
Seminar 3 · Networks, Crowds and Markets
Scale-Free Networks



Warm-up

Pick the best estimate for:

1. minimal degree:
0, 1, 3, 30

2. maximal degree:
5, 25, 100, 1000

3. the diameter:
2,4,10,20

4. the clustering coefficient:
0.05, 0.5, 0.75, 0.95.

Would a social network be likely to have the
diameter and clustering coefficient of this
graph?



Exercise 1. Clustering Coefficient

Find the clustering coefficient for:

a) the central node in a Star Graph with N nodes.

b) node b, d and f of the following graph:



Solution to Exercise 1 (sketch)

(a) Central node in a star on N nodes. Let v be the center. Then

deg(v) = N − 1.

The neighbors of v are all leaves, and there are no edges among them.
The local clustering coefficient is

Cv =
#{edges among neighbors of v}

󰀃
deg(v)

2

󰀄 =
0

󰀃
N−1
2

󰀄 = 0.

(b) Nodes b, d , f in the figure. For each such node x :

◮ list its neighbors N(x) from the picture,

◮ count how many edges exist inside N(x) (call this Ex),

◮ then

Cx =
Ex󰀃

deg(x)
2

󰀄 .



Exercise 2. Clustering in ER vs Real Data

Theory. For G (N, p), show E[Cv ] = p for any node v (condition
on deg(v) = k , then average over k).

Practice.

◮ Simulate G (200, 0.05) and estimate the average clustering
coefficient C .

◮ Compute C on a real network (e.g., karate club graph()).

◮ Compare. Why does ER under-predict clustering in social
networks?



Solution to Exercise 2

Theory. Fix a node v . Condition on deg(v) = k. Among the k neighbors of v , there

are
󰀃k
2

󰀄
possible neighbor–neighbor pairs. In G(N, p), each such edge is present

independently with probability p, so

E[#edges among neighbors of v | deg(v) = k] = p
󰀓k
2

󰀔
.

The local clustering coefficient is

Cv =
#edges among neighbors of v

󰀃k
2

󰀄 (for k ≥ 2),

so
E[Cv | deg(v) = k] = p for k ≥ 2.

Nodes with degree 0 or 1 are usually defined to have Cv = 0 (or omitted); either way
they do not change the fact that

E[Cv ] = p.

Practice. In simulations of G(200, 0.05), the average clustering coefficient C will
fluctuate around p = 0.05.
On a real social-like network (e.g. the karate-club graph), one typically finds C ≫ p
for a comparable edge density. Social networks have triadic closure: “friends of my
friends” tend to be friends, which an ER model does not encode, so ER strongly
under-predicts clustering.



Exercise 3: Estimating clustering coefficient

Suppose you want to compute your clustering coefficient on
Facebook or any other social network.

We do not have access to the whole network so we can do things
only manually: for any two of your friends check if they are friends.

Say you have 200 friends. The number of pairs – 19,900 – may be
too large to explore by hand.

Propose a method to estimate the clustering coefficient that can
be computed quicker.



Solution to Exercise 3 (clustering sampling)

Clustering coefficient of you (ego node) is

C =
#{friend–friend edges}

󰀃d
2

󰀄 , d = number of friends.

Brute force means checking all
󰀃d
2

󰀄
= 19,900 pairs.

Sampling idea.

◮ Uniformly sample M unordered pairs of distinct friends {ui ,wi}, i = 1, . . . ,M
(e.g. M = 100 or M = 200).

◮ For each sampled pair, check manually if they are friends.

◮ Let Xi = 1 if {ui ,wi} are connected, 0 otherwise, and define

󰁥C =
1

M

M󰁛

i=1

Xi .

Each Xi is a Bernoulli whose expectation is exactly the true probability that a
uniformly chosen friend–friend pair forms an edge, i.e. your clustering coefficient.
Hence

E[ 󰁥C ] = C ,

so 󰁥C is an unbiased estimator. Increasing M reduces the sampling variance, but even
M ≪

󰀃d
2

󰀄
is usually enough for a rough estimate.



Exercise 4: Power Law

Given a network with N = 107 nodes, kmin = 1, and with the
following power-law distribution:

pk = Ck−2

a) Determine the probability of finding a node with 100 links
attached.

b) What is the expected degree and variance?

c) Determine the value of C in the Continuum Formalism.

d) What is the probability that a node has between 1 and 10
edges?

e) How many hubs do we expect to find in this network?
(k ≥ 105)



Solution to Exercise 4: Power law
This could be solved exactly on a computer or approximately using the continuous formalism. We do the latter.
Thus we start with (c).
(c) Normalizing constant C . We require

1 =

󰁝 ∞

1
Ck−2 dk = C

󰁫
−k−1

󰁬∞
1

= C .

