

Seminar 5 · Networks, Crowds and Markets

Random graphs and communities

Configuration model and preferential attachment

In the first part we will experiment a bit with the two models.

See the corresponding colab.

Sampling the configuration model

We have N nodes and degree sequence (k_1, \dots, k_N) . Let each node i own k_i *stubs* (half-edges).

Sampling algorithm (uniform over all pairings):

1. Make a list of all $2L = \sum_i k_i$ stubs. Label each stub by its node owner.
2. While unpaired stubs remain:
 - 2.1 Select a stub uniformly at random.
 - 2.2 Choose its partner uniformly at random among the remaining stubs.
 - 2.3 Connect their owners with an edge (i, j) .
 - 2.4 Remove both stubs.
 - 2.5 Repeat.
3. The resulting multigraph is one sample from the configuration model.

Note: loops (i, i) and parallel edges may appear. They are rare for large sparse networks.

Exercise: Correctness of the algorithm

This is a reformulated version of this result.

Show that the algorithm described above generates **multigraph** with the right degree sequence. Show that the probability of each pairing is uniform.

Solution: Why the pairing is uniform

Pairing of a set of $2L$ elements: a collection of 2-elements subsets that are disjoint and whose union gives the whole set.

Let $2L = \sum_i k_i$ be the number of stubs. There are $(2L - 1)!! = (2L - 1)(2L - 3) \cdots 1$ pairings between these stubs.

Proof of uniformity.

Record the sampled stubs as an ordered sequence $(s_1, s_2; s_3, s_4; \dots; s_{2L-1}, s_{2L})$. Any fixed ordered sequence has probability

$$\frac{1}{2L} \cdot \frac{1}{2L-1} \cdot \frac{1}{2L-2} \cdots \frac{1}{2} \cdot \frac{1}{1} = \frac{1}{(2L)!}.$$

A *single* unordered pairing can be realized by $L!$ orders of the L pairs and 2 orders inside each pair: $2^L L!$ sequences total. Hence

$$\Pr(\text{a given pairing}) = \frac{2^L L!}{(2L)!} = \frac{1}{(2L - 1)!!},$$

the same for every pairing.

Pairings do not define the multigraph uniquely

As pointed out by Calixta in the first seminar group: pairings do not uniquely define multigraphs. For example, if we have two degree two vertices A, B with stubs A_1, A_2, B_1, B_2 then pairings $\{A_1, B_1\}, \{A_2, B_2\}$ and $\{A_1, B_2\}, \{A_2, B_1\}$ both encode the double edge between A and B .

The distribution over multigraphs is in general not uniform.

Depending on a multigraph, there may be a different number of pairings leading to it. On the next slide we discuss an example.

Counterexample

Take four nodes A, B, C, D with degrees $(1, 2, 2, 1)$. The stubs are $A_1, B_1, B_2, C_1, C_2, D_1$ with 15 pairings.

The simple graph $A - B - C - D$ corresponds to **four** pairings of the form $\{A_1, B_i\}, \{B_{3-i}, C_j\}, \{C_{3-j}, D_1\}$ for $i, j = 1, 2$.

The simple graph $A - C - B - D$ also corresponds to **four** pairings

Double edge between B, C and an edge between A, D is defined by **two** pairings $\{B_i, C_j\}, \{B_{3-i}, C_{3-j}\}, \{A_1, D_1\}$ with $i = j$ or $i \neq j$.

The graph with B, C having loops and an edge between A, D is given by a **single** pairing.

The graphs with B has a loop $A - C - D$ is given by **two** pairings.

The graphs with C has a loop $A - B - D$ is given by **two** pairings.

The probability of each multigraph = $\frac{\# \text{pairings}}{15}$

Exercise: Degree distribution in preferential attachment

Consider the **preferential attachment model** with $m = 1$.

Let d_t denote the degree of the initial vertex at time t .

- (a) What is the distribution of d_5 ?
- (b) What are $\Pr(d_t = 1)$ and $\Pr(d_t = t - 1)$?
- (c) Find the exact expression for

$$\mathbb{E}[d_{t+1} - d_t \mid d_t = k].$$

- (d) Show that

$$\mathbb{E}[d_t] = \frac{(2t-3)!!}{2^{t-2}(t-2)!} = \frac{(2t-3)!!}{(2t-4)!!}, \quad \text{where } n!! = n(n-2)(n-4)\cdots.$$

