
Seminar 2 Networks, Crowds and Markets
Random Networks



Exercise 1: Betweeness centrality.

We defined the betweenness centrality of a vertex x in a graph G as

b(v) =
󰁛

s,t ∕=v

σst(v)

σst
,

where σst(v) denotes the number of shortest s-t-paths in G that
go through v , and σst denotes the number of shortest s-t-paths.

(a) Consider a path on N vertices. Calculate the betweenness
centralities. At which vertex are they maximised?

(b) Consider a tree on n vertices with a vertex v of degree k , so
that its removal would divide the tree into k disjoint subtrees
compromising n1, . . . , nk vertices. Show that

b(v) = 1
2

󰀓
(N − 1)2 −

k󰁛

i=1

n2i

󰀔
.

Hint: each pair of vertices in different subtrees contributes 1 to b(v).



Solution to Exercise 1
(a) Path on N vertices. Label the path as 1, 2, . . . ,N. Shortest paths are unique. A vertex i (with 1 < i < N)
lies on the unique shortest path between s and t iff

s < i < t or t < i < s.

Number of unordered pairs {s, t} with s < i < t is (i − 1)(N − i). Thus

b(i) = (i − 1)(N − i), i = 2, . . . ,N − 1,

and b(1) = b(N) = 0. The quadratic (i − 1)(N − i) is maximised for vertices in the middle:

◮ If N is odd: unique maximum at i = N+1
2

.

◮ If N is even: two symmetric maxima at i = N
2

and i = N
2

+ 1.

(b) Tree split into k subtrees.
Removing v splits G into k components with sizes n1, . . . , nk . A pair {s, t} of vertices contributes 1 to b(v) iff s
and t lie in different components (the unique path must then pass through v).
Number of such unordered pairs is 󰁛

1≤i<j≤k

ni nj .

Using
󰀓 k󰁛

i=1

ni

󰀔2
=

k󰁛

i=1

n2i + 2
󰁛

1≤i<j≤k

ni nj

and
󰁓k

i=1 ni = N − 1, we get

󰁛

1≤i<j≤k

ni nj =
(N − 1)2 −

󰁓k
i=1 n2i

2
,

which is exactly the claimed formula for b(v).



Exercise 2: Centrality Measures

For the network shown below, compute all the centrality measures you
know: Degree centrality, Closeness centrality, Betweenness centrality,
Eigenvector centrality.

All measures except the eigenvector centrality can be computed by hand.
Compare which nodes are most important under each criterion.



Solution to Exercise 2 (sketch)

Degree centrality (just degrees):

deg(1) = 3, deg(2) = 2, deg(3) = 2, deg(4) = 5, deg(5) = 1, deg(6) = 2, deg(7) = 2, deg(8) = 1.

So node 4 is clearly the degree hub.

Closeness centrality (rounded):

v 1 2 3 4 5 6 7 8
Cclose(v) 0.50 0.47 0.47 0.70 0.44 0.58 0.44 0.32

Again node 4 is the most central; node 6 comes second.

Betweenness centrality (normalised, rounded):

v 1 2 3 4 5 6 7 8
Cbetw(v) 0.02 0 0 0.74 0 0.48 0.29 0

Nodes 4 and 6 sit on many shortest paths; 4 is a strong bridge between left and right parts of the graph.

Eigenvector centrality (rounded):

v 1 2 3 4 5 6 7 8
x(v) 0.48 0.38 0.38 0.60 0.21 0.25 0.10 0.04

Takeaway: every reasonable centrality ranks node 4 as most important; node 6 is also central for
betweenness/closeness but less so for degree alone.



Associated code

import networkx as nx

import numpy as np

# Define the graph

edges = [

(1,2), (1,3), (1,4), (2,4), (3,4),

(4,5), (4,6), (6,7), (7,8)]

G = nx.Graph()

G.add_edges_from(edges)

centrality = nx.eigenvector_centrality_numpy(G)

print("\nEigenvector centrality:")

for node, c in centrality.items():

print(f"Node {node}: {c:.4f}")



Exercise 3: Bounds on λmax

Show that for any simple undirected graph with adjacency A, the
largest eigenvalue λmax(A) is:

1. at least the average degree of G ,

2. at most the maximum degree.