So C = 1, and p(k) = k−2, k ≥ 1.

(a) Probability of degree 100. In the continuum picture, (for the exact answer we would need to use computer)

p(k = 100) ≈ p(100) = 100−2 =
1

104
= 10−4

.

(b) Expected degree and variance.

E[k] =
󰁝 ∞

1
k · k−2 dk =

󰁝 ∞

1
k−1 dk = ∞,

so the mean degree diverges. Similarly

E[k2] =
󰁝 ∞

1
k2 · k−2 dk =

󰁝 ∞

1
1 dk = ∞.

(d) Probability 1 ≤ k ≤ 10.

P(1 ≤ k ≤ 10) ≈
󰁝 10

1
k−2 dk =

󰁫
−k−1

󰁬10
1

= 1 −
1

10
= 0.9.

(e) Number of hubs with k ≥ 105.

P(k ≥ 105) ≈
󰁝 ∞

105
k−2 dk =

󰁫
−k−1

󰁬∞
105

=
1

105
= 10−5

.

With N = 107 nodes, expected number of hubs is NP(k ≥ 105) = 107 · 10−5 = 102 ≈ 100 nodes.



Exercise 5: More on power laws

Given a SFN with N = 25,000 nodes and γ = 2.12, kmin = 5,
determine:

a) Its degree distribution (in both formalisms).

b) The probability of having a node with exactly 10 links.

c) The expected degree.

d) The number of hubs that the network has (with degree
k ≥ 5000)

e) The expected number of links.

f) What is the probability of finding a node with the same amount
or fewer links than the average.



Solution to Exercise 5: More on power laws (1/2)
Let γ = 2.12, kmin = 5.
(a) Degree distribution. Discrete (zeta-like) formalism:

pk =
k−γ

∞󰁛

j=5

j−γ

, k = 5, 6, . . .

Continuum formalism: p(k) = Ck−γ , k ≥ 5, with C chosen so that
󰁕∞
5 p(k) dk = 1:

1 = C

󰁝 ∞

5
k−γ dk = C

󰀥
k1−γ

1 − γ

󰀦∞

5

= C
5 1−γ

γ − 1
.

Hence C = (γ − 1)5γ−1.

(b) Probability of exactly 10 links. Discrete formalism:

P(K = 10) =
10−γ

󰁓∞
j=5 j−γ

.

(You can approximate numerically if you wish; conceptually this is the answer.)

(c) Expected degree (continuum).

E[k] =
󰁝 ∞

5
k p(k) dk = C

󰁝 ∞

5
k1−γ dk = C

󰀥
k2−γ

2 − γ

󰀦∞

5

= C
5 2−γ

γ − 2
.

Insert C = (γ − 1)5γ−1 to get E[k] = γ−1
γ−2

5. For γ = 2.12,

γ − 1

γ − 2
≈

1.12

0.12
≈ 9.33, ⇒ E[k] ≈ 9.33 × 5 ≈ 46.7.



Solution to Exercise 5: More on power laws (2/2)
(d) Number of hubs with k ≥ 5000. Tail probability (continuum):

P(k ≥ K0) =

󰁝 ∞

K0

Ck−γ dk = C
K

1−γ
0

γ − 1
= 5γ−1K

1−γ
0 =

󰀕
5

K0

󰀖γ−1

.

For K0 = 5000,

P(k ≥ 5000) =

󰀕
5

5000

󰀖1.12

= (10−3)1.12 = 10−3.36 ≈ 4.4 × 10−4
.

Expected number of hubs: NP(k ≥ 5000) ≈ 25,000 × 4.4 × 10−4 ≈ 11.

(e) Expected number of links. Total degree sum is NE[k], so

E[L] =
NE[k]

2
≈

25,000 × 46.7

2
≈

1.17 × 106

2
≈ 5.8 × 105 links.

(f) Probability of having ≤ average degree. Using the continuum tail:

P(k > E[k]) ≈
󰀣

5

E[k]

󰀤γ−1

=

󰀣
5

(γ − 1)5/(γ − 2)

󰀤γ−1

=

󰀕
γ − 2

γ − 1

󰀖γ−1

.

For γ = 2.12, this is a small number (heavy right tail), so

P(k ≤ E[k]) ≈ 1 −
󰀕

γ − 2

γ − 1

󰀖γ−1

is close to 1. Intuitively: in such a skewed distribution, “average” is pulled up by few hubs, so most nodes have
degree below the mean.



