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Configuration model and preferential attachment

In the first part we will experiment a bit with the two models.

See the corresponding colab.



Sampling the configuration model

We have N nodes and degree sequence (ki, ..., ky). Let each node i
own k; stubs (half-edges).

Sampling algorithm (uniform over all pairings):

1. Make a list of all 2L =}, k; stubs. Label each stub by its node
owner.

2. While unpaired stubs remain:

2.1 Select a stub uniformly at random.

2.2 Choose its partner uniformly at random among the remaining
stubs.

2.3 Connect their owners with an edge (7, ).

2.4 Remove both stubs.

2.5 Repeat.

3. The resulting multigraph is one sample from the configuration
model.

Note: loops (i, i) and parallel edges may appear. They are rare for large
sparse networks.



Exercise: Correctness of the algorithm

This is a reformulated version of this result.

Show that the algorithm described above generates multigraph
with the right degree sequence. Show that the probability of each
pairing is uniform.



Solution: Why the pairing is uniform

Pairing of a set of 2L elements: a collection of 2-elements subsets that
are disjoint and whose union gives the whole set.

Let 2L = >, ki be the number of stubs. There are
(2L —1) = (2L - 1)(2L — 3) - - - 1 pairings between these stubs.

Proof of uniformity.
Record the sampled stubs as an ordered sequence
(s1,%2; S3,54; ---; S20-1,%1)- Any fixed ordered sequence has probability

1 1 1 11 1

A single unordered pairing can be realized by L! orders of the L pairs and
2 orders inside each pair: 2LL! sequences total. Hence

. o 2L 1
Pr(a given pairing) = (2L)! - (2L — 1)1’

the same for every pairing.



Pairings do not define the multigraph uniquely

As pointed out by Calixta in the first seminar group: pairings do not
uniquely define multigraphs. For example, if we have two degree two
vertices A, B with stubs Ay, Az, By, By then pairings {A1, B1}, {Aq, B2}
and {Ay, B>}, {A, B1} both encode the double edge between A and B.

The distribution over multigraphs is in general not uniform.

Depending on a multigraph, there may be a different number of pairings
leading to it. On the next slide we discuss an example.



Counterexample

Take four nodes A, B, C, D with degrees (1,2,2,1). The stubs are
A1, B1, By, C1, Gy, D1 with 15 pairings.

The simple graph A— B — C — D corresponds to four pairings of
the form {Al, B,‘}, {83_,', CJ}, {C3_J', Dl} fori,j=1,2.

The simple graph A— C — B — D also corresponds to four pairings

Double edge between B, C and an edge between A, D is defined by
two pairings {B;, C;}, {Bs—i, Ga—j}, {A1, D1} with i = j or i # j.

The graph with B, C having loops and an edge between A, D is
given by a single pairing.

The graphs with B has a loop A— C — D is given by two pairings.

The graphs with C has a loop A— B — D is given by two pairings.
The probability of each multigraph = #2582




Exercise: Degree distribution in preferential attachment

Consider the preferential attachment model with m = 1.

Let d; denote the degree of the initial vertex at time t.

(a) What is the distribution of d5?
(b) What are Pr(d; = 1) and Pr(d; =t —1)?
(c) Find the exact expression for
E[des1 — d; | dp = k]
(d) Show that
(2t —3)11 (2t —3)I

E[d:] = = where n!! = n(n—2)(n—4)---

2t=2(t —2)1 (2t — 4)II’

Hint: express the degree growth as a random multiplicative process and
use the recurrence relation for E[d;].



Solution sketch (a) — corrected transitions

Setup. At time t, total degree is 2(t — 1). If d; = k, then

k k
2(t—1)7 Pr(dt+1:k|dt:k):177

Pr(dt+1 = k+1 | dt = k) = 2(t — 1)

Transition diagram (from t =2 to t = 5).
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Distribution at t = 5:

Pr(ds =1) = 3

5. Pr(ds=2)=g, Pr(ds=3)=3 Pr(ds=4)=



Endpoints (all t > 2):

= 1 2t — 4\
Pr(d; =1) _5_1_[2(1_ 2(5—1)) - E2t—3;!!7
Pridy — ¢ —1) = (=2 L

(2t — 41— 22

Drift and mean.

Eldes1 — de | de = K] = 55y

5 = Eldia] = (1+ s 1)>E[dt],with

d>» = 1, hence
t—1

- 1 _(ee=-3)t (2t -3)N
Eld] = H(l oo 1)) 2t (e —2)l (2t — 4l

s=2

Check at t = 5: E[ds] = It = 1% = 35/16 ~ 2.1875 (matches the diagram).



Exercise: Detecting communities

Graph: two dense parts joined by a single bridge.

®
9‘@ & .

(a) Check if {A,B,C} and {D, E,F,G} form strong or weak
communities.

(b) Compute the topological overlap similarity and perform one step of
average linkage: which clusters merge first?

(c) Compare the modularity for two partitions:

P, ={{AB,C},{D,E,F,G}}, P,={{AB,C},{D,E F},{G}}.

For simplicity, on the next slide we give the similarity matrix.



Similarity matrix for the toy network (corrected)

A,B,C}, Bg = {A,B,C}, Bc = {A,B, C,D},
{D7E3F7C}1 BE:{E5D7F7G}1 BF:{FaDaE}' Bg :{GvE}

Ba
Bp

A B C D E F G

A 100 100 1.00 0.33 0 0 0
B 100 100 1.00 0.33 0 0 0
C 100 100 1.00 050 0.25 0.33 0
D 033 033 050 1.00 075 1.00 0.50
E 0 0 025 0.75 1.00 1.00 1.00
F 0 0 033 100 1.00 1.00 0.50
G 0 0 0 0.50 1.00 0.50 1.00

Note: bridge C— D vyields scp = 0.5; triangle D— E—F gives spr = ser = 1;
leaf G on E gives sgg = 1 and spg = sk = 0.5.