Hint:

◮ λmax(A) = max󰀂x󰀂=1 x
⊤Ax.

◮ 2xixj ≤ x2i + x2j .



Solution to Exercise 3

Let di be degrees, d = 1
N

󰁓
i di the average degree, and ∆ = maxi di .

(1) Lower bound: λmax ≥ d .
Take x = 1√

N
1 so that 󰀂x󰀂 = 1. Then

x⊤Ax =
1

N
1⊤A1 =

1

N

󰁛

i

di = d .

Since λmax = max󰀂x󰀂=1 x
⊤Ax , we obtain

λmax ≥ d .

(2) Upper bound: λmax ≤ ∆.
For any x ,

x⊤Ax =
󰁛

(i,j)∈E

2xixj ≤
󰁛

(i,j)∈E

(x2i + x2j ) =
󰁛

i

dix
2
i ≤ ∆

󰁛

i

x2i = ∆󰀂x󰀂2,

using 2xixj ≤ x2i + x2j and di ≤ ∆.

For any unit vector x we therefore have x⊤Ax ≤ ∆, hence

λmax = max
󰀂x󰀂=1

x⊤Ax ≤ ∆.



Exercise 4: Link probability distribution.

Given an ER graph with N = 15 and probability p = 0.1,
determine:

a) What is the distribution of L?

b) What is the probability that L ≥ 15?
◮ Computing this by hand may be hard (see next slide).
◮ Check that the Hoeffding bound is not very good in this case.

c) Find smallest ℓ ∈ N such that P(L ≥ ℓ) ≤ 0.05 (use the code).
◮ Use the one sided Hoeffding as an alternative way to construct

such interval. What do you observe?

d) Do we expect a Giant Component?

One-sided Hoeffding: X =
󰁓n

i=1 Zi with Zi ∈ [0, 1] then

P(X − µ ≥ t) ≤ e−
2t2

n .



Solution to Exercise 4

Number of possible edges: M =
󰀓
15
2

󰀔
= 105.

(a) L is the total number of present edges, so L ∼ Binomial(M, p) = Binomial(105, 0.1).

(b) P(L ≥ 15) = 1 − P(L ≤ 14) can be computed numerically (see code). It is about

P(L ≥ 15) ≈ 0.10.

Hoeffding with n = 105, mean µ = 10.5, t = 4.5 gives a very loose upper bound

P(L − µ ≥ 4.5) ≤ exp
󰀓
−

2t2

n

󰀔
= exp

󰀓
−

2 · 4.52

105

󰀔
≈ 0.68.

(c) We look for the smallest ℓ with P(L ≥ ℓ) ≤ 0.05. Numerically one finds

P(L ≥ 16) ≈ 0.058 > 0.05, P(L ≥ 17) ≈ 0.032 < 0.05,

so ℓ = 17 is the first value with tail probability ≤ 0.05.
Using Hoeffding with t = ℓ − µ, the bound suggests a much larger threshold (around ℓ ≈ 24), again very
conservative.

(d) The expected degree is
E[deg(v)] = (N − 1)p = 14 · 0.1 = 1.4.

In the asymptotic G(N, c/N) picture the critical value is c = 1. Here c ≈ 1.4 > 1, so for large N with the
same average degree we are in the supercritical regime and would expect a giant component. For N = 15 we
just expect a reasonably large component, but giant is less meaningful.



Associated code

from scipy.stats import binom

# Parameters

n = 105 # number of trials

p = 0.1 # success probability

# Compute P(X >= 16) = 1 - P(X <= 14)

prob = 1 - binom.cdf(14, n, p)

print(prob)



Exercise 5: Degree and average degree in ER graphs

Let X = deg(v) for a fixed vertex in the ER(N, p) graph:

◮ Compute the mean and the variance of deg(v).

◮ Compute the covariance of deg(u) and deg(v) for u ∕= v .

◮ Are deg(u) and deg(v) independent?

Let Y = deg(G ) be the average degree in the ER(N, p) graph.

◮ Show that E[Y ] = (N − 1)p.

◮ What is the distribution of Y ?

◮ Use the previous exercise to compute P(Y − (N − 1)p ≥ 2).

◮ Develop Hoeffding bound for P(Y − (N − 1)p ≥ t).