Exercise 6: Cayley tree

A Cayley tree is a symmetric tree constructed starting from a
central node of degree k . Each node at distance 1 from the central
node has degree k . More generally, each node at distance ℓ from
the central node has degree k until we reach the nodes at distance
t, which have degree one and are called leaves.

1. Calculate the number of nodes reachable in s steps from the
central node.

2. Calculate the degree distribution of the network.

3. Calculate the diameter dmax.

4. Find an expression for the diameter dmax in terms of the total
number of nodes N.

5. Does the network display the small-world property?



Solution to Exercise 6: Cayley tree (1/2)

(1) Nodes reachable in s steps from the center. Let the center be distance 0.

#{nodes at distance 0} = 1,

#{nodes at distance ℓ} = k(k − 1)ℓ−1, ℓ = 1, 2, . . . , t.

Hence the number of nodes reachable within s steps (0 ≤ s ≤ t) is

N(s) = 1 +
s󰁛

ℓ=1

k(k − 1)ℓ−1 = 1 + k
(k − 1)s − 1

(k − 1)− 1
= 1 + k

(k − 1)s − 1

k − 2
(k ∕= 2).

(2) Degree distribution. There is:

◮ 1 node (the center) with degree k;

◮ for ℓ = 1, . . . , t − 1, k(k − 1)ℓ−1 nodes with degree k;

◮ at distance t, leaves of degree 1, number

Nleaf = k(k − 1)t−1.

So all internal nodes (N − Nleaf many) have degree k, and the Nleaf nodes have degree
1.

(3) Diameter. The largest distance is between two leaves on “opposite sides” of the
tree: leaf → center → leaf, which gives dmax = 2t.



Solution to Exercise 6: Cayley tree (2/2)

(4) Diameter in terms of N. Total number of nodes (distance ≤ t):

N = 1 +
t󰁛

ℓ=1

k(k − 1)ℓ−1 = 1 + k
(k − 1)t − 1

k − 2
.

Solve for (k − 1)t :

(k − 1)t = 1 +
k − 2

k
(N − 1).

Thus

t = logk−1

󰀓
1 +

k − 2

k
(N − 1)

󰀔
,

and

dmax = 2t = 2 logk−1

󰀓
1 +

k − 2

k
(N − 1)

󰀔
.

For large N, this behaves like dmax ∼ 2 logk−1 N.

(5) Small-world property. Since dmax = O(logN), the Cayley tree has distances
growing logarithmically with N, so it does display the small-world property (in the
sense of diameter / typical distances).



Additional exercises



Exercise: Power law vs. Poisson

Consider the in-degree distribution of the World Wide Web, which is
approximately a power law with exponent γin = 2.1 and minimum degree
kmin = 1. There are about N = 1012 pages.

For comparison, let us take a random Erdős–Rényi network of the same
size and with the same average in-degree 〈kin〉 = 4.6.

1. Estimate the fraction of nodes with 1 ≤ k ≤ 5 incoming links in
both networks. Compare the results.

2. For the Erdős–Rényi network, find the approximate range of degrees
that contains 68% of all nodes.

3. Estimate how many pages have more than 105 incoming links in
each network, and discuss the qualitative difference.

Hint. For the power law, you may use the normalized form

pk = k−γ/ζ(γ). For the ER network, assume a Poisson with λ = 4.6.



Solution: Power law vs. Poisson (1/4)

We compare two in-degree models on N = 1012 pages:

Power law: pPL
k =

k−γ

ζ(γ)
, γ = 2.1, k ≥ 1, ζ(2.1) ≈ 1.58.

ER/Poisson: K ∼ Poisson(λ), λ = 4.6.

Truncation for kmin = 1: If we enforce k ≥ 1 for the Poisson model, use
the truncated distribution

p
Pois|k≥1
k =

P(K = k)

P(K ≥ 1)
=

e−λλk/k!

1− e−λ
, k ≥ 1,

where 1− e−λ ≈ 0.9900. This reweights probabilities by a factor

≈ 1/0.99 ≈ 1.0101 (a ∼1% effect).



Solution: Power law vs. Poisson (2/4)

(1) Fraction with 1 ≤ k ≤ 5

Power law:

PPL(1 ≤ k ≤ 5) =

󰁓5
k=1 k

−2.1

ζ(2.1)
≈ 1.422

1.58
≈ 0.90 ⇒ about 9.0×1011 nodes.

Poisson (k ≥ 1 truncated):

P(1 ≤ K ≤ 5 | K ≥ 1) =
P(1 ≤ K ≤ 5)

1− e−λ
≈ 0.669

0.990
≈ 0.676.

