
Seminar 2 Networks, Crowds and Markets
Random Networks

Exercise 1: Betweeness centrality.

We defined the betweenness centrality of a vertex x in a graph G as

b(v) =
󰁛

s,t ∕=v

σst(v)

σst
,

where σst(v) denotes the number of shortest s-t-paths in G that
go through v , and σst denotes the number of shortest s-t-paths.

(a) Consider a path on N vertices. Calculate the betweenness
centralities. At which vertex are they maximised?

(b) Consider a tree on n vertices with a vertex v of degree k , so
that its removal would divide the tree into k disjoint subtrees
compromising n1, . . . , nk vertices. Show that
b(x) = 1

2((N − 1)2 −
󰁓k

i=1 n
2
i).

Hint: each pair of vertices in different subtrees contributes 1 to b(x).

Exercise 2: Centrality Measures

For the network shown below, compute all the centrality measures you
know: Degree centrality, Closeness centrality, Betweenness centrality,
Eigenvector centrality.

All measures except the eigenvector centrality can be computed by hand.
Compare which nodes are most important under each criterion.

Associated code

import networkx as nx

import numpy as np

Define the graph

edges = [

(1,2), (1,3), (1,4), (2,4), (3,4),

(4,5), (4,6), (6,7), (7,8)]

G = nx.Graph()

G.add_edges_from(edges)

centrality = nx.eigenvector_centrality_numpy(G)

print("\nEigenvector centrality:")

for node, c in centrality.items():

print(f"Node {node}: {c:.4f}")

Exercise 3: Bounds on λmax

Show that for any simple undirected graph with adjacency A, the
largest eigenvalue λmax(A) is:

1. at least the average degree of G ,

2. at most the maximum degree.

Hint:

◮ λmax(A) = max󰀂x󰀂=1 x
⊤Ax.

◮ 2xixj ≤ x2i + x2j

Exercise 4: Link probability distribution.

Given an ER graph with N = 15 and probability p = 0.1,
determine:

a) What is the distribution of L?

b) What is the probability that L ≥ 15?
◮ Computing this by hand may be hard (see next slide).
◮ Check that the Hoeffding bound is not very good in this case.

c) Find smallest ℓ ∈ N such that P(L ≥ ℓ) ≤ 0.05 (use the code).
◮ Use the one sided Hoeffding as an alternative way to construct

such interval. What do you observe?

d) Do we expect a Giant Component?

One-sided Hoeffding: X =
󰁓n

i=1 Zi with Zi ∈ [0, 1] then

P(X − µ ≥ t) ≤ e−
2t2

n .

Associated code

from scipy.stats import binom

Parameters

n = 105 # number of trials

p = 0.1 # success probability

Compute P(X >= 16) = 1 - P(X <= 14)

prob = 1 - binom.cdf(14, n, p)

print(prob)

Exercise 5: Degree and average degree in ER graphs

Let X = deg(v) for a fixed vertex in the ER(N, p) graph:

◮ Compute the mean and the variance of deg(v).

◮ Compute the covariance of deg(u) and deg(v) for u ∕= v .

◮ Are deg(u) and deg(v) independent?

Let Y = deg(G) be the average degree in the ER(N, p) graph.

◮ Show that E[Y] = (N − 1)p.

◮ What is the distribution of Y ?

◮ Use the previous exercise to compute P(Y − (N − 1)p ≥ 2).

◮ Develop Hoeffding bound for P(Y − (N − 1)p ≥ t).

Exercise 6: Connectivity Threshold in G (N , p)

Let ω(N) be any sequence that grows to infinity (however slowly).
Examples: log log(N),

󰁳
log(N), or even log log log(N).

In G (N, p), the expected number of isolated vertices is

E[N0] = N(1− p)N−1 ≈ Ne−p(N−1).

Suppose G is the ER(N, p)

(a) Derive the formula above.

(b) Let p = logN−ω(N)
N with ω(N) → +∞. Show E[N0] → ∞ and

conclude G is disconnected w.h.p.

(c) Let p = logN+ω(N)
N with ω(N) → +∞. Show E[N0] → 0. Can

we conclude G is connected w.h.p.?
(actually E[Nk] → 0 for any fixed k)

Exercise 7: Triangles in ER models

Let T be the number of triangles in the ER(N, p) graph.

What is the expected number of T?

Bonus: Compute Var(T).