Solution to Exercise 5 (1/2)

Degrees of fixed vertices. For a fixed vertex v , the degree is
X = deg(v) =

󰁓
w ∕=v I{vw}, where I{vw} is the indicator of edge {v ,w}. There are

N − 1 independent Bernoulli(p) terms, so

X ∼ Bin(N − 1, p), E[X ] = (N − 1)p, Var(X ) = (N − 1)p(1− p).

For distinct u, v ,

deg(u) =
󰁛

w ∕=u

I{uw}, deg(v) =
󰁛

w ∕=v

I{vw}.

The only common indicator is I{uv}. Thus

Cov(deg(u), deg(v)) = Var(I{uv}) = p(1− p).

In particular, deg(u) and deg(v) are not independent.

Average degree. Let L be the number of edges. Then
deg(G) = Y = 1

N

󰁓
v deg(v) =

2L
N
. But L ∼ Bin

󰀃󰀃N
2

󰀄
, p

󰀄
, so Y is just a scaled

binomial: Y = 2
N
L. Hence

E[Y ] =
2

N
E[L] =

2

N

󰀓N
2

󰀔
p = (N − 1)p.



Solution to Exercise 5 (2/2)

To compute P(Y − (N − 1)p ≥ 2), note

Y − (N − 1)p ≥ 2 ⇐⇒ L− E[L] ≥
N

2
· 2 = N.

So P(Y − (N − 1)p ≥ 2) = P
󰀓
L− E[L] ≥ N

󰀔
, which can be evaluated from the

binomial distribution of L.

Hoeffding for Y . Write L =
󰁓

e Ie as sum of m =
󰀃N
2

󰀄
independent Bernoulli(p).

Hoeffding gives

P(L− E[L] ≥ s) ≤ exp
󰀓
−

2s2

m

󰀔
.

Since Y = 2
N
L, Y − E[Y ] = 2

N
(L− E[L]). Thus Y − E[Y ] ≥ t implies L− E[L] ≥ tN

2
,

and

P(Y − E[Y ] ≥ t) ≤ exp
󰀓
−

2(tN/2)2

m

󰀔
= exp

󰀓
−

t2N2

2
󰀃N
2

󰀄
󰀔
.

For large N,
󰀃N
2

󰀄
≈ N2/2, so the exponent is about −t2.



Exercise 6: Connectivity Threshold in G (N , p)

Let ω(N) be any sequence that grows to infinity (however slowly).
Examples: log log(N),

󰁳
log(N), or even log log log(N).

In G (N, p), the expected number of isolated vertices is

E[N0] = N(1− p)N−1 ≈ Ne−p(N−1).

Suppose G is the ER(N, p)

(a) Derive the formula above.

(b) Let p = logN−ω(N)
N with ω(N) → +∞. Show E[N0] → ∞ and

conclude G is disconnected w.h.p.

(c) Let p = logN+ω(N)
N with ω(N) → +∞. Show E[N0] → 0. Can

we conclude G is connected w.h.p.?
(actually E[Nk ] → 0 for any fixed k)



Solution to Exercise 6
(a) Expected number of isolated nodes. A vertex v is isolated if none of the N − 1 possible edges from v is

present: P(v isolated) = (1 − p)N−1. Let Iv be the indicator of v isolated. Then

N0 =
N󰁛

v=1

Iv , E[N0] =
󰁛

v

E[Iv ] = N(1 − p)N−1
.

Using (1 − p)N−1 ≈ e−p(N−1) gives the approximation.

(b) p =
log N−ω(N)

N
, ω(N) → ∞. Then

p(N − 1) = (log N − ω(N))
󰀓
1 −

1

N

󰀔
= log N − ω(N) + o(1).

Hence
E[N0] = N(1 − p)N−1 ≈ Ne−p(N−1) ≈ Ne−(log N−ω(N)) = eω(N) → ∞.

So the expected number of isolates diverges. Hence with high probability there are isolated vertices, so G is
disconnected w.h.p.

(c) p =
log N+ω(N)

N
, ω(N) → ∞. Now

p(N − 1) = (log N + ω(N))(1 − o(1)) = log N + ω(N) + o(1).