(2) “68%” confidence intervals
For K ∼ Poisson(λ), the normal approximation gives

µ = λ = 4.6, σ =
√
λ ≈ 2.144.

About 68% of a normal law lies in [µ− σ, µ+ σ]. With a continuity
correction:

[µ− σ, µ+ σ ] ≈ [ 2.46, 6.74 ].

The integer degrees in this band are k ∈ {3, 4, 5, 6} (or one may report

{2, . . . , 7} for ≈ 68% by symmetry).



Solution: Power Law vs. Poisson (3/4)

(3) Nodes with k > 105 incoming links. Power law:
For a power-law tail with exponent γ = 2.1,

P(K > k0) ≈
1

ζ(γ)

󰁝 ∞

k0

x−γ dx =
k 1−γ
0

ζ(γ)(γ − 1)
.

With k0 = 105 and ζ(2.1) ≈ 1.58: P(K > 105) ≈ 1.8× 10−6.
Since N = 1012: N P(K > 105) ≈ 1.8× 106.

Interpretation: A power-law network with 1012 nodes contains millions
of extremely high-degree hubs.

Poisson / ER model: For a Poisson distribution with mean λ = 4.6, the
tail decays exponentially. A standard Chernoff estimate gives

P(K ≥ k0) ≤ exp(−c k0) for some constant c > 0.

For k0 = 105, this is roughly P(K ≥ 105) ≈ exp(−105) ≈ 0. Thus even
with N = 1012 pages: N P(K ≥ 105) ≈ 0.

Conclusion: Power-law networks naturally generate extremely large

hubs; Poisson/ER networks do not.



Solution: Why Poisson Cannot Produce Hubs (4/4)

Poisson tails decay exponentially.
If K ∼ Poisson(λ) with λ = 4.6, then for large k ,

P(K = k) ≈ e−λλk

k!
≈ exp

󰀃
−k log(k/λ) + O(k)

󰀄
,

which is an extremely fast decay.

Even multiplying by the total number of pages, N = 1012, gives

N P(K ≥ 105) ≈ 0.

Intuition: A Poisson degree distribution is tightly concentrated around

its mean. Huge deviations (like degree 105) are essentially impossible.

Power-law distributions decay much more slowly, so they can produce

extreme hubs even in finite networks.



Exercise: Snobbish network

Consider a network of N blue and N red nodes. Any two nodes of
the same color are connected independently with probability p, and
any two nodes of different colors with probability q ≤ p.

(a) Compute the expected degree of a blue node:
◮ within its own color class (blue–blue links),
◮ and in the full network (blue–blue plus blue–red links).

(b) For large N, what happens to the network when q = 0?
Describe qualitatively how the picture changes as q increases
from 0 to values comparable to p.

(c) Suppose p and q are both of order 1/N so that the average
degree stays around a constant. Argue (heuristically, not
rigorously) that in this regime the typical distance between
two nodes still grows roughly like logN, even when p ≫ q.



Solution: Snobbish network
There are N blue and N red nodes.
(a) Expected degree of a blue node. Fix a blue node B.

◮ Blue–blue neighbors: there are N − 1 other blue nodes, each linked with probability p. Contribution

E[degblue(B)] = (N − 1)p.

◮ Blue–red neighbors: there are N red nodes, each linked with probability q. Contribution

E[degred(B)] = Nq.

Total expected degree of B: E[deg(B)] = (N − 1)p + Nq.

(b) Behaviour as q increases. For large N:

◮ If q = 0, the network splits into two independent ER graphs: one on the N blue nodes, one on the N red
nodes, each ∼ G(N, p). There is no path between colors.

◮ As soon as q > 0, cross-color edges appear. For moderate q, the two “communities” (blue and red) are
still visible but linked by a set of “bridge” edges.

◮ When q becomes comparable to p, the network looks more homogeneous; color becomes less informative
about connectivity.

(c) p, q of order 1/N: typical distance. Suppose p =
c1
N

,q =
c2
N

, so that expected degree is

E[deg(B)] ≈ c1 + c2

(a constant w.r.t. N). This is a sparse random graph. Heuristically, from the perspective of a node, the
neighborhood grows like a (multi-type) branching process with mean offspring ≈ c1 + c2. As long as the effective
branching factor exceeds 1, the size of the ball of radius r grows roughly like (c1 + c2)

r , so to reach O(N) nodes
we need r of order log N. Thus typical distances remain O(log N) even when c1 ≫ c2 (i.e. p ≫ q).


