

Seminar 4 · Networks, Crowds and Markets

Centrality Measures and Social Networks

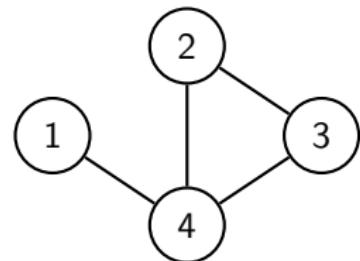
Warm-up · Building a small $G(4, p)$ graph

We consider an Erdős–Rényi model $G(4, p)$ with $p = \frac{2}{3}$. There are $\binom{4}{2} = 6$ possible edges.

1. List all possible pairs of nodes: 12, 13, 14, 23, 24, 34.
2. Roll a fair die once per potential edge. Connect if the roll is 1–4.
3. Draw the resulting graph.

Example:

pair	12	13	14	23	24	34
die	5	6	2	3	3	1
edge	0	0	1	1	1	1



$$\mathbb{E}[L] = p \binom{4}{2} = 4, \quad \mathbb{E}[\deg(v)] = (N-1)p = 2.$$

Midterm review

I went through the solutions of the midterm.

Additional exercises

Exercise · Independence in Erdős–Rényi

Show that in $G(N, p)$:

- ▶ Any two different edges are independent.
- ▶ Degrees of two nodes are not independent.

Compute:

$$\text{Cov}(\deg(i), \deg(j)) \quad (i \neq j).$$

Solution · Independence in Erdős–Rényi

In $G(N, p)$, each possible edge is an independent Bernoulli(p).

1. Distinct edges. If $\{i, j\} \neq \{k, \ell\}$, then:

$$P(Y_{ij} = a, Y_{k\ell} = b) = P(Y_{ij} = a)P(Y_{k\ell} = b).$$

2. Degrees are dependent.

$$\deg(i) = \sum_{k \neq i} Y_{ik}, \quad \deg(j) = \sum_{\ell \neq j} Y_{j\ell}.$$

They share the term Y_{ij} .

Covariance. Only the shared edge contributes:

$$\text{cov}(\deg(i), \deg(j)) = \text{var}(Y_{ij}) = p(1 - p).$$

Exercise · ER as an Exponential Family

Show that the Erdős–Rényi model

$$P(Y = y) \propto \exp(\theta s(y)), \quad s(y) = \#\text{edges}(y), \quad \theta = \log \frac{p}{1-p}.$$

Identify:

- ▶ the sufficient statistic,
- ▶ the natural parameter,
- ▶ the log-partition function.

Solution · ER as an Exponential Family

$$P(Y = y) = p^{s(y)}(1 - p)^{\binom{N}{2} - s(y)}.$$

Write it as:

$$P(Y = y) \propto \exp(\theta s(y)), \quad \theta = \log \frac{p}{1 - p}.$$

Sufficient statistic:

$$s(y) = \#\text{edges}(y).$$

Natural parameter:

$$\theta = \log \frac{p}{1 - p}.$$

Log-partition function: Z is the normalizing constant and A is its logarithm

$$Z(\theta) = (1 + e^\theta)^{\binom{N}{2}}, \quad A(\theta) = \binom{N}{2} \log(1 + e^\theta).$$

Exercise · The p_2 Model (undirected)

$$\text{logit } \Pr(Y_{ij} = 1 \mid \alpha_i, \alpha_j) = \theta + \alpha_i + \alpha_j.$$

1. Interpret θ and α_i .
2. What if all $\alpha_i = 0$?
3. Link to mixed-effects logistic regression.

Solution · The p_2 Model

(1) Interpretation.

- ▶ θ : baseline connectivity.
- ▶ α_i : sociality of node i ; higher implies more edges.

(2) If all $\alpha_i = 0$: Reduces to ER with

$$p = \text{logit}^{-1}(\theta).$$

(3) Mixed-effects link.

It is a logistic regression with random node effects:

$$Y_{ij} \sim \text{logit}^{-1}(\theta + \alpha_i + \alpha_j).$$

Exercise · Latent Space Model

Each node i has position $z_i \in \mathbb{R}^2$, and

$$\text{logit } P(Y_{ij} = 1) = \alpha - \|z_i - z_j\|.$$

1. Explain the effect of distance.
2. What can this model capture that ER or p_2 cannot?
3. Give a real-world system where such a geometry is natural.

Solution · Latent Space Model

(1) Distance effect. Closer nodes so higher probability of an edge.

(2) Captures:

- ▶ clustering and communities,
- ▶ transitivity (triangle formation),
- ▶ geometric effects,
- ▶ heterogeneity induced by spatial layout.

(3) Real-world examples.

- ▶ Social networks with ideological or spatial proximity,
- ▶ Ecological interaction networks,
- ▶ Communication or mobility networks.