Thus E[N0] ≈ Ne−(log N+ω(N)) = e−ω(N) → 0. So isolated vertices disappear in expectation. In fact one can
show P(N0 > 0) → 0, and more strongly E[Nk ] → 0 for each fixed k, which implies that w.h.p. there are no small
components at all, hence G is connected w.h.p.
But note: E[N0] → 0 alone does not automatically imply connectivity; one needs to rule out small components of
size ≥ 2 as well.



Exercise 7: Triangles in ER models

Let T be the number of triangles in the ER(N, p) graph.

What is the expected number of T?

Bonus: Compute Var(T ).



Solution to Exercise 7

Let I{i,j,k} be the indicator that vertices i , j , k form a triangle.

Expectation.
There are

󰀃N
3

󰀄
triples, each forms a triangle with probability p3 (all three edges must

be present). So

T =
󰁛

i<j<k

I{i,j,k}, E[T ] =
󰀓N
3

󰀔
p3.

Variance (sketch).

Var(T ) =
󰁛

i<j<k

Var(I{i,j,k}) + 2
󰁛

{i,j,k} ∕={i′,j′,k′}
Cov(I{i,j,k}, I{i′,j′,k′}).

Each I is Bernoulli(p3), so

Var(I{i,j,k}) = p3(1− p3).

Covariances are 0 unless the two triangles share at least one edge. One then
enumerates the overlapping cases (share exactly one edge, or share a path of length 2)
to obtain an explicit formula. The key point: expectations and variances can be
computed from independence of edges and combinatorics of overlapping triples.



Additional exercises



Exercise: Degree vs. Eigenvector Centrality

Compute the eigenvector centrality of all nodes in the undirected
graph below (you may use Python/NetworkX). Then compare with
degree centrality.

◮ Which nodes are important under each measure?

◮ Why can these rankings differ?

A

B

C

D

E

F

G

H



Solution: Degree vs Eigenvector Centrality

Degree centrality.
Left cluster: A,B ,C ,D all have degree 2 or 3; right cluster: E ,F ,G also
relatively high degree; H is a leaf. Many nodes have similar degrees.

Eigenvector centrality.
Eigenvector centrality rewards nodes connected to already central nodes.
The bridge edge D−E links two dense clusters, so:

◮ D and E get very high eigenvector centrality (they connect two
well-connected groups).

◮ Nodes like A,B ,C and F ,G are also central, but a bit less than
D,E .

◮ H (a leaf hanging off F ) gets low eigenvector centrality.

Takeaway: degree centrality just counts neighbours, while eigenvector
centrality prefers nodes that connect to well-connected neighbours.
Bridge nodes between dense parts can become very important under
eigenvector centrality even if their degree is not the largest.



The associated code

import networkx as nx

G = nx.Graph()

edges = [

(’A’,’B’),(’A’,’C’),(’B’,’C’),(’B’,’D’),(’C’,’D’),

(’D’,’E’),(’E’,’F’),(’E’,’G’),(’F’,’G’),(’F’,’H’)

]

G.add_edges_from(edges)

x = nx.eigenvector_centrality(G, max_iter=1000, tol=1e-6)

x_rounded = {node: round(val, 3) for node, val in x.items()}

print(x_rounded)



Exercise: Closeness and Betweenness centrality

For the graph shown below, compute for every node:

◮ Closeness centrality Cclose(v)

◮ Betweenness centrality Cbetw(v)

Which measure better identifies bridge nodes in this network?

A

B

C

D

E

F G

H

I

J

K

L

M N



Solution: Closeness vs Betweenness

Closeness. Nodes roughly in the middle of the whole graph (around F ,
G , J) tend to have the largest closeness: they have small average
distance to all others.
Betweenness. Nodes that lie on many shortest paths between left and
right parts have high betweenness:

◮ F and G are clear bridges between the left and right clusters.

◮ J also lies on many shortest paths inside the right cluster and
towards the tail MN.

So betweenness centrality highlights the bridge nodes F , G , J more
sharply than closeness, which also rewards nodes that are central inside
dense parts of the graph.