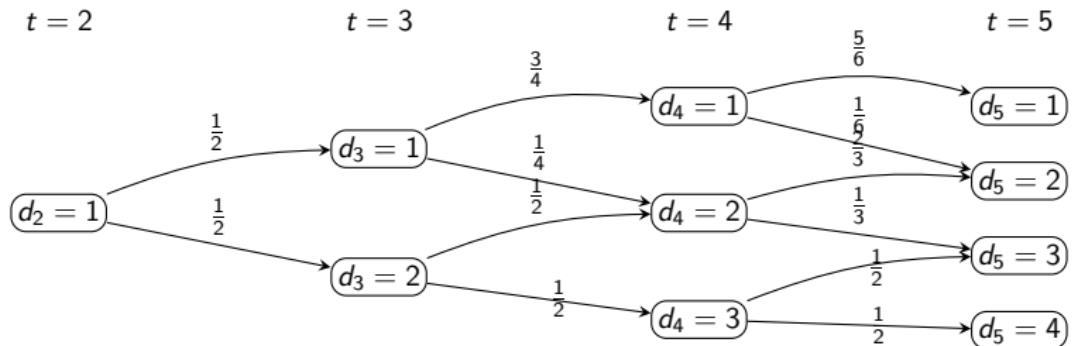
Hint: express the degree growth as a random multiplicative process and use the recurrence relation for $\mathbb{E}[d_t]$.

Solution sketch (a) — corrected transitions

Setup. At time t , total degree is $2(t - 1)$. If $d_t = k$, then

$$\Pr(d_{t+1} = k+1 \mid d_t = k) = \frac{k}{2(t-1)}, \quad \Pr(d_{t+1} = k \mid d_t = k) = 1 - \frac{k}{2(t-1)}.$$

Transition diagram (from $t = 2$ to $t = 5$).



Distribution at $t = 5$:

$$\Pr(d_5 = 1) = \frac{5}{16}, \quad \Pr(d_5 = 2) = \frac{5}{16}, \quad \Pr(d_5 = 3) = \frac{1}{4}, \quad \Pr(d_5 = 4) = \frac{1}{8}.$$

Endpoints (all $t \geq 2$):

$$\Pr(d_t = 1) = \prod_{s=2}^{t-1} \left(1 - \frac{1}{2(s-1)}\right) = \frac{(2t-4)!!}{(2t-3)!!},$$

$$\Pr(d_t = t-1) = \frac{(t-2)!}{(2t-4)!!} = \frac{1}{2^{t-2}}.$$

Drift and mean.

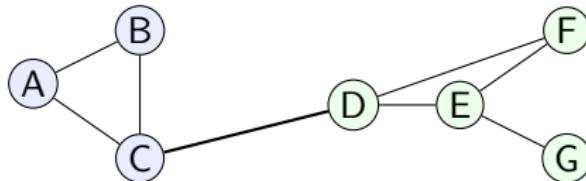
$\mathbb{E}[d_{t+1} - d_t \mid d_t = k] = \frac{k}{2(t-1)} \Rightarrow \mathbb{E}[d_{t+1}] = \left(1 + \frac{1}{2(t-1)}\right) \mathbb{E}[d_t]$, with $d_2 = 1$, hence

$$\mathbb{E}[d_t] = \prod_{s=2}^{t-1} \left(1 + \frac{1}{2(s-1)}\right) = \frac{(2t-3)!!}{2^{t-2}(t-2)!} = \frac{(2t-3)!!}{(2t-4)!!}.$$

Check at $t = 5$: $\mathbb{E}[d_5] = \frac{7!!}{6!!} = \frac{105}{48} = 35/16 \approx 2.1875$ (matches the diagram).

Exercise: Detecting communities

Graph: two dense parts joined by a single bridge.



- (a) Check if $\{A, B, C\}$ and $\{D, E, F, G\}$ form *strong* or *weak* communities.
- (b) Compute the *topological overlap similarity* and perform one step of average linkage: which clusters merge first?
- (c) Compare the modularity for two partitions:

$$\mathcal{P}_1 = \{\{A, B, C\}, \{D, E, F, G\}\}, \quad \mathcal{P}_2 = \{\{A, B, C\}, \{D, E, F\}, \{G\}\}.$$

For simplicity, on the next slide we give the similarity matrix.

Similarity matrix for the toy network (corrected)

$B_A = \{A, B, C\}$, $B_B = \{A, B, C\}$, $B_C = \{A, B, C, D\}$,
 $B_D = \{D, E, F, C\}$, $B_E = \{E, D, F, G\}$, $B_F = \{F, D, E\}$, $B_G = \{G, E\}$.

	A	B	C	D	E	F	G
A	1.00	1.00	1.00	0.33	0	0	0
B	1.00	1.00	1.00	0.33	0	0	0
C	1.00	1.00	1.00	0.50	0.25	0.33	0
D	0.33	0.33	0.50	1.00	0.75	1.00	0.50
E	0	0	0.25	0.75	1.00	1.00	1.00
F	0	0	0.33	1.00	1.00	1.00	0.50
G	0	0	0	0.50	1.00	0.50	1.00

Note: bridge $C - D$ yields $s_{CD} = 0.5$; triangle $D - E - F$ gives $s_{DF} = s_{EF} = 1$;
leaf G on E gives $s_{EG} = 1$ and $s_{DG} = s_{FG} = 0.5$.