Additional exercises

Exercise: Degree vs. Eigenvector Centrality

Compute the eigenvector centrality of all nodes in the undirected
graph below (you may use Python/NetworkX). Then compare with
degree centrality.

◮ Which nodes are important under each measure?

◮ Why can these rankings differ?

A

B

C

D

E

F

G

H

The associated code

Python (NetworkX):

import networkx as nx

G = nx.Graph()

edges = [

(’A’,’B’),(’A’,’C’),(’B’,’C’),(’B’,’D’),(’C’,’D’),

(’D’,’E’),(’E’,’F’),(’E’,’G’),(’F’,’G’),(’F’,’H’)

]

G.add_edges_from(edges)

x = nx.eigenvector_centrality(G, max_iter=1000, tol=1e-6)

x_rounded = {node: round(val, 3) for node, val in x.items()}

print(x_rounded)

Exercise: Closeness and Betweenness centrality

For the graph shown below, compute for every node:

◮ Closeness centrality Cclose(v)

◮ Betweenness centrality Cbetw(v)

Which measure better identifies bridge nodes in this network?

A

B

C

D

E

F G

H

I

J

K

L

M N

The associated code

G = nx.Graph()

edges = [

(’A’,’B’),(’B’,’C’),(’C’,’A’),(’B’,’D’),(’D’,’E’),

(’E’,’C’),(’B’,’E’),(’C’,’D’),(’D’,’F’),(’E’,’F’),

(’F’,’G’),(’G’,’H’),(’G’,’I’),(’H’,’J’),(’I’,’J’),

(’J’,’K’),(’J’,’L’),(’H’,’K’),(’I’,’L’),(’L’,’M’),

(’M’,’N’)]

G.add_edges_from(edges)

--- Centralities ---

close = nx.closeness_centrality(G) # closeness

betw = nx.betweenness_centrality(G, normalized=True) # betweenness

print("Node Closeness Betweenness")

for v in sorted(G.nodes(), key=lambda x: betw[x], reverse=True):

print(f"{v:>4} {close[v]:8.3f} {betw[v]:10.3f}")

Exercise: PageRank (small directed web)

Consider the directed network with adjacency matrix

A =

󰀳

󰁅󰁅󰁃

0 1 0 1
0 0 1 0
1 0 0 1
0 0 0 0

󰀴

󰁆󰁆󰁄 .

(a) Write down the transition matrix P .

(b) Find the stationary vector satisfying P⊤π = π, 1⊤π = 1.

(c) With teleportation α = 0.85,

Pα = αP + (1− α)
1

4
11⊤,

compute the PageRank vector π (solve P⊤
α π = π, 1⊤π = 1).

Follow-up: Understanding PageRank qualitatively

The network is

1 → {2, 4}, 2 → 3, 3 → {1, 4}, 4 → ∅.

Questions:

(a) Which node acts as a sink in the random walk defined by P? What
happens to probability mass over time if there is no teleportation?

(b) After adding teleportation (α = 0.85), which nodes PageRank values
increase the most? Why does this happen?

(c) What is the qualitative effect of changing α?

◮ As α → 1, what happens to π?
◮ As α → 0, what does π converge to?

(d) Suppose we add one new edge 4 → 1. How would that affect the
PageRank scores? (Hint: which node now becomes a stronger hub?)

Exercise: Random Walk Stationary Distribution

Let G be a connected, undirected graph with adjacency A and
degree matrix D. The random walk transition is P = D−1A.

(a) Show that πi =
deg(i)󰁓
j deg(j)

is a stationary distribution:

P⊤π = π.

(b) Why is this stationary distribution unique when G is
connected?

Exercise: Spectrum of P = D−1A

Let G be a connected, undirected graph. Show / verify that the
eigenvalues of P = D−1A lie in [−1, 1].

◮ Hint: Relate P to the symmetric matrix
S = D1/2PD−1/2 = D−1/2AD−1/2.

◮ Why does λ = 1 correspond to the stationary distribution?
Why simple (multiplicity 1) if G is connected?

(Optional: verify numerically on a medium graph.)

Exercise: Simulating the Giant Component (ER)

Simulate G (N, p) with N = 500 and p = c/N for
c ∈ {0.5, 1, 1.5, 2, 3, 4}.
◮ For each c , estimate the fraction |Cmax|

N of nodes in the largest
component.

◮ Plot |Cmax|
N vs. c and mark roughly where the phase transition

occurs.

(You may do this as a short optional homework using NetworkX.)