The associated code

G = nx.Graph()

edges = [

(’A’,’B’),(’B’,’C’),(’C’,’A’),(’B’,’D’),(’D’,’E’),

(’E’,’C’),(’B’,’E’),(’C’,’D’),(’D’,’F’),(’E’,’F’),

(’F’,’G’),(’G’,’H’),(’G’,’I’),(’H’,’J’),(’I’,’J’),

(’J’,’K’),(’J’,’L’),(’H’,’K’),(’I’,’L’),(’L’,’M’),

(’M’,’N’)]

G.add_edges_from(edges)

# --- Centralities ---

close = nx.closeness_centrality(G) # closeness

betw = nx.betweenness_centrality(G, normalized=True) # betweenness

print("Node Closeness Betweenness")

for v in sorted(G.nodes(), key=lambda x: betw[x], reverse=True):

print(f"{v:>4} {close[v]:8.3f} {betw[v]:10.3f}")



Exercise: PageRank (small directed web)

Consider the directed network with adjacency matrix

A =

󰀳

󰁅󰁅󰁃

0 1 0 1
0 0 1 0
1 0 0 1
0 0 0 0

󰀴

󰁆󰁆󰁄 .

(a) Write down the transition matrix P .

(b) Find the stationary vector satisfying P⊤π = π, 1⊤π = 1.

(c) With teleportation α = 0.85,

Pα = αP + (1− α)
1

4
11⊤,

compute the PageRank vector π (solve P⊤
α π = π, 1⊤π = 1).



Solution: PageRank (small directed web)

(a) Transition matrix P. The random walk on this directed graph has:

P =

󰀳

󰁅󰁅󰁃

0 1/2 0 1/2
0 0 1 0

1/2 0 0 1/2
0 0 0 1

󰀴

󰁆󰁆󰁄 .

(b) Stationary vector of P. Solve P⊤π = π with 1⊤π = 1. Since 4 is an absorbing
state and every node can reach 4, we get

π = (0, 0, 0, 1)⊤.

All probability mass eventually accumulates at node 4.

(c) PageRank with teleportation α = 0.85. With teleportation,

Pα = αP + (1− α)
1

4
11⊤,

and we solve P⊤
α π = π,

󰁓
i πi = 1. Numerically,

π ≈ (0.079, 0.071, 0.098, 0.752)⊤.

Node 4 still has the largest PageRank, but nodes 1 and 3 get non-zero scores because
teleportation rescues probability mass from the absorbing state.



Follow-up: Understanding PageRank qualitatively

The network is

1 → {2, 4}, 2 → 3, 3 → {1, 4}, 4 → ∅.

Questions:

(a) Which node acts as a sink in the random walk defined by P? What
happens to probability mass over time if there is no teleportation?

(b) After adding teleportation (α = 0.85), which nodes PageRank values
increase the most? Why does this happen?

(c) What is the qualitative effect of changing α?

◮ As α → 1, what happens to π?
◮ As α → 0, what does π converge to?

(d) Suppose we add one new edge 4 → 1. How would that affect the
PageRank scores? (Hint: which node now becomes a stronger hub?)



Solution: PageRank follow-up (qualitative)

(a) Node 4 is a sink (no outgoing links). Without teleportation,
probability mass drifts towards 4 and stays there; the stationary
distribution is π = (0, 0, 0, 1).

(b) With teleportation, some mass is periodically redistributed to all
nodes. Nodes that receive flow from the sink (via teleportation) and
are well-connected (like 1 and 3) gain PageRank relative to the
no-teleportation case (where they had zero in the limit).

(c) As α → 1, Pα approaches P and PageRank approaches the
stationary distribution of the raw random walk (concentrated on sinks
/ dead ends). As α → 0, Pα tends to the uniform matrix 1

411
⊤, and

PageRank converges to the uniform distribution (1/4, 1/4, 1/4, 1/4).

(d) Adding an edge 4 → 1 removes the sink. Node 1 becomes a stronger
hub (receiving links from 3 and 4), so its PageRank increases, and
the scores become more balanced across {1, 4}.



Exercise: Random Walk Stationary Distribution

Let G be a connected, undirected graph with adjacency A and
degree matrix D. The random walk transition is P = D−1A.

(a) Show that πi =
deg(i)󰁓
j deg(j)

is a stationary distribution:

P⊤π = π.

(b) Why is this stationary distribution unique when G is
connected?



Solution: Random walk stationary distribution (1/2)

(a) Stationarity. Let deg(i) be the degree of node i and m the number
of edges. Then

πi =
deg(i)󰁓
j deg(j)

=
deg(i)

2m
.

