivity.

• Most empirical scale-free networks (social, technological, biological)
fall in this range.
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Case γ = 3: critical point

• The largest degree scales as kmax∼N1/2.

• The second moment E[deg2] stops diverging but is still large.

• This produces a slower, logarithmically corrected growth:

E[d ] ∼ lnN

lnlnN
.

• Paths are longer than in the γ<3 case but still shorter than in
Erdős–Rényi graphs.
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Case γ > 3: small-world regime

• Both mean and variance of deg are finite: hubs are limited in size.

• kmax∼N1/(γ−1) grows slowly, producing no global shortcuts.

• The average distance recovers the classic small-world scaling:

E[d ] ∼ lnN.

• This regime behaves similarly to Erdős–Rényi graphs in terms of
average distance.
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When γ < 2: nonphysical limit

• Then 1/(γ − 1) > 1, so

kmax ∼ kmin N
1/(γ−1)

grows faster than N.

• This would require nodes of degree larger than the entire network —
impossible in a simple graph.

• Moreover E[deg] diverges: even the mean degree is infinite.

• ⇒ Infinite scale-free networks with γ < 2 cannot exist; finite
networks must have an effective cutoff.
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Note that for large networks the difference in average degrees between
the four regimes is much larger than for small networks.
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Conclusions

In summary, the effects on distances in scale-free networks are:

• They shrink average path lengths. Most scale-free networks of
practical interest are “ultra-small”, because hubs act as bridges
linking many low-degree nodes.

• They change the scaling of E[d ] with system size: the smaller
the exponent γ, the shorter the distances between nodes.

• Only for γ > 3 do we recover the E[d ]∼ lnN scaling — the
small-world behavior characteristic of Erdős–Rényi graphs.

Next: we explore richer models that explain how such networks emerge.
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Need for more sophisticated models

Erdős–Rényi: clean benchmark for randomness in networks.

• Degrees: Binomial→Poisson in sparse regime, sharply concentrated
(Hoeffding).

• Sharp thresholds: giant component at p∼1/N, full connectivity at
p∼(logN)/N.

Analytic power: every property can be studied precisely—gives language
for thresholds, asymptotics, and “with high probability” results.

But realism is limited:

• Clustering E[Cv ] = p → 0 as N → ∞ (in the sparse regime).

• Degree distribution thin-tailed: no hubs or communities.

• Real social, financial, and web networks are way more structured.

This motivates a study of other random graph models.
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