Recall Pij = P(i → j) =
Aij

deg(i) . Compute (P⊤π)j :

(P⊤π)j =
󰁛

i

Pij πi =
󰁛

i

Aij

deg(i)
· deg(i)

2m
=

1

2m

󰁛

i

Aij =
deg(j)

2m
= πj .

So P⊤π = π.



Solution: Random walk stationary distribution (2/2)
(b) Uniqueness when G is connected. Let

S = D1/2PD−1/2 = D−1/2AD−1/2
.

Then P and S are similar, so P⊤x = x iff Sy = y with y = D−1/2x . Set Lnorm := I − S . For any vector y ,

y⊤Lnormy = y⊤(I − S)y =
1

2

󰁛

i,j

Aij

󰀓 yi󰁳
deg(i)

−
yj󰁳
deg(j)

󰀔2
≥ 0.

Now suppose x is a stationary vector: P⊤x = x . Then y = D−1/2x satisfies Sy = y , i.e. Lnormy = 0, so

y⊤Lnormy = 0.

By the formula above, every term in the sum must be zero, hence for every edge (i, j),

yi󰁳
deg(i)

=
yj󰁳
deg(j)

.

Because G is connected, this propagates along paths, so

yi󰁳
deg(i)

= c for all i

for some constant c. Thus

yi = c
󰁴

deg(i) ⇒ xi =
󰁴

deg(i) yi = c deg(i).

So any stationary vector x is a scalar multiple of the degree vector (deg(i))i . Imposing the normalisation󰁓
i xi = 1 fixes c uniquely, and hence the stationary distribution is unique:

πi =
deg(i)

󰁓
j deg(j)

.



Exercise: Spectrum of P = D−1A

Let G be a connected, undirected graph. Show / verify that the
eigenvalues of P = D−1A lie in [−1, 1].

◮ Hint: Relate P to the symmetric matrix
S = D1/2PD−1/2 = D−1/2AD−1/2.

◮ Why does λ = 1 correspond to the stationary distribution?
Why simple (multiplicity 1) if G is connected?

(Optional: verify numerically on a medium graph.)



Solution: Spectrum of P = D−1A

Consider
S = D1/2PD−1/2 = D−1/2AD−1/2

.

Then S is real symmetric, and P is similar to S , so they have the same eigenvalues.

Eigenvalues in [−1, 1].
For any vector x with 󰀂x󰀂 = 1,

x⊤Sx =
󰁛

(i,j)∈E

2xi xj󰁳
deg(i) deg(j)

≤
󰁛

(i,j)∈E

󰀓 x2i

deg(i)
+

x2j

deg(j)

󰀔
=

󰁛

i

x2i = 1,

using 2ab ≤ a2 + b2 and counting degrees. Thus the Rayleigh quotient of S is at most 1, so λmax(S) ≤ 1.
Applying the same argument to −S gives λmin(S) ≥ −1. Hence all eigenvalues of S (and therefore of P) lie in
[−1, 1].

λ = 1 and stationarity.
Take u with components ui =

󰁳
deg(i). Then

(Su)i =
󰁛

j

Aij󰁳
deg(i) deg(j)

uj =
󰁛

j∼i

1
󰁳

deg(i) deg(j)

󰁴
deg(j) =

1
󰁳

deg(i)

󰁛

j∼i

1 =
󰁴

deg(i) = ui .

So u is an eigenvector of S with eigenvalue 1. Transforming back, D−1/2u is an eigenvector of P with eigenvalue
1, and its entries are proportional to deg(i), i.e. to the stationary distribution from the previous exercise.
If G is connected, the random walk is irreducible, so the eigenvalue 1 is simple (eigenspace is one-dimensional).
This corresponds to the uniqueness of the stationary distribution.



Exercise: Simulating the Giant Component (ER)

Simulate G (N, p) with N = 500 and p = c/N for
c ∈ {0.5, 1, 1.5, 2, 3, 4}.
◮ For each c , estimate the fraction |Cmax|

N of nodes in the largest
component.

◮ Plot |Cmax|
N vs. c and mark roughly where the phase transition

occurs.

(You may do this as a short optional homework using NetworkX